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Abstract This paper proposes a new method for dynamic airspace configuration based on a

weighted graph model. The method begins with the construction of an undirected graph for the

given airspace, where the vertices represent those key points such as airports, waypoints, and the

edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which

divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each

air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft

counts, a weighted graph model comes into being. Accordingly the airspace configuration problem

is described as a weighted graph partitioning problem. Then, the problem is solved by a graph par-

titioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal

dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions

the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm trans-

fers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is com-

pleted by determining the sector boundaries. The simulation result shows that the designed sectors

satisfy not only workload balancing condition, but also the constraints such as convexity, connec-

tivity, as well as minimum distance constraint.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

In air traffic management, since only several controllers are
impossible to put all aircraft simultaneously flying in the whole
airspace of a nation under surveillance, the airspace is usually
divided into smaller regions referred to as sectors, and each
sector is observed by one or more controllers. In this way,

the aircraft count of each sector is supposed to be not beyond
the controller’s ability to monitor. Current sectors are largely
determined by historical effects and in an empirical way.

And such situation has never changed for a long time. For
instance, approximately 600 sectors over USA airspace
designed in 1960 have been in use up to now. The configura-
tion of the fixed sectors corresponds to the way that relatively

few aircraft fly along the fixed air routes. The airspace
characterized by fixed air routes and fixed sectors is referred
to as a structured and static one.
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With the development of air traffic, routes structure and
demand profiles have changed a lot over the years. While an
increasing number of aircraft fly simultaneously along fixed

air routes, more and more air traffic delays may arise for some
reasons, such as bad weather and traffic congestion. The situ-
ation can be improved by the way the aircraft changes its air

routes,1,2 rather than following certain fixed air routes at all
time. Accordingly, sector counts and boundary vary with traf-
fic change. This is a dynamic airspace configuration problem.

Dynamic airspace configuration (DAC)3 is an encouraging
concept proposed to convert airspace sectorization from the
structured and static airspace to a dynamic one capable of
accommodating dynamically changing traffic demand. A lot

of research into DAC has been carried out, and most scholars
completed DAC by describing the airspace as a model and
then adopting a proper algorithm to partition the airspace into

sectors. The airspace models proposed in literature can be
summarized as follows: cell model,4–7 flight trajectory
model,8,9 Voronoi diagram model,10,11 and graph model.12–16

In cell model, the airspace is first discretized into cells, i.e., hex-
agonal grids, and then some algorithms were used to cluster
those cells into sectors. For example, Yousefi et al.4 thought

of DAC problem as a standard facility location problem to
cluster the cells into sectors, Klein5 solved the problem via seed
growth algorithm, Drew6 and Tien et al.7 applied mixed inte-
ger programming to cluster cells into sectors. However, the

designed sectors may have undesirable shapes for the bound-
aries which were ‘‘jagged’’. In virtue of flight trajectory model,
Briton et al.8 clustered the flight trajectories into sectors by k-

means algorithm, and Basu et al.9 developed geometric algo-
rithms for DAC. The available literature told us that final sec-
tors based on geometric algorithms still had undesired shapes.

By means of Voronoi diagram, Delahaye et al.10 proposed ini-
tial sectors arbitrarily and then optimized them by evolution-
ary algorithm. Furthermore, Xue11 improved Delahaye’s

scenario using iterative deepening algorithm. It should be
noted that a common limitation on the three above models
is that they have not made use of information on airspace
structure. This might lead to the case that the designed sectors

might dissatisfy those geometric constraints, such as convex
constraint, minimum distance constraint, and so on. At the
same time, static airspace structure was taken sufficiently into

account in graph model, where vertices represent airports,
waypoint and crossing points while edges represent air routes.
Applying graph model, Trandac et al.,12 Martinez et al.13

Zhang et al.14,15 and Li et al.16 implemented airspace sectoriza-
tion using a constraint algorithm, spectral bisection algorithm,
graph partitioning algorithm and spectral clustering respec-
tively. In addition, Klein et al.17 developed a method that

divided a current sector into several dynamic Fix Posting
Areas and then reallocated those Areas to achieve DAC.

Due to the graph model being embedded with information

on underlying topological structure of the airspace, it usually
helps to consider the factors such as air routes and key points,
i.e., airports, crossing points as well as waypoints for DAC.

Therefore, the graph model is preferred in this paper. Further-
more, we also consider traffic flows along air routes which are
used to compute the workloads. The workloads can be

assigned as the edge weights and the vertex weights. Such topo-
logical structure with traffic flows can be described as a
weighted graph mathematically. Thus, the weighted graph
model is adopted for DAC here. And it is different from the
traditional weighted graph that only edges are assigned with
weights, but an undirected graph with the weights on both ver-
tices and edges, where traffic information as much as possible

is used. This is the key feature of our graph model.
From the above literature on DAC, we know that several

constraints should be taken into account when it comes to the

design of sectors. The first is workload constraint. The con-
straint points out that the workload of each sector should be
below a threshold and the workloads of those sectors are bal-

anced, and ensures that workload of each sector does not exceed
the controller’s capacity to control the aircrafts while the work-
loads are evenly distributed among designed sectors. The second
is geometric constraints consisting of convexity constraint, con-

nectivity constraint and minimum distance constraint. The con-
vexity indicates that an aircraft should not enter the same sector
twice, the connectivity is that a sector does not be fragmented,

and the minimum distance constraint means that the distance
between the sector boundaries and the key points as well as
the distance between the boundaries and the air routes ought

not to be less than a given minimum value. The geometric
constraints ensure that the controller have adequate time to
control the aircraft and to solve conflicts which may happen.

These constraints are critical to ensure the safety of aircrafts.
Hence, the above constraints are considered thoroughly in this
paper.

Moreover, from literature we can also know there are sev-

eral metrics for workload, such as traffic mass, aircraft count,
dynamic density, and so on. Computing workload metrics
other than aircraft count might have taken more factors into

accounts. However, there is no evidence that Traffic Mass
and dynamic density are more effective than aircraft count
for DAC. Workload metric other than aircraft count might

be prohibitive in practical application. Thus, aircraft count is
adopted as workload metric in this paper.

This paper applies itself to develop a DACmethod based on

a weighted graph model. Firstly, we set up a weighted graph
model for a given airspace which accurately describes the air-
space structure information and traffic data. The procedure
begins with constructing an undirected graph model for the

given airspace, of which the vertices represent the key points
such as airports, waypoints, and the edges represent the air
routes. Then, those vertices are used as the sites of Voronoi dia-

gram18 which divides the airspace into units called cells, and
aircraft counts of both each cell and each air route are com-
puted. By assigning both the vertices and the edges with those

aircraft counts, an accessorial graph model is built up. Further-
more, in order to facilitate the discussion, the accessorial graph
model is simplified into a weighted graph model whose vertices
have a one-to-one relationship with Voronoi cells. Accordingly

the airspace configuration problem is described as a weighted
graph partitioning problem. Secondly, the paper develops a
graph partitioning algorithm that divides the weighted graph

model into sub-graphs. The algorithm mixes general weighted
graph cuts (GWGC) algorithm,19 an optimal dynamic load bal-
ancing (ODLB) algorithm,20 and a heuristic algorithm inspired

from K-L algorithm21 together. After the cuts algorithm parti-
tions graph model into sub-graphs, the load balancing algo-
rithm together with the heuristic algorithm transfers aircraft

count to achieve workload balancing among the sub-graphs.
Lastly, the cells corresponding to each sub-graph are combined
together into a sector. In all, the method attempts to design the
sectors with the objective of balancing workload, minimizing
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coordination workload as well as satisfying geometric
constraints.

The contribution of this paper lies in two aspects. One

aspect is that the given airspace is described as a weighted
graph model with weights on both vertex and edge. Our model
differs from the graph model without weights on both vertex

and edge in Ref.13 and is also different from general weighted
graph model with weight only on edge in Ref.16. Our model is
loaded up with necessary information on air traffic for DAC.

The other is that we develop a graph partitioning algorithm
to solve DAC problem. Our algorithm takes accurate quanti-
tative analysis as a basis to balance the workloads rather than
rough estimates.

The rest of the paper is organized as follows. In Section 2,
the method for DAC is described in detail. Section 3 discusses
the application and gives the simulation result analysis.

Section 4 concludes this paper.

2. Dynamic airspace configuration method

In this section, a method is developed for DAC on the basis of a
weighted graph model. First of all, a weighted graph model will
be set up to describe the given airspace according to its struc-

ture information and traffic data. The static structure informa-
tion mainly includes air routes and key points such as airports,
waypoints and crossing points. While the airspace is described

as an undirected graph, these key points are represented as the
vertices and the air routes are also represented as the edges. Air-
craft count will be adopted as the workload metric, and the
equalized aircraft count among the sectors means balancing

workloads. Similarly, the aircraft count flying along the air
route will be used to describe the coordination workload. Both
vertices and edges in the undirected graph can be assigned with

those aircraft counts, and an accessorial graph model forms.
The procedure for the construction of the accessorial graph will
be accomplished in virtue of Voronoi diagram. Precisely, the

vertices is used as the sites of Voronoi diagram, and the graph
is divided into a series of units called Voronoi cells using a
Voronoi diagram algorithm.18 Then, the aircraft counts are cal-

culated both in each cell and along each edge. Finally, both air-
craft counts are added onto the vertices and the edges of the
graph respectively, and an accessorial graph model comes into
being. To facilitate the discussion, the weighted graph is simpli-

fied into a weighted graph model whose vertices have one-to-
one relationship with Voronoi cells.

Next, a graph partitioning algorithm is proposed that mixes a

GWGC algorithm, an ODLB algorithm and a heuristic algo-
rithm inspired fromK-L algorithm together organically to parti-
tion the weighted graph model into a series of sub-graphs. In

advance, by means of total aircraft count of the given airspace
and the maximum of the aircraft count in a sector, the number
of the sectors can be determined which gives how many sub-
graphs need to be gotten from the weighted graph model. Then

GWGC algorithm partitions the graph model into the sub-
graphs. Since the aircraft counts of those sub-graphs may be
not equal,ODLBalgorithmcombiningwith a heuristic algorithm

inspired from the gain ofK-L algorithm is applied to improve the
workload balancing by transferring vertices from sub-graphs
with large aircraft count to sub-graph with small aircraft count.

Lastly, Voronoi cells corresponding to each sub-graph are
combined together to form the sector. Fig. 1 shows the flow
chart of the above steps, and each of them is particularized
as follows.

2.1. Construction of a weighted graph model

Fig. 2 gives the construction of a weighted graph model. In
Fig. 2(a)–(c), thick lines represent borders of cells, and thin

lines represent air routes. At the same time, thin lines represent
edges of the weighted graph model in Fig. 2(d). In Fig. 2,
1,2, . . ., 9 represents vertex index, (1),(2), . . ., (8) represents the

vertex weight, and [1],[2], . . ., [8] represents the edge weight.
For a given airspace, we assume that the static structure

information includes air routes and key points such as airports,

waypoints and crossing points is known in advance. According
to the structure information, we set up an undirected graph
G= G(V, E), where the vertex set V= {1, 2, . . .,n} consists
of the key points and the edge set E = {(ij):i, j e V} represents

the air routes. Fig. 2(a) shows a simple example of the construc-
tion of the undirected graph model.

For the vertices and edges of the graph being assigned with

weights, a Voronoi diagram D is built, whose sites are the ver-
tices of the undirected graph. D decomposes by its borders the
airspace into a series of units called as Voronoi cells Ci (i = 1,

2, . . .,n). As one can see that each cell corresponds only to one
site, and the convexity of sectors will be satisfied when the cells
are combined into the sectors. And also, a part of the borders
will be the sector boundaries while the designed sectors come

into being. Fig. 2(b) shows how the Voronoi diagram divides
the airspace into the cells.

From Fig. 2(b) one can see that there may be a case that

some of the sites or the air routes are close to the cell borders.
This leads to a result that some of the designed sectors will not
satisfy the minimum distance constraint if the sector bound-

aries coincide with those borders, so the borders have to be
removed, and the cells that are adjacent to those borders are
combined into new cells. We assume that there will be r

ðr 6 nÞ cells in the pretreated Voronoi diagram. Fig. 2(c)
shows the example of the preprocessing Voronoi diagram,
and it is easily seen that two cells corresponding to the sites
numbered 7 and 8 are combined into a new cell.

After the decomposition of airspace into cells via the Voro-
noi diagram, according to the traffic data, the aircraft count
flying in each cell at peak-traffic time over a period is com-

puted. Here, we consider the aircraft count in cell Ci as wi.
Likewise, aircraft count flying long each air route is computed.
The less aircraft flying across the sector boundaries means the

less coordination workload for controllers. Thus, the mini-
mum of the coordination workload is preferable and is
adopted as the sectorization objective. When two aircraft
counts are assigned onto both the corresponding vertices and

the corresponding edges respectively, an accessorial graph
model is built up. Fig. 2(c) also shows the example of the con-
struction of an accessorial graph model.

From the accessorial graph model, it is seen that there may
be several or more edges between any two cells, as well as pos-
sible several vertices in a cell, this leads to a little difficulty in

further analysis. In order to facilitate the discussion, the
weighted graph model is further simplified into a weighted
graph model Gw, in which the vertex vi represents the cell Ci,

and the weight on the vertex vi represents the aircraft count
wi in the corresponding cell Ci. Likewise, the edge eij represents



Fig. 1 Dynamic airspace configuration method.

Fig. 2 Construction of a weighted graph model.
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all the air routes between cells Ci and Cj, and accordingly the
edge weight wij describes the sum of aircraft counts along all

the air routes between the cells Ci and Cj. Furthermore, for
Gw all aircraft counts on vertices are represented as a vector
w, and all aircraft counts along the edges among the cells are

described by a matrix W as follows:
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w ¼ ½w1;w2; . . . ;wr�T ð1Þ

W ¼ ½wij�r�r;wij ¼ wji ð2Þ

From the construction of Gw, one can know that there is an

exact one-to-one relationship between the vertices of Gw and
the cells. The relationship offers real convenience for the prop-
erty obtained from operation on Gw being propagated back to
the pretreated Voronoi diagram. Fig. 2(d) shows an example of

the weighted graph model, accordingly the weight vector w and
the weight matrix W are written as follows:

w ¼ ½5; 7; 4; 3; 5; 8; 6; 4�T

W ¼

0 5 0 0 0 0 0 4

5 0 3 0 0 0 0 0

0 3 0 3 0 0 0 2

0 0 3 0 3 0 0 0

0 0 0 3 0 3 1 0

0 0 0 0 3 0 5 0

0 0 0 0 1 5 0 3

4 0 2 0 0 0 3 0

2
66666666666666664

3
77777777777777775

When the airspace is described asGw, the DAC problem with the
objective of balancing sectorworkloads andminimizing the coor-
dination workload is converted into the graph partitioning prob-

lem of maximizing the sub-graph weight balance andminimizing
the edge weight among the sub-graphs Gi

w

0ði ¼ 1; 2; . . . ; kÞ. The
DAC objective can be describedmathematically as a graph parti-

tioning objective by the following function:

min
G1
w
0
;G2

w
0
;::;Gk

w
0

Xk
c¼1

cutðGi
w

0
;Gw=G

i
w

0Þ
wðGi

w

0Þ
ð3Þ

subject to wðGi
w

0Þ ¼ wðGj
w

0Þ ð4Þ
where wðGi

w

0Þ ¼
X
vc2Gi

w
0
wc;

cutðGi
w

0
;Gw=G

i
w

0Þ ¼
X

vc2Gi
w
0
;vdRGi

w
0
wcd ð5Þ

Here, wðGi
w

0Þ is the weight of ith sub-graph, k is the number of
the sector that can be determined by the total aircraft count of

the given airspace Acount and the maximum aircraft count of a
sector Scount as follows:

k ¼ Acount

Scount

� �
ð6Þ

where d e is a symbol which denotes that a decimal can be
rounded up to a integer.

Next, according to the objective function, the weighted
graph model will be partitioned into a series of sub-graphs
by a graph partitioning algorithm we develop.

2.2. Partition of the weighted graph model

Assume that the weighted graph model obtained in Subsection
2.1 is Gw ¼ fVw;Ew;w;Wg, where Vw = {v1, v2, . . .,vn} is a ver-
tex set, Ew = {eij:vi, vj e Vw} is an edge set in which eij is the
edge connecting vi and vj, w is the vector describing aircraft
counts on all vertices as Eq. (1), andW is the matrix describing

aircraft counts along all edges as Eq. (2). Gw is expected to be
partitioned into k disjoint sub-graphs Gi
w

0ði ¼ 1; 2; . . . ; kÞ
according to the objective function as Eqs. (3)–(4). For simpler
description, the rest of the paper also refers to the aircraft

counts on the vertex as the vertex weight and refers to the air-
craft count along the edge as the edge weight.

Aimed at the objective function, the paper develops an

algorithm to implement the graph partitioning. The algorithm
consists of two steps, namely (1) partitioning the graph into
sub-graphs by GWGC algorithm to achieve the objective as

Eq. (3), (2) transferring the vertices with weights via ODLB
algorithm together with a heuristic algorithm to achieve the
objective as Eq. (4).

2.2.1. Partitioning Gw by GWGC algorithm

This subsection will apply GWGC algorithm to partition Gw

into k sub-graphs Gi
wði ¼ 1; 2; . . . ; kÞ. From the macroscopic

view, this is a global approach to the problem, and the weights
for the sub-graphs are roughly balanced. The algorithm can
achieve an objective defined as Eq. (3):

J ¼ min
G1
w;G

2
w;...;G

k
w

Xk
i¼1

cutðGi
w;Gw=G

i
wÞ

wðGi
wÞ

ð7Þ

This is a general weighted graph cuts problem and a solution
to the problem is designed as follows:

Step 1. Create a diagonal matrix T with diagonal entries
obtained by summing all entries in the corresponding col-
umn of the matrix W, and compute the Laplacian matrix

L = T �W.
Step 2. si ¼

1ffiffiffiffiffi
wi
p ði ¼ 1; 2; . . . ; rÞ, S ¼ diagðs1; s2; . . . ; srÞ,

and calculate C= S · L · S.

Step 3. Calculate the eigenvalues of C, assume that they

are k1 ¼ 0 6 k2 6; . . . ;6 kr in ascending sort. Then, use
k-means algorithm to cluster k vectors corresponding to
eigenvalues from k1 to kk . From k clusters, we can get a
series of Gi

wði ¼ 1; 2; . . . ; kÞ that holds connectivity.

When Gw is partitioned into a series of sub-graphs
by GWGC algorithm, the sub-graphs meet the property which

follows the objective as Eq. (7). Now, we analyze the
property qualitatively from two aspects. (1) The smaller

Pk
i¼1

cutðGi
w;Gw=G

i
wÞ, the smaller J. (2) With given

Pk
i¼1

cutðGi
w;Gw=G

i
wÞ, J is minimized while balancing the weight

for sub-graphs wðGi
wÞði ¼ 1; 2; . . . ; kÞ. In fact, GWGC algo-

rithm proposes a scheme for partitioning Gw that takes into

account both balancing wðGi
wÞ and minimizing

Pk
i¼1

cutðGi
w;Gw=G

i
wÞ. In other words, J is achieved by the

common contribution of balancing wðGi
wÞ and minimizing

Pk
i¼1

cutðGi
w;Gw=G

i
wÞ. Thus, the sub-graph weights may not be

equal under the conditions of minimizing J, i.e.

wðGi
wÞ – wðGj

wÞ. Such situation requires further measures to

balance wðGi
wÞði ¼ 1; 2; . . . ; kÞ. That is to say, it is necessary

to transfer the vertices with the weights among the sub-graphs
to achieve the objective as Eq. (4).
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2.2.2. Calculating the vertex weights to be transferred by ODLB

algorithm

Multiple algorithms have come forward with the ideas to dis-
cuss the shift of the vertex weights for the sake of the objective
as Eq. (4). Here, we will introduce an ODLB algorithm to deal

with such balance problem. The ODLB algorithm gives the
direction in which the vertex is moved as well as the amount
of the vertex weight to be transferred. Next, let us demonstrate

an example to illustrate the algorithm.
Provided that by means of GWGC algorithm Gw is parti-

tioned into four sub-graphs, G1
w, G

2
w, G

3
w, G

4
w, and accordingly

the weights for four sub-graphs are shown, see Fig. 3, the

dotted lines represent the sub-graph boundaries.
In order to achieve wðGi

wÞ ¼ wðGj
wÞ, it is necessary to trans-

fer a part of the weights denoted as xij from Gi
w to Gj

w. In

Fig. 3, two schemes are presented, Obviously, the scheme in
Fig. 3(b) is better than the other in Fig. 3(a) in terms of the
amount of the weight to be transferred. The method always

intends to transfer as less weight as possible among the sub-
graphs. The ODLB algorithm gives an optimal solution. Then,
let us discuss the algorithm.

For four sub-graphs, the average weights per sub-graph

should be w ¼ wðG1
wÞ þ wðG2

wÞ þ wðG3
wÞ þ wðG4

wÞ
4

. The following

equations hold true:

x12 þ x13 þ x14 ¼ wðG1
wÞ � w

�x12 þ x23 ¼ wðG2
wÞ � w

�x13 � x23 þ x34 ¼ wðG3
wÞ � w

�x14 � x34 ¼ wðG4
wÞ � w

8>>><
>>>:
Furthermore, the equation can be described as

Fx ¼ b

where b ¼ ½wðG1
wÞ � w;wðG2

wÞ � w;wðG3
wÞ � w;wðG4

wÞ � w�;
x ¼ ½x12; x13; x14; x23; x34�T;

F ¼

1 1 1 0 0

�1 0 0 1 0

0 �1 0 �1 1

0 0 �1 0 �1

2
6664

3
7775

We suppose that the weight will be shifted along the direc-
tion from the sub-graph with small index to the sub-graph with
Fig. 3 Two schemes for transferring
large index. The former is called the head of the direction and
the latter is called the tail. So, F is defined as

Fij ¼
1

�1
0

if sub� graph i is the head of the direction of shift

if sub� graph j is the tail of the direction of shift

Otherwise

8><
>:

This is a system of linear inhomogeneous equations to be
solved, where there are five variables and four equations.
The knowledge of linear algebra verifies that there are infinite

solutions to the equations. Among solutions, the solution for
the migration of less weight is preferred. Here, the Euclidean
norm of the data movement is used as a metric which minimize

xij, and the norm is expressed by
1

2
xTx. Thus, the following

problem need to be solved

Minimize
1

2
xTx ð8Þ

subject to Fx ¼ b ð9Þ
This is typically a minimization problem, and is easily
extended to more general form. It can be solved via the follow-

ing procedure:

Step 1. Calculate �w ¼ 1

k

Xk

i¼1
wðGi

wÞ, and b ¼ ½wðG1
wÞ � �w;

wðG2
wÞ � �w; . . . ;wðG k

wÞ � �w�T.
Step 2. Construct the matrix of sub-graphs F, and calculate

matrix L = FFT.
Step 3. Construct a linear equation system Ld= b and
solve it for d. One can conclude that from the sub-graph i

to j is obtained by FdT.

From the ODLB algorithm, we know a fact that xij may be
a negative value or positive value. The positive value means the

weights from Gi
w to Gj

w while a negative value means the
weights from Gj

w to Gi
w. In addition, xij may not be the integers,

but decimals. However, xij is the aircraft count, this means xij
is integer. So the measure must be taken to deal with the prob-
lem by rounding xij to be a whole number [xij]. Here, [ ] is the
symbol denoting that a decimal is rounded to an integer.

In what follows, we are going to discuss how to minimize

Pk
i¼1

cutðGi
w;Gw=G

i
wÞ when transferring the vertices to balance

the weighs of sub-graphs.
the weights among the sub-graphs.
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2.2.3. Transferring the vertices using a heuristic algorithm

The preceding GWGC algorithm partitions Gw into a series of

sub-graphs, and the ODLB algorithm gives [xij] between two
sub-graphs. If [xij] can be satisfied by transferring the vertices

optionally, it is impossible to minimize
Pk
i¼1

cutðGi
w;Gw=G

i
wÞ in

original scheme. For example, in Fig. 4, there are two sub-

graphs, and one sub-graph is separate from the other by a dot-
ted line. Since the sub-graph weights are not balanced, we
intend to transfer five weights from the left sub-graph to the

right. When both weights of v1 and v2 are 5, which vertex
should be transferred, v1 or v2?

When v1 is moved to the right sub-graph, the edge weight

connecting two sub-graphs will decrease. The change in the
edge weight can be gotten from the following equation:

8� ð1þ 2þ 1Þ ¼ 4

This means that coordination workload will be reduced.
Similarly, when v2 is moved, the edge weight does not change

any more. Compared to v2, v1 is preferable to moving to the
right sub-graph. The change in the edge weight for the vertex
migration is called the gain which comes from K-L algorithm.

The equation is generalized to calculate the gain gd for the ver-
tex vd:

gd ¼
X

vd2Gi
w;vf2G

j
w

wdf �
X

vd ;ve2Gi
w

wde ð10Þ

Certainly, it is also true that the gain of a vertex being a
negative value means an increase in coordination workload

when the vertex is transferred.
Here, on the basis of the concept of the gain a heuristic

algorithm is proposed to ensure the minimum of

Pk
i¼1

cutðGi
w;Gw=G

i
wÞ while transferring the vertices from one

sub-graph to the other.
Firstly, according to [xij], we can determine the migration

direction of the vertices. Let the set of vertices in Gi
w adjacent

to Gj
w be denoted as Bij, the sum of the weights corresponding

to the vertices in Bij be aij and the gain gd of vd in Bij be deter-
mined by Eq. (10).

And the vertices in Bij are sorted according to their gains by

a descending order. The heuristic algorithm is described as fol-
Fig. 4 Computing the gains of the vertices.
lows. The vertex in Bij with the largest gains is transferred to

Gj
w, and the procedure is repeated according to the descending

order. If aij < [xij], after transferring all vertices in Bij, the
procedure above can continue until the required [xij] has been

satisfied for new vertices in Gi
w adjacent to Gj

w will appear after

migrating all vertices in Bij. In this way, we can get a series of

new sub-graphs Gi
w

0
(i= 1, 2, . . .,k) from Gi

w with equalized

wðGi
w

0Þ.
The new sub-graphs Gi

w

0
(i= 1, 2, . . .,k) satisfy the proper-

ties as follows:

wðGi
w

0Þ ¼ wðGj
w

0Þ;Gw ¼
[k
i¼1

Gi
w

0
;Gi

w

0 \ Gj
w

0 ¼£ ð11Þ

Certainly, it is obvious that absolute balanced wðGi
w

0Þ for
sub-graphs is always impossible due to the non-unitary aircraft

counts corresponding to the cells. Let Lmax and Lmin denote
the defined maximum and the given minimum of aircraft count
for all sub-graphs Gi

w

0
(i= 1, 2, . . .,k), and the balanced wðGi

w

0Þ
can be given by

Lmin 6 wðGi
w

0Þ 6 Lmax ð12Þ
2.3. Determination of the sectors

From the construction of the weighted graph Gw, we know
there is an exact one-to-one relationship between its vertices

and the corresponding Voronoi cells, so the vertices in each
new sub-graph among G1

w

0
;G2

w

0
; . . . ;Gk

w

0
can be mapped back

to the Voronoi cells. Therefore, we combine those cells with
respect to each sub-graph Gi

w

0
together to form a sector Si,

and the property described as Eqs. (3)–(4) is propagated back
to the sectors. Finally, we obtain k sectors satisfying the work-
load constrain.

So far, we take the following measure to keep the con-
straints held. Firstly, the decomposition of airspace by the
Voronoi diagram keeps the sectors the convexity constraint.

Secondly, the graph partitioning algorithm we develop is
applied to ensuring the workload constraint and the connectiv-
ity constraint. Thirdly, the removal of the borders of the cells

being close to the key points ensures the minimum distance
constraints. Therefore, the designed sectors in this paper sat-
isfy the preceding constraints.

3. Experiment and simulation

In this section, our DAC method is validated with real air traf-
fic data. Beijing air traffic area (BJA) is used for simulation, for

BJA is one of the three Chinese busiest areas in air traffic and
so it is representative, see Fig. 5(a). Here, we are aimed at the
airspace above 18000 feet (1 feet = 0.3048 m) altitude. From

the figure, we know that there are seven sectors for current
air traffic management.

Some parameters are set as follows. (1) The aircraft count

of each sector is set to 10, especially the redundancy of 20%
is adopted for the sake of the reliability of DAC and the safety
of aircraft. (2) The minimum distance between the airports and

the sector boundaries, between the waypoints and the bound-
aries, between the waypoints and the boundaries is set to
15 nm, 9 nm and 3 nm respectively. We take the air traffic of
every two hours into account.



Fig. 5 Beijing air traffic area and new sectors of BJA via our method for three different time intervals.
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Especially, the peak traffic of every stage is applied for
DAC, for it takes into accounts the controller’s maximum abil-
ity to monitor and provide traffic flow control within the con-

fines of each sector.
Fig. 5 gives different sectorization of BJA computed by our

DAC method for three different time intervals. In Fig. 5, thick

lines represent the sector boundaries, and thin lines represent
the air routes; the horizontal axis represents the east longitude,
and the vertical axis represents the north latitude. It is seen that

(1) all sectors satisfy the geometric constraints, (2) the number
of the sectors computed by our method varies over time. Such
variability can be reasonably explained, for the air traffic varies

over time, and there are few sectors with low air traffic while
there are more sectors with high traffic. This shows that our
DAC method offers a much greater degree of flexibility in the
airspace sectorization when the air traffic varies.

Next, we will analyze the performance of new sectors of
BJA computed by the method and compare new sectors with
current sectors.

3.1. Average performance

Fig. 6 describes the sector aircraft count for current sectors

and new sectors. In Fig. 6, squares represent new sectors,
and circles represent current sectors. For the average
performance, there are three performance indicators, namely
the mean of the average aircraft count of the sector, the stan-
dard deviation of the average aircraft count and the coefficient

of aircraft count balancing cbal. They can be calculated from
Fig. 6 which describes, and the result are summarized in
Table 1, where cbal is defined as

cbal ¼ ðLsmax � LsminÞ=Lsmax � 100% ð13Þ

where Lsmax and Lsmin are the maximum and minimum aircraft
count of the designed sector.

The standard deviation (Stdev) indicates the degree of the

aircraft count deviating from the mean aircraft count while cbal
gives the minimum difference. So the less the standard devia-
tion and cbal, the more balanced the aircraft count. From

Table 1, we know that the standard deviation and cbal of
new sectors are smaller than those of current sectors. This
shows that new sectors by our method have more balanced air-
craft count than current sectors.

It should be noted that the designed sectors being balanced
by means of the peak of the air traffic do not mean that the air-
craft counts are evenly distributed among the sectors at any

time over two hours. However, this can ensure at no time is
the aircraft count beyond the maximum of aircraft count
of the sector.



Fig. 6 Aircraft count for both new sectors and current sectors during different time intervals.

Table 1 Average performance.

Sectors type Time Mean Stdev cbal (%)

Current sectors 5:00–7:00 2.1 1.34 100

15:00–17:00 7.7 1.40 40

21:00–23:00 5.57 1.99 66

New sectors 5:00–7:00 7.5 0.7 12.5

15:00–17:00 7.7 0.49 12.5

21:00–23:00 7.8 0.45 12.5

Table 3 Coordination workload.

Time Coordination

workload of

current sector

Coordination

workload of

new sector

cwred (%)

5:00–7:00 13 2 84.6

15:00–17:00 109 54 50

21:00–23:00 67 15 77.6

Dynamic airspace configuration method basedon a weighted graph model 911
3.2. Number of the sectors

From Table 2, the new sectorization has fewer sectors than
current sectors. The degree of the reduction can be measured
by psave defined as

psave ¼ ðNc �NnÞ=Nc � 100% ð14Þ

where Nc is the number of current sectors and Nn is the num-
ber of new sectors.

From Table 2, we know that psave is positive and new sec-
tors are less than current sectors. The consequent result is a
promising reduction in the number of controllers which cut

down the administrative expenses.

3.3. Coordination workload

Similar to the discussion in Section 3.2, the coordination work-
load of new sectors is less than those of current sectors, and the
degree of the reduction can be measured by cwred defined as

cwred ¼ ðcwc � cwnÞ=cwc � 100% ð15Þ

where cwc is the coordination workload of current sectors and
cwn is the coordination workload of new sectors. From Table 3,
the coordination workload of new sectors is less than those of
Table 2 Number of the sectors.

Time Current sector count New sector count psave (%)

5:00–7:00 7 2 71.4

15:00–17:00 7 7 0.0

21:00–23:00 7 5 28.5
current sectors, and less coordination workload means less

pressure for controller to control aircrafts.

4. Conclusions

The paper has presented a new method for DAC based on a
weighted graph model by applying GWGC algorithm and
ODLB algorithm in combination with a heuristic algorithm

inspired from the gain of K-L algorithm to partition given air-
space into sectors achieving the objective of balancing the
workloads and of minimizing the coordination workloads

among the designed sectors. Simulation indicates that:

(1) The designed sectors have balanced aircraft count while

coordination workload is minimized.
(2) Simulation result shows that the designed sectors satisfy

geometrical constraints, such as convexity constraint,
connectivity constraint and minimum distance

constraint.
(3) And more importantly, the low traffic results in fewer

sectors than the current airspace configuration, and the

consequence is promising reduction in the number of
controllers, and thereby the administrative expense is
cut down.

The performance of simulation validates the feasibility and
effectiveness of the method.
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