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b INTA-Castelar, CNIA, Instituto de Clima y Agua, Las Cabañas y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina
c UNRC, Facultad de Agronomı́a y Veterinaria, Departamento de Ecologı́a Agraria, Ruta Nacional 36 km 601, Rı́o Cuarto 5800, Córdoba,
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A B S T R A C T

In countries like Argentina, whose economy depends heavily on crop production, the estima-

tion of harvests is an elementary requirement. Besides providing objectivity, the use of

remote sensing allows estimating yield in advance. Since the time of maximum leaf area

in wheat corresponds with the critical period of the crop, a good relationship is expected

between the Normalized Difference Vegetation Index (NDVI) and yield. The present study

was carried out in the North of Buenos Aires province, Argentina. Based on the type of soil,

the study area can be divided into two homogeneous subzones: a subzone with lower clay

content in the southwest and a subzone with higher clay content in the northeast. Nine grow-

ing seasons (2003–2011) were studied. In the first five years, an empirical model was cali-

brated and validated with field-observed wheat yields and MOD13q1 product-NDVI data,

whereas in the other four years, the calibrated model was applied by means of yield maps

and by comparing with official yields. The MOD13q1 image corresponding to Julian day 289

showed the best fit between NDVI and yield to estimate wheat yield early. Through yield

maps, better weather conditions showed higher yields and higher soil productivity presented

a greater proportion of the area occupied by higher yields. At department level, an R2 value of

0.75 was found after relating the estimation of the calibrated empirical model with official

yields. The method used allows predicting wheat yield 30 days before harvest. Through yield

maps, the NDVI perceived the temporal and spatial variability in the study area.

� 2015 China Agricultural University. Production and hosting by Elsevier B.V. All rights

reserved.
1. Introduction

In countries like Argentina, whose economy depends heavily

on crop production, early harvest estimations are an elemen-

tary requirement to generate national budget, plan public

strategies due to natural disasters and anticipate the demand

for transport and storage. In Argentina, wheat (Triticum

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inpa.2015.06.001&domain=pdf
http://dx.doi.org/10.1016/j.inpa.2015.06.001
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aestivum L.) is an important crop (the total production of the

2011 season was 14,500,517 tn [1]), mainly concentrated in the

Humid Pampa Region, where Buenos Aires is the most impor-

tant province, with around 60% of the country’s production.

Argentine official estimates of yield are currently made

mainly through interviews with qualified informants. Taking

into account the subjectivity and low representativeness of

this technique, agricultural estimates through remote sensors

are increasingly being considered worldwide [2–8].

Remote sensors allow estimations in an advance way and

with lower cost than traditional techniques [9]. Besides its

objectivity, the observation by remote sensing provides

homogeneous data which can be geographically and tempo-

rally recorded [10]. However, the use of remote sensing is

not as effective to estimate crop yield as to estimate the occu-

pied area [11,12], where the observation is more direct and

where finding a method applicable to different crops, areas

and growing seasons is more viable. [13] concluded that esti-

mating yield by Normalized Difference Vegetation Index

(NDVI), obtained in an early, fast and inexpensive way, could

be considered as a promising complement to the survey-

based yield assessments (currently applied by the Ministry

of Agriculture in Morocco). In India, the efficiency of crop

yield estimation has been found to improve substantially

after combining satellite spectral data with survey data based

on crop cutting experiments [14].

NDVI, closely related to the vegetation vigor [15], has been

recognized for its ability to monitor crops and as an estimator

of crop yields since early 1980s [16–21]. NDVI has an asymp-

totic non-linear relationship with the green Leaf Area Index

(LAI) of some crops [22–24]. A variation in LAI implies different

intercepted radiation that, according to the Radiation Use

Efficiency (RUE), is directly related to the production of bio-

mass that will determine the possible yield [25]. As the critical

period of wheat (20 days before to 10 days after flowering) cor-

responds with the time of maximum leaf area [26], a good

relationship between NDVI and yield is expected. Wheat yield

predictions have been possible using data from a single image

at the peak of crop development, which encompasses the

critical period for grain production [14,27,28].

Therefore, it is possible to predict the wheat yield of a cer-

tain region by empirical models that relate the NDVI at the

maximum leaf area moment with yield. A main drawback

of empirical models that estimate yield from spectral data is

that their application is limited to regions for which they were

calibrated [29–31]. However, these empirical models are often

preferred because they require fewer data and are simple to

implement at regional scale [28]. [13] used NDVI and weather

data to estimate wheat yield, and found that the NDVI

appeared to contain most of the information on rainfall and

explained most of the grain yield variability. Many research-

ers have coupled remote sensing data with crop models

[30,32,33] or agrometeorological models [34,35] to estimate

crop yield at regional scale. Although crop growth simulation

models are more accurate to estimate yield, they require

numerous specific inputs (not always available) such as soil

characteristics, management practices, agrometeorological

data and crop parameters. As stated by [33], the great varia-

tions in crop varieties at the regional scale and in different

years make it difficult to regionalize crop parameters.
The Moderate Resolution Imaging Spectroradiometer

(MODIS) sensor has a spatial and temporal resolution that

allows monitoring and mapping the vegetation at regional

level. With minimal variations associated with external influ-

ences (atmosphere, view and sun angles), MODIS vegetation

index products provide consistent spatial and temporal com-

parisons of vegetation conditions [22]. Although these types

of images do not have high spatial resolution, it is possible to

have cloud-free images because of the high revisit frequency

of the sensor (1–2 days). Higher spatial resolution satellites

are usually only available a few times ayear for a given location.

This is due to the lower revisit frequency and cloud cover fre-

quency [27,31]. MODIS products have no cost and are available

to the user community in the web. By means of empirical mod-

els, several studies have recently related MODIS data and crop

yield at regional scale [28,31,36–38].

As the Argentine Humid Pampa has large wheat production

plots and the phenological stages are similar within an area,

the objectives of this study were: (i) to fit an early method of

estimation of wheat yield in Northern Buenos Aires from

MODIS-NDVI and, therefore (ii) to generate a regional cartogra-

phy of wheat yield prior to harvest. The results could provide an

inexpensive and early estimation of wheat yield and the possi-

bility to identify areas with different levels of production.
2. Materials and methods

2.1. Study site

The study area is located in the North of Buenos Aires province

(33–34�S and 59–60�W) in the Argentine Humid Pampa (Fig. 1).

The area covers 1,603,747 ha, including 12 departments, and

is predominantly an agricultural region dominated by soybean

(Glycine max L. Merr.), maize (Zea mays L.) and wheat as main

crops. The relief is characterized by smooth slopes (0–2.5%) and

long length (400–800 m) [39]. The climate is humid temperate

with a monsoon-type rainfall pattern (Fig. 2). The average

annual rainfall is 1030 mm and the annual mean temperature

is 17 �C. The soil type is Argiudoll with a gradual increase in clay

content to the northeast of the region. According to the division

in Agroecological Zones of INTA-RIAN (http://rian.inta.gov.

ar/consultaagronomica/(S(y2lwt0eq4lcx4x51umky3kt1))/de-

fault.aspx), the study area can be divided into two more homo-

geneous subzones (Fig. 1): Subzone VI-I, in the southwest, with

lower clay content in soil, presents Typic Argiudolls and

Subzone VI-J, in the northeast, with higher clay content in soil,

presents Vertic Argiudolls. According to [40], Typic Argiudolls

present higher soil Productivity Index (PI) [41] than Vertic

Argiudolls, therefore, the Subzone VI-I, in the southwest, pre-

sents higher soil PI than the Subzone VI-J, in the northeast.

Fig. 3 shows that the rainfall and mean temperature from

INTA EEA Pergamino and San Pedro meteorological stations

are similar, the largest difference is presented for the rainfall

of June (14 mm).

2.2. Crop

Wheat in the Argentine Humid Pampa is produced under rain-

fed conditions and no-tillage system is used. Within the crop

http://rian.inta.gov.ar/consultaagronomica/(S(y2lwt0eq4lcx4x51umky3kt1))/default.aspx
http://rian.inta.gov.ar/consultaagronomica/(S(y2lwt0eq4lcx4x51umky3kt1))/default.aspx
http://rian.inta.gov.ar/consultaagronomica/(S(y2lwt0eq4lcx4x51umky3kt1))/default.aspx


Fig. 1 – Location of the study area in Buenos Aires Province, Argentina. VI-I and VI-J: homogeneous Subzones (INTA-RIAN);

EEA P and EEA SP: INTA EEAs Pergamino and San Pedro.

Fig. 2 – Rainfall pattern and wheat phenological stage. Data source: Averages values from INTA EEA Pergamino and San Pedro

meteorological stations (historical climate data from 1970 to 2011) and INTA-RIAN (Crop monthly monitoring).
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rotation, the wheat is cultivated in the wheat-soybean double

cropped sequence and the previous crop is full-season soy-

bean. Sowing in Northern Buenos Aires is in June and the first

decade of July. Fig. 2 shows the phenological stages of the nor-

mal growth cycle of wheat in the study area. The critical stage

for water availability occurs during October, and the grains

number m�2, which is the main yield component, is defined

toward the end of this month. Grains weight is defined in
November, and physiological maturity occurs before

December. The duration of grain filling is influenced mainly

by temperature: a rise of 15 �C, from 10–15 �C to 25–30

�C, reduced the duration of grain growth by about two-thirds

[42]. During October and November (critical period and grain

filling), wheat yield is very sensitive to frosts. The average date

of the last frost at 1.5 meters in the study area is before

September 15. Harvest is in late November–early December.



Fig. 3 – Monthly rainfall and monthly mean temperature from INTA EEA Pergamino and San Pedro meteorological stations

(historical climate data from 1970 to 2011).
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2.3. Agrometeorological description of the period 2003–
2011

The 2008 season was the driest, being notably different from

the others in total rainfall (Table 1). The 2003, 2004 and 2005

seasons presented the least amount of rainfall in

September–October (stem elongation and critical period),
Table 1 – Weather conditions of the period 2003–2011.

Growing season Rainfall-April–November (mm)* Rainfall-S

2003 502 76
2004 436 68
2005 416 102
2006 452 223
2007 367 214
2008 252 124
2009 603 178
2010 428 168
2011 400 123

Data source: Averages values from INTA EEA Pergamino and San Pedro m

* Total rainfall for wheat (the previous crop, full-season soybean, is harve

** Thermal sum = R(mean daily temperature � base temperature). Base tem
which is the moment of highest crop water demand.

Studies in Argiudoll soils in the South of Santa Fe (near the

North of Buenos Aires) have shown that the wheat water

consumption in the region is 400–450 mm [43]. Therefore,

the 2007 and 2008 seasons did not have enough total

rainfall, but the 2007 season presented more rainfall in

September–October. The 2004, 2006 and 2010 seasons
eptember–October (mm) Thermal sum-November (�Cd)**

609
589
641
592
566
717
614
587
647

eteorological stations.

sted at the beginning of April).

perature: 0 �C.
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presented similar thermal sum during November (around

590�Cd) when grain filling occurs. During October and

November (critical period and grain filling) no frosts were

recorded at 1.5 m in any of the seasons studied (INTA-EEA

Pergamino and EEA San Pedro).

2.4. Field surveys and MODIS-NDVI data

Data on field-observed wheat yields of five growing seasons

(2003–2007) were collected in 2008 by means of interviews

with farmers that record their production. A total of 125 yield

data were obtained. The surface of sampled plots varied

between 20 and 141 ha. These samples were used to calibrate

an empirical model of yield with spectral information. The

MODIS product used in this study was MOD13q1, which is a

16-day maximum value composite (MVC) with a 250-m spa-

tial resolution. NDVI data of MOD13q1 Collection five were

obtained from http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005.

In order to cover the period of greatest LAI of the crop, five

MVC were acquired for each growing season (Table 2).

Therefore, the relationship between NDVI and wheat yield

was observed from September 14 to December 2.

2.5. Calibration and validation: image processing and
data analysis

Two MOD13q1 scenes (h12-v12 and h13-v13) were necessary

to cover the study area. So, a mosaic was done for each date

studied (257, 273, 289, 305 and 321). For each growing season

(2003–2007), a layer stack was made with the MOD13q1-

NDVI of each date. The layer stacks were used to extract the

NDVI information of wheat samples for each date studied.

Each layer stack were linked to a Landsat image of the same

year to select MODIS pixels. The Landsat images, with a

30-m spatial resolution, allowed to identify the MODIS pixels

of wheat plots. Following [23] and [44], the average of NDVI

values per wheat plot was calculated. This was considered

the best way to represent the intercepted radiation within

the plot when the value of yield is only one. Images were pro-

cessed with [45].

Once the NDVI information was joined with yield data,

approximately 75% of samples were used to calibrate the

empirical model and 25% (randomly separated) to validate

it. An intra-annual and inter-annual analysis was made to

choose the best yield model and observe the influence of

agrometeorological conditions. The relationship between

NDVI and wheat yield was observed through the linear
Table 2 – Acquired dates of the MOD13q1 product (2003–2007).

Date (Julian day)*

257
273
289
305
321

* First Julian day of the 16-day composite.

** Periods correspond to 2003, 2005, 2006 and 2007. For 2004 (leap year), t
regression model, where the dependent variable was repre-

sented by wheat yield and the independent variable by

NDVI. Several studies have used the linear regression model

to describe the relationship between NDVI and wheat yield

in different regions [13,28,36,44]. The statistical significance

in all analyses was determined by a p-value <0.05, and the sta-

tistical software used was [46].

2.6. Application: image processing and data analysis

During the 2008–2011 period, the calibrated empirical model

was applied by means of yield maps and the estimated

average wheat yield of each department was compared with

official yields of the Ministry of Agriculture, Livestock and

Fisheries in Argentina (Ministerio de Agricultura, Ganaderı́a

y Pesca, MAGyP).

Since the 2008 season, it is possible to have a winter crops

map for the study area (INTA EEA Pergamino-GIS Group). This

map, besides wheat, includes barley and oat, but as these

crops are not important in the study area, the wheat area

was considered as the area of winter crops. Therefore, prior

to the yield estimation, a mask with the crop area was applied

on the MODIS image. Applying a cropland mask to select NDVI

values as input to a crop yield model significantly improves

the accuracy of the crop yield estimation [19,28,36,47,48].

The calibrated yield regression model was applied on the

wheat NDVI image. In the yield image generated, we consid-

ered only the subset of yields above 2500 kg ha�1 for the

2009–2011 seasons and above 1000 kg ha�1 for the 2008 dry

season (the minimum and maximum between the average

official wheat yields for each department for the 2009–2011

seasons were 4183 and 5396 kg ha�1 whereas those for the

2008 season were 1700 and 3000 kg ha�1 [1]). In order to gener-

ate the yield map, the yield image was classified in five classes

or yield categories (<3200, 3200–3700, 3700–4200, 4200–4700

and >4700 kg ha�1) and a majority filter with a window size

of 3 · 3 was applied to obtain a clearer spatial distribution of

categories and attenuate large contrasts in contiguous pixels.

Using filters was an effective tool to estimate crop yield from

MODIS data [31,36]. Finally, the yield map was used as a mask

on the yield image to obtain the average wheat yield for each

department and for each homogeneous subzone.

The proportion of area occupied by the map yield cate-

gories was calculated for each growing season (2008–2011)

in the homogeneous subzones and the average yields of

each homogeneous subzone were compared within the study

area.
16-day MVC**

September 14–29
September 30–October 15
October 16–31
November 1–16
November 17–December 2

he period must be advanced one day.

http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005
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3. Results and discussion

3.1. Relationship between NDVI and wheat yield

3.1.1. Intra-annual analysis
After observing the linear relationship between field yields

and the five MOD13q1 dates studied (Table 3), dates 289 and

305 (October 16–31 and November 1–16) showed the highest

fit between NDVI and yield (p-value: 0.0003). Furthermore,

the relationship between NDVI and yield presented by simple

regression models on dates 289 and 305 (Table 4) showed a

similar explanation of the yield total variation (R2 values).

Therefore, since the models of dates 289 and 305 predict the

yield in the same way, the anticipation of 16 days led us to

select date 289 (Eq. (1)) to estimate the wheat yield in

Northern Buenos Aires. In consequence, using the MOD13q1

image of Julian day 289, it is possible to estimate wheat yield
Table 3 – ANOVA table for multiple regression between yield an

Source SS df

Model 43342589 5
ndvi_257 317035.9 1
ndvi_273 1232170.5 1
ndvi_289 4871548.2 1
ndvi_305 4874943.2 1
ndvi_321 1899171.8 1
Error 28334518.5 84
Total 71677108.2 89

Fig. 4 – Relationship between observed and estimated yield usin

289. n = 35, p-value = <0.0001, root mean squared error (RMSE) =

Table 4 – Simple regression between yield and MOD13q1-NDVI

MOD13q1 date R2

257 0.13
273 0.16
289 0.52
305 0.51
321 0.17
30 days before harvest. The wheat production in Ukraine was

predicted six weeks prior to harvest using an empirical remo-

tely sensed-based yield model [28]. During the second half of

October, the wheat in Northern Buenos Aires is in the pheno-

logical stages of head emergence and anthesis (within the

critical period). [36] found similar results in Shandong,

China: they obtained a good prediction of wheat yield during

booting and heading stages using MODIS-NDVI data. The best

correlation between NDVI and wheat yield coincided with the

period of highest LAI. The maximum leaf area of wheat is

achieved 10–15 days before anthesis [49]. [50] have found good

relationships between wheat yield and NDVI during the later

part of the growing season, prior to harvest, at the regional

scale.

Wheat yield ðkg ha�1Þ ¼ �4630:51

þ 10991:94ðMOD13q1 289 NDVIÞ ð1Þ
d MOD13q1-NDVI dates analyzed.

MS F p-value

8668518 25.70 <0.0001
317035.9 0.94 0.3351
1232171 3.65 0.0594
4871548 14.44 0.0003
4874943 14.45 0.0003
1899172 5.63 0.0199
337315.7

g the calibrated model with the MOD13q1-NDVI of the date

582 kg ha�1.

dates analyzed.

n p-value NDVI

90 0.0004
90 0.0001
90 <0.0001
90 <0.0001
90 <0.0001



Table 5 – Linear relationship between MOD13q1-289-NDVI and wheat yield in the 2003–2007 growing seasons.

Growing season Calibration Validation

R2 n p-value R2 n p-value RMSE (kg ha�1)

2003 0.59 13 0.0023 0.08 5 0.6545 –
2004 0.57 13 0.0028 0.69 7 0.0201 405
2005 0.33 16 0.02 0.11 7 0.4774 –
2006 0.75 22 <0.0001 0.65 9 0.0086 400
2007 0.23 26 0.0142 0.18 7 0.3480 –

Fig. 5 – Yield estimation by the calibrated model with the MOD13q1-289-NDVI image for the 2008–2011 growing seasons.
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The calibrated yield prediction model was validated

(Fig. 4), the RMSE value (582 kg ha�1) represents a 14% of

the average of observed yields, which shows an acceptable

degree of dispersion between observed and estimated val-

ues. Similar results (RMSE: 440 kg ha�1, error: 15%) were

found to predict wheat yield in Ukraine [28]. [31] estimated

the regional wheat yield from MODIS data with a RMSE of

570 kg ha�1, representing about 7% of the mean of observed

yields. [51], after combining a crop growth model and remo-

tely sensed data, estimated the regional wheat yield with a

RMSE value of 775 kg ha�1 and a R2 of 0.51. The dispersion

between observed and estimated yields can be attributed to

two main reasons. First, in contrast to forage crops where

yield corresponds to the vegetative parts and its observation

by remote sensing is direct, in crops like wheat, whose yield
consists of storage organs, the observation is indirect. Unlike

crops whose yield consists of total above-ground production,

wheat yield is contained in storage organs and is very sensi-

tive to meteorological conditions at critical growth stages.

This means that although above-ground biomass may be

high, grain yield may not be commensurately large [29]. In

addition, after using MOD13q1-NDVI (date 289) to estimate

wheat yield, there is still one month before harvest.

Weather conditions and biotic adversities during November

(grain filling) influence yield and thus the inference of

NDVI from October 16–31 can change. [28] found that high

values of NDVI in the peak of wheat growth were related

to low yields due to a meteorological event prior to harvest,

a late frost caused low yields despite the high green biomass

that had been established.



Fig. 6 – Proportion of occupied area for each yield category in the homogeneous subzones within the study area.

Fig. 7 – Relationship between estimation of calibrated empirical model and MAGyP official yields for the average wheat yield

for each department in four growing seasons (2008–2011). Number of Departments: 12.
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3.1.2. Inter-annual analysis
Table 5 shows that the relationship between MOD13q1–289-

NDVI and yield was best described in the 2003, 2004 and

2006 growing seasons (R2 values), and that only the models

for the 2004 and 2006 seasons were validated (p-values). The

inter-annual variation observed indicates the influence of
agrometeorological conditions on yield estimation by NDVI.

Although the relationship between NDVI and crop productiv-

ity depends largely on the phenological stage [36], also

depends on the growth conditions. The 2004 and 2006 grow-

ing seasons (validated models) differed from each other in

the amount of rainfall during September–October (68 versus
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223 mm), but were similar in the thermal sum presented dur-

ing November (around 590�Cd). [19] emphasized the incidence

of grain filling period in the wheat yield spectral information-

based estimation. [29] have mentioned calculating degree

days in wheat growth stages as an important variable in yield

estimation by remote sensing.

The relationship studied was significantly improved com-

pared to the model found in the intra-annual analysis only

in the model of the 2006 growing season (R2 = 0.52 versus

0.75). The 2006 season presented good water availability for

grain production in the critical period. So, under certain ther-

mal conditions at the end of the growing cycle, better growth

conditions during the critical period could improve the rela-

tionship between NDVI and yield. [52] constructed a model

to predict wheat yield as a function of a vegetation condition

index based on satellite data during the critical period of crop
Fig. 8 – Average wheat yield for
growth. [30] obtained high accuracy in wheat yield estimation

at provincial level by using the NDVI to calculate the crop

above-ground biomass and to adjust a harvest index depend-

ing on pre- and post-anthesis crop conditions. Therefore, if

the spectral information is combined with agrometeorologi-

cal data in a single model, more accuracy in yield estimation

could be expected. However, the MOD13q1-289-NDVI allows

obtaining great yield information early, and the accuracy will

depend, among other things, on the weather conditions that

will occur during grain filling.

3.2. Yield maps

Using a cropland mask, the calibrated model was applied on

the study area for the 2008–2011 growing seasons (Fig. 5).

Visually, there is a clear difference between the 2008 season
each homogeneous subzone.



82 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 2 ( 2 0 1 5 ) 7 3 – 8 4
and the other seasons, since the drought in the 2008 season

was reflected in wheat yields. As previously reported, the

weather conditions (closely linked to vegetation vigor) were

related to the NDVI. The 2009, 2010 and 2011 seasons, with

greater rainfall amount for wheat, showed higher yields.

The calculation of the proportion of occupied area for each

yield category in the homogeneous subzones within the study

area (Fig. 6) showed that the southwest subzone (with higher

soil PI) presented greater proportion of yields above 4.7

tn ha�1 and that the northeast subzone (with lower soil PI)

showed greater proportion of yields below 4.2 tn ha�1 in the

four growing seasons studied. If we consider the yields both

below and above 4.2 tn ha�1, the difference in the proportion

of occupied area between the homogeneous subzones was

12%, 11%, 13% and 28% for the 2008, 2009, 2010 and 2011 sea-

sons, respectively.

Therefore, by means of yield estimation, the NDVI per-

ceived the temporal and spatial variability in the study area.

Better agrometeorological conditions showed higher yields

and a higher soil PI presented a greater proportion of the area

occupied by higher yields. Maps of MODIS vegetation indices

allow representing spatial and temporal variations of vegeta-

tion [22]. Classes of spatial variability of NDVI were correlated

with maps of wheat accumulated biomass and grain produc-

tivity with a correspondence of 81% and 48%, respectively

[53]. MODIS vegetation index images showed sensitivity to

the variability of the vegetation among seasons and exhibited

good association with winter crop yields [54]. The difference

in production volumes (perceived by NDVI) between homoge-

neous subzones within the study area, inevitably, implies a

different demand for grain transport and storage.

3.3. Comparison with official yields

The relationship found after comparing estimated yields for

each department with official yields (Fig. 7) gives further val-

idation to the calibrated model. In dry years, the model over-

estimates yield: the biomass can be green but the grain

number and grain weight are lower. High yields are only

attained with higher vegetation vigor, but the inverse is not

always true: high biomass is not a guarantee of high yields

and depends on the weather conditions at the reproductive

phase, for example, water deficit in the critical period [54].

In wet years, the model underestimates yield: the index can

become saturated and not read very high yields. With very

high yields and very dense green biomass, the NDVI is likely

to saturate prior to capturing the seasonal green biomass

peak and therefore the study model peak NDVI would not

serve as a good predictor of yield [28]. The inter-department

yield variability was well perceived (R2 = 0.75), and so the cal-

ibrated model was a good tool to predict the wheat yield at

department level.

As observed in yield maps, the average wheat yield for

each homogeneous subzone (Fig. 8) shows the temporal and

spatial variation perceived through NDVI. The 2008 season,

which was dry, presented lower yields than the other seasons

in both subzones and, in all seasons, the southwest subzone

(with higher PI) presented higher average yields than the

northeast subzone (with lower PI). The difference in yield

between the subzones studied for each season was 149, 131,
248 and 293 kg ha�1 for 2008, 2009, 2010 and 2011, respec-

tively. However, it is important to highlight the relative or

qualitative valuation of these results despite the quantitative

differences. At present, the main contribution of remote sens-

ing to the description of the crop condition is that it provides

objective criteria of zonal and temporal comparisons. In addi-

tion, it provides information about geographic variability [55].
4. Conclusions

The method used in this study allows predicting wheat yield

30 days before harvest, after stages of heading and anthesis.

Through the calibrated model, the NDVI perceived the tempo-

ral and spatial variability in the study area. It was possible to

make objective comparisons between zones and growing sea-

sons. The calibrated model was a good tool to predict the

wheat yield at department level. The inter-annual variation,

observed in the description of the relationship between

NDVI and yield of the data analyzed, indicates the possibility

of considering agrometeorological conditions to obtain accu-

racy in yield estimation. This requires more research, espe-

cially, in order to use the minimum number of inputs or

available data. The model developed in this study should be

tested in other wheat humid regions to confirm the results

found in Northern Buenos Aires.
Acknowledgments

This study was supported by INTA, the Argentinean National

Institute of Agricultural Technology. Important information to

characterize the study area and the wheat growth cycle was

taken from the Red de Información Agropecuaria Nacional

(RIAN) of INTA. We are grateful to Adriana Ferreyra and

Ricardo Llorente from the GIS Group of INTA EEA Pergamino

for their great collaboration. We also thank farmers for the field

data provided and Jorge Rodrı́guez, Carlos Zanek, Silvia Re and

Silvina Cabrini from INTA EEAs Pergamino and San Pedro.
R E F E R E N C E S
[1] Ministry of Agriculture, Livestock and Fisheries of Argentina.
Sistema Integrado de Información Agropecuaria. Link: http://
www.siia.gov.ar/series. 2012.
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44.

[36] Ren J, Chen Z, Zhou Q, Tang H. Regional yield estimation for
winter wheat with MODIS-NDVI data in Shandong, China. Int
J Appl Earth Obs Geoinf 2008;10(4):403–13.

[37] Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y. Crop yield
forecasting on the Canadian Prairies using MODIS NDVI data.
Agric For Meteorol 2011;151(3):385–93.

[38] Bolton DK, Friedl MA. Forecasting crop yield using remotely
sensed vegetation indices and crop phenology metrics. Agric
For Meteorol 2013;173:74–84.

[39] Bujan A, Santanatoglia OJ, Chagas C, Massobrio M, Castiglioni
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