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a b s t r a c t

Spatially high resolution climate information is required for a vari-
ety of applications in but not limited to functional biodiversity re-
search. In order to scale the generally plot-based research findings
to a landscape level, spatial interpolation methods of meteorolog-
ical variables are required. Based on a network of temperature ob-
servation plots across the southern slopes of Mt. Kilimanjaro, the
skill of 14 machine learning algorithms in predicting spatial tem-
perature patterns is tested and evaluated against the heavily uti-
lized kriging approach. Based on a 10-fold cross-validation testing
design, regression trees generally perform better than linear and
non-linear regressionmodels. The best individual performance has
been observed by the stochastic gradient boosting model followed
by Cubist, random forest and model averaged neural networks
which except for the latter are all regression tree-based algorithms.
While thesemachine learning algorithms performbetter than krig-
ing in a quantitative evaluation, the overall visual interpretation of
the resulting air temperaturemaps is ambiguous. Here, a combined
Cubist and residual kriging approach can be considered the best so-
lution.
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1. Introduction

For biodiversity and ecosystem research, climate conditions are a major explanatory vari-
able (e.g. Sala, 2000; Hawkins et al., 2003; Currie et al., 2004) and a common demand of biodiversity
researchers is to get plot-scale information on the weather and climate conditions. The problem is
complicated by the fact that the world wide weather station network is at its minimum or virtually
absent in the regions of the world’s biodiversity hotspots (see Myers et al., 2000) and that regional
climate model simulations or satellite observations are generally to coarse (or less frequent) to fully
meet the demands of the biodiversity community regarding plot-scale observations. So basically, the
question to be addressed is how we can provide accurate weather status information for biodiversity
and ecosystem research which often demands site specific information for certain intensively inves-
tigated research plots and area-wide information on a landscape scale.

The common solution for this problem is the installation of individual stations by the respec-
tive researchers working in the area. However, due to funding and man power restrictions, the sta-
tions can generally not be installed on each of the biodiversity observation plots (e.g. Fries et al.,
2009). But even if this would be possible, area-wide weather and climate information is mandatory
if the individual plot-based findings are to be transferred to the landscape scale. This necessitates the
application of either spatial interpolation or downscaling techniques which potentially provide spa-
tially high resolution weather datasets based on individual station observations or medium to high-
resolution climate model simulations and/or meteorological satellite observations. Even though the
latest CORDEX climatemodel runs for e.g. the African domain (Panitz et al., 2014) or the brand newmi-
croclim dataset (Kearney et al., 2014) have a resolution of 0.22° and 0.17° respectively, the grid edge
length at the equator of roughly 24.5 km and accordingly 15 km is still to coarse to cover the local
to landscape scale patterns relevant for many research approaches (e.g. the Mt. Kilimanjaro region is
represented in themicroclim dataset by 12 grid cells). Similar limitations hold true for the application
of satellite observations which drop beyond about a 1 km by 1 km resolution as soon as the temporal
resolution is daily or better. For the Kilimanjaro region as for any other mountain system the situa-
tion is further complicated because of the modification of meso-scale weather by micro-topographic
site conditions (Loeffler et al., 2006). Hence, spatial interpolation or prediction techniques are still
required to derive the high resolution meteorological fields demanded by functional biodiversity
research.

An amplitude of studies exists on the utilization of different spatial interpolation methods for
meteorological parameters across different regions. Until recently and neglecting quite specialized
approaches like PRISM (Daly, 2006; Daly et al., 2007) or DAYMET (Thornton et al., 1997), these
methods could be divided into simpler methods like distance weighting (e.g. Lennon and Turner,
1995;Willmott andMatsuura, 1995; Nalder andWein, 1998) or polynomial interpolations (e.g. Tabios
and Salas, 1985; Ashraf et al., 1997; Goodale et al., 1998; Xia et al., 1999; Ninyerola et al., 2000) and
the more advanced geostatistical interpolation techniques of kriging and splining. The various forms
of kriging (Krige, 1951) use linear weighting combinations at the known data points to predict the
parameter of interest at points where no measurements are available (e.g. Holdaway, 1996; Ashraf
et al., 1997; Diodato, 2005). Compared to kriging where the statistical model has to be subjectively
selected, splining, i.e. fitting splines to the known data points is less dependent on the underlying
statistical model but on the other hand it requires regularly spaced input data (Hulme et al., 1995;
Hutchinson, 1995; Price et al., 2000; Xia et al., 2001).

Several evaluation studies of such geostatistical approaches have been carried out by various
authors indicating that kriging produces generally more accurate results than other interpolation
techniques (e.g. Ashraf et al., 1997;Goovaerts, 2000; Apaydin et al., 2004;Ustrnul andCzekierda, 2005;
Chen et al., 2007; Hofstra et al., 2008). Even if kriging does not perform best with respect to typical
validation indices (e.g. mean square error), the resulting interpolation fields might be more plausible
than the ones from other techniques (e.g. Collins and Bolstad, 1996). For applications in regions with
highly complex topography, different ancillary data sources like digital elevation models or land-use
classifications have been used (e.g. Jarvis and Stuart, 2001; Hasenauer, 2003; Stahl et al., 2006; Baltas,
2007; Daly et al., 2007; Guler et al., 2007; Di Luzio et al., 2008) which are especially important for
temperature interpolation techniques (e.g. Vicente-Serrano et al., 2003) or the derivation of sheltering
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factors used to interpolate wind speed (Ryan, 1977; Worlen et al., 1999). For a comprehensive review
of geostatistical interpolation methods, see Li and Heap (2008).

With increasing computation power, machine learning approaches have extended the group
of statistical interpolation techniques for environmental datasets during the last couple of years.
However, most of these studies focus on biodiversity patterns. For example, Attorre et al. (2013)
predicted proper niche areas for tree and reptile species of Socotra Island, Yemen, Melini (2013)
used such methods for tree species distribution in the Tuscany region, Italy and Siaulys and Bucas
(2012) predicted benthic invertebrates distribution in the south-eastern Baltic sea. Thereby, the non-
parametric random forest method performed best (see also Pal, 2005; Peters et al., 2007; Polishchuk
et al., 2009; Liess et al., 2012) although – if considered at all – ordinary kriging results are also quite
robust for e.g. predicting deep sea biodiversity (Li et al., 2011b, 2012; Li, 2013) and random forest and
kriging can also be combined into one approach (e.g. Li et al., 2011a).

Regarding meteorological parameters, machine learning-based approaches are sometimes used
for satellite rainfall retrievals (e.g. Behrangi et al., 2009; Kühnlein et al., 2014), the downscaling of
model or satellite observations (e.g. Snell et al., 2000; Tripathi et al., 2006; Ho et al., 2014) and still
rarely for spatial prediction (e.g. Pozdnoukhov et al., 2009) also more studies exist which use such
approaches for (short-term) forecasting (e.g. Tasaduqq and Rehman Bubshait, 2002; Abdel-Aal, 2004;
Ustaoglu et al., 2008; Dombayc and Glc, 2009; Pozdnoukhov et al., 2009; Radhika and Shashi, 2009;
Smith et al., 2009; Paniagua-Tineo et al., 2011; Ortiz-Garca et al., 2012). The study from Pozdnoukhov
et al. (2009) also showed that the kriging variants with some kind of external drift are superior to
some neuronal network derivatives when applied to air temperature interpolations in Switzerland.

To broaden the study basis with a special focus on machine learning algorithms and to show
the performance of not just one but many groups of machine learning or geostatistical approaches
in highly complex terrain and under the same boundary conditions, we present a comprehensive
analysis of the skill of 14 different models for the spatial prediction of monthly air temperature in
the Mt. Kilimanjaro region and test them against the well known kriging with external drift as a
geostatistical reference method.

2. Study region

The study is part of the research unit ‘Kilimanjaro ecosystems under global change: Linking
biodiversity, biotic interactions and biogeochemical ecosystem processes’ which is funded by the
German research foundation (DFG). Based on the extensiveworks of A. Hemp (e.g. Hemp, 2005, 2006),
the research unit has been established in 2010 to investigate responses of local biodiversity patterns,
ecosystem functioning and biogeochemical processes to climate and local land-cover change.

The design is implemented for a comparative analysis of ecosystem functioning across an
elevational and disturbance gradient. The elevational gradient encompasses six near-natural habitats
starting from the savannah over the lowermountain forest, Ocotea forest, Podocarpus forest and Erica
bush/forest zone to the apline Helichrysum region. The disturbance gradient is organized orthogonal
to the elevation zones and adds another six habitats comprised by maize fields, coffee plantations,
grasslands, the Chagga homegardenswhich form somekind of sustainable agroforestry systemaswell
as the disturbed (i.e. logged, burned) versions of the Ocotea and Podocarpus forest zones. Within each
of these 12 habitats, five replica sites have been selected across the southern slopes of Mt. Kilimanjaro
summing up to a total of 60 study plots with an elevation span between 867 m a.s.l (lowest savannah
plot) to 4,550 m a.s.l. (highest Helichrysum plot). The individual plot locations have been selected
manually based on local expertise of A. Hemp.

Fig. 1 gives an overview over the plot locations which span across 2,182 square kilometres. All of
these plots have been equipped in 2011 and 2012 with at least a basic climate station recording air
temperature and air humidity and many of the plots host additional sensors for e.g. solar radiation,
precipitation, fog or wind speed. As to be expected, not all stations delivered continuous data
recordings upuntil nowdue tomalfunctions or vandalismalthoughmost of the plots have been visited
on amonthly basis since then. For a handful of plots, we also decided not to reinstall a station because
of repeated vandalism or theft at some date between 2011 and today. In addition to these stations,
we also utilized a University of Massachusetts station located close to Kibo summit at 5776 m a.s.l.



94 T. Appelhans et al. / Spatial Statistics 14 (2015) 91–113

Fig. 1. Overview of the location of the research plots across the southern slopes of Mt. Kilimanjaro (projection for all maps is
UTM 37 south, EPSG 32737).

which has been installed by Douglas Hardy. For more information on the research unit, please visit
the project’s web site at http://www.kilimanjaro.biozentrum.uni-wuerzburg.de/.

3. Data sets and methods

3.1. Spatial interpolation methods

The 14 statistical algorithms used for this study are taken from R’s caret package (Kuhn, 2014) and
encompass a variety of regression based algorithms. An overview of the individual models is given in
Table 1. For details about the individual implementations, please refer to the respective documenta-
tions of the R packagesmentioned in the rightmost column. In addition, the kriging implementation of
R’s automap package (Hiemstra et al., 2008) has been used as baseline spatial interpolation reference.

The statistical and machine learning models of Table 1 can roughly be grouped into (i) linear and
spline models, (ii) nonlinear models and (iii) regression trees. A detailed description of the individual
models is beyond the scope of this article. Therefore, we refer to e.g. Kuhn and Johnson (2013) from
which the following summary is largely taken, too.

Models of the first category generally try to minimize the sum of the squared errors either with
a focus on bias or variance. While linear regression models (glm, gam, pcr, pls, svmLinear, see Table 1
for the abbreviations) can generally only be applied for linear relationships between predictor and
response variables, the non-linear regression models do not have this restriction and the form of the
relationship does not need to be known a prior.

K-nearest neighbours approaches (knn) are one example of the potentially non-linear methods.
Their prediction is solely based on the distance of the predictor variables to the closest training group
known to the model and an amplitude of different models exists to compute that distance. Neural
networks (nnet) achieve their predictive power bymodelling the target variable using ahidden layer of
variableswhich results from a linear combination of some to all of the predictors. If multiple networks

http://www.kilimanjaro.biozentrum.uni-wuerzburg.de/
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are averaged (avNNet), the approach is comparable to the idea of random forest which also averages
over many individual decision trees. Multivariate adaptive regression models (earth) are similar to
neural networks but they break the feature space into discrete sections and fit a linear model to each
of the ranges. Maybe the most robust algorithm of this group with respect to some outliers in the
training data is the family of support vector machines (svmRadial). This robustness results from using
squared or absolute residuals during themodel fitting procedure depending on the actual value of the
individual residual (i.e. squared if the value is small, absolute if the value is large). Hence, extreme
outliers and optimally predicted values have only minor influence on the model fit.

The third group of prediction methods encompasses various kinds of regression trees. They all
have in common that they split the (diverse) training dataset into (homogeneous) sub-groups which
likely have the same response value.While conditional inference trees (ctree) are comprised of only on
tree, the othermodels usedwithin this study combine generally weak individual classifiers to derive a
highly skilledmodel. For stochastic gradient boosting (gbm), this combination is realized by adding the
individual models which are developed within each iteration. In random forest (rf ), the combination
is based on the mean across a large number of individual trees. Each tree is quite independent from
the others since bagging (i.e. the sampling of n test samples for the computation of n models from
the entire available data sample) is combined with a randomization of the predictor variables used at
each node. In contrast to random forest and the other algorithms described above, cubist (cubist) does
not retrieve one final model but a set of rules associated with sets of multi-variate models. The actual
prediction model for a specific set of predictor variables is selected depending on the rule which best
fits the predictors.

Since kriging is a de facto standard in air temperature interpolation, R’s automap implementation
of universal kriging is used within this study, too. A distinctive characteristic of the automap package
is the self-searching variogram feature which does not require a-priori information.

3.2. Data sets

The spatial interpolation of monthlymean air temperature values has been performed on a regular
grid of 30 m by 30 m and is based on predictors derived from

• mean monthly air temperature observations from the individual stations,
• topographic information derived from a digital elevation model with a horizontal resolution of 30

m by 30 m and
• mean monthly values of the normalized difference vegetation index (NDVI) from satellite obser-

vations which are downscaled to a resolution of 30 m by 30 m.

The 30 m by 30 m resolution is in the order of the spatial extension of the research plots and can be
regarded as just sufficient for the differentiated provision of site-specific temperature information.

The basis for the first group of spatial predictor variables are monthly mean air temperature
values from the individual research plots which have been recorded in five minute intervals. These
datasets are operationally quality corrected using the julendat software package1 which will shortly
be replaced by a more parallelled and enhanced Java-based implementation.2

Monthly air temperature means have only been computed for locations, where the five minute
records are available for at least 20 days. From that subset, we included only those months between
2011 and 2014 in the present study, where the meanmonthly air temperature could be computed for
at least 25 stations. This leaves us with a total dataset of 32 months starting in 02/2012 and ending
in 12/2014 (with continuous data availability since 02/2013) for which 25 to 49 stations are available
(30 stations or more are available for 27 months and 44 are available on average). For these months,
the dataset was extended by the temperature records from Kibo summit (see Section 2). Since these
records also show gaps, the respective time series has been gap-filled by using R’s forecast package
by Hyndman (2015).

1 http://github.com/environmentalinformatics-marburg/julendat.
2 See software on www.environmentalinformatics-marburg.de for an update.

http://github.com/environmentalinformatics-marburg/julendat
http://www.environmentalinformatics-marburg.de
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Table 1
Statistical algorithms included inR’s caret package and the kriging library used for this study. Grouping
partly follows Kuhn and Johnson (2013).

Abbr. Model R package

Linear models
glm Generalized Linear Model base
gam Generalized Additive Model using Splines mgcv
pcr Principal Component Analysis pls
pls Partial Least Squares pls
svmLinear Support Vector Machines with Linear Kernel kernlab
Nonlinear models
avNNet Model Averaged Neural Network nnet
earth Multivariate Adaptive Regression Spline earth
knn k-Nearest Neighbours base
nnet Neural Network nnet
svmRadial Support Vector Machines with Radial Basis Function Kernel kernlab
Regression trees
cubist Cubist Cubist
ctree Conditional Inference Tree party
gbm Stochastic Gradient Boosting gbm, plyr
rf Random Forest randomForest
Geostatistical model
kriging Universal kriging automap

Except for kriging, the spatial prediction methods used within this study do not get the mean
monthly air temperature observations from the individual stations directly. Instead, a single regionally
averaged mean temperature value for each month is used as one of the predictors. Since the number
of available stations differ per month, we do not use the arithmetic mean of the monthly mean values
but take the intercept of a linear regression function fitted to the observed temperature observations
at the individual available stations and their respective height a.s.l. Hence, the averaged temperature
is the temperature one would expect at sea level given an averaged vertical temperature gradient.

Appelhans et al. (submitted for publication) identified a condensation level with quite distinct
temperature gradients below and above about 2,300m a.s.l.. Therefore, twomore temperature-based
predictors have been computed which are the regionally averaged monthly air temperatures for
the upper and lower plot locations. The computation of these regionally averaged values have been
computed analogous to the regional mean value except that for the upper locations, only stations
above 2,300 m a.s.l. and for the lower locations, only stations below this level are considered.

Other studies have additionally made use of remotely sensed land surface temperatures (LST)
from platforms such as MODIS (e.g. Kilibarda et al., 2014), however, given extremely high cloud
contaminations at Mt. Kilimnajaro, this is impossible at monthly scales.

The second group of predictors encompasses information on elevation, hill slope, aspect, and the
sky-view factorwhich are computed for each of the grid cells of the digital elevationmodel (DEM). The
DEM is derived from digitized topographical maps by J. A. Onginjo, C. Lambrecht and A. Hemp. While
the elevation can directly be read from the DEM, the other predictor variables have been computed
using the respective modules in SAGA GIS (http://www.saga-gis.org/).

For the last predictor, maximum composites of the satellite-derived Normalized Difference
Vegetation Index (NDVI) are computed for each month. The NDVI is surely the most utilized indicator
for vegetation greenness and phenological status and is computed from the difference between the
near infra-red and red reflectance divided by their sum. It ranges between −1 and 1 with values
above about 0.2 indicating green vegetation. Larger values indicate denser vegetation which in turn
has a direct influence on boundary layer dynamics which affect the local temperature. Non-vegetated
surfaces show lower values around 0 and water surfaces are negative. The NDVI is preferred in this
study over a land-cover classification since the static nature of the latter does not account for different
phrenological phases, stand densities etc. ThemonthlymeanNDVI is bi-linearly interpolated from250
mby250m to 30mby30m froma combinedGIMMS (Tucker et al., 2005) andAqua-MODIS time series
which has been computed following Appelhans et al. (2015).

http://www.saga-gis.org/
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Table 2
Overview of the predictors used for the spatial prediction of monthly air temperature.

Abbr. Predictor Models

Ta Monthly mean temperature at the stations Kriging only
Ta_reg Regional averaged monthly mean temperature All but kriging
Ta_reg_upr As above but above 2,300 m a.s.l. All but kriging
Ta_reg_lwr As above but below 2,300 m a.s.l. All but kriging
dem DEM-based elevation All
slp DEM-based hill slope All
asp DEM-based hill aspect All
svf DEM-based sky-view factor All
ndvi Monthly means of NDVI All
ndvi_tr Transformed monthly means of NDVI All

Fig. 2. Schematic overview of the dataset structure used to train and test the individual spatial prediction models.

In the end, this results in a dataset which links each availablemonthly air temperature observation
at a given station (i.e. the response variable) with (i) the regional temperatures computed based on all
available stations within that month, (ii) the DEM-based information for the location of this station
and (iii) the NDVI value of the respective month at this location (see Table 2). Prior to be used in the
different spatial interpolationmethods, all predictor variables are centred and scaled by their standard
deviations. For linear models, the NDVI is additionally transformed by sin(πNDVI) to account for the
non-linear relationship with height with a maximum in the forest belt between 1,800 m and 3,000 m
a.s.l.

3.3. Experiment setting

Given the available dataset of an average of 44 stations over 32 months, we did not select a fixed
portion of the data as independent test set but estimated the final performance of the individual spatial
prediction methods using a stratified modification of a 10-fold cross validation. The resulting dataset
structure is illustrated in Fig. 2. The rows M1 to M32 indicate the individual 32 months for which
sufficient data is available. Each horizontal combination of a long and a short bar represents the total
available dataset for the respective month as summarized at the end of the preceding chapter.

The stratifiedmodification of the 10-fold sampling procedure first selects one station per available
habitat randomly for each month and groups the results into a minimum training set Tmin[Mm] (m =

[1 . . . 32]). This is indicated by the small block at the right end of each row which contains 12 data
pairs on average. After the separation of this sample, each of the m monthly remaining datasets is
randomly divided into 10 samples Ss[Mm] (s = [1 . . . 10]) indicated by the dashed vertical lines which
contain another 3 data pairs per sample on average.

The dashed red and blue lines additionally illustrate the division into testing (red) and training
(blue) dataset during the first of the ten final performance estimates. For all methods except kriging,
the first training dataset encompasses the samples S2[Mm] to S10[Mm] and Tmin[Mm] for all monthsm = 1
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Fig. 3. Schematic overview of the recursive feature elimination and model tuning procedure.

to m = 32 and the corresponding testing dataset is comprised by S1[Mm] again for all months m. The
test error for the first of the ten folds is then the average of all errors computed for each individual
response value in S1[M1] to S1[M32]. In terms of point pairs, the training data sample contains 1045 and
the test data sample 105 observations on average.

For kriging, the procedure is slightly different because the model training and the test error has
to be computed within the individual month. Therefore, the samples S2[M1] to S10[M1] and Tmin[M1] are
used to build a kriging model which performance is tested using S1[M1] and so forth. As for the other
models, the test error for the first fold is the average over all errors computed for S1[M1] to S1[M32].

Switching from a dataset to a data flow perspective, this procedure is illustrated in the left hand
path of Fig. 3. The resulting performance estimates for each of the ten folds are visualized in Fig. 4 in
Section 4.

The right hand side shows the model training procedure performed within each of these ten
‘‘outer’’ cross-validation loops. The training procedure is based on the rfe function of the caret package
and consists of a combined recursive variable elimination and model tuning routine. The recursive
feature elimination starts with all available predictors listed in Table 2. Based on another 10-fold
cross validation computed on the training dataset of the respective ‘‘outer’’ loop (not shown in the
figure), the model performance is estimated and predictors are ranked according to their importance
determined by their influence on the related root mean square error. The least important predictor
is eliminated from the dataset and the elimination procedure starts again until only one predictor
is left. Within each of these elimination loops, model parameters are tuned within another 10-fold
cross validation (also not shown in the figure). Hence, for each of the seven recursive feature selection
runs which are required for the eight predictor variables used in this study, two nested 10-fold cross
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Fig. 4. Summary of the results in terms of the root mean square error (RMSE) from the 10-fold cross validation for each of the
17 spatial interpolation methods. The methods are sorted by their predictive skill from top (fair) to bottom (good). For model
abbreviations please refer to Table 1. Kriging with elevation only is labelled krigD, kriging with elevation and NDVI is labelled
krigDN and the one additionally including the sky view factor is labelled krigDSN.

validation runs are computed. Table 3 gives an overview of themodel parametersmodified during the
tuning step.

3.4. Variable selection, model tuning and performance estimation using cross-validation

By using the feature elimination procedure, one can easily identify the model that shows the
smallest mean cross-validation test error. This model and the corresponding predictor set could be
regarded as optimal but we follow a more conservative selection approach by also considering the
error range of this model which is defined by the standard deviation of its cross-validation errors. Our
optimum model and corresponding predictor set is subsequently selected by identifying the model
with a mean test error that is just below the upper limit of this error range but uses less predictors.
This model is finally used as optimal model for the estimation of the independent prediction error
within the actual ‘‘outer’’ cross validation loop by applying themodel to the actual test sample (i.e. 105
observations on average). The results are visualized in Fig. 4 andwill be presented in the next chapter.

While the overall structure of Fig. 3 remains valid for kriging, too, the feature selection approach is
different mainly due to computing time considerations. Feature selection is performed on a set of five
randomly selectedmonths. For each of thesemonths, all available observations (i.e. the long and short
grey bar in 2) are used to compute the model on the 30 m by 30 m grid. The minimum and maximum
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Table 3
Overview of the parameters considered during the model tuning. Notations of type x . . . y, z
give the range (x, y) and step size (z).

Model Tuning

glm No special tuning
gam Smoothing: GCV.Cp, GACV.Cp, REML, P-REML, ML, P-ML

Penalization of a parameter to zero: do/do not allow
pcr Max. 3 components, no special tuning
pls Max. 3 components, no special tuning
svmLinear Cost of constraints violation: 0.25. . .1, 0.25
avNNet Units in hidden layer: 10. . .20, 5

Weight decay: 0, 0.001, 0.1
Bag for each repeat

earth Terms in pruned model: 3. . .18, 3
Interaction degree: 1. . .3, 0.5

knn Neighbours considered: 3. . .8, 1
nnet Units in hidden layer: 10. . .20, 5

Weight decay: 0, 0.001, 0.1
svmRadial Scale of laplace distribution: 0.25. . .1, 0.25

Cost of constraints violation: 0.25. . .1.25, 0.25
cubist Number of committee models: 20. . .80, 20

Neighbours considered: 3. . .9, 3
ctree Split criterion: 0.99, 0.50, 0.01
gbm Variable interaction depth: 1. . .7, 2

Number of trees: 100. . .1000, 100
Shrinkage of tree expansion: 0.01, 0.1

rf Sampled predictors at node: 2. . .8, 1
kriging No explicit tuning

value of the resulting temperature map is then compared to theminimum andmaximum value of the
meanmonthly temperatures recordedwithin thismonth and used as proxy for the error of the kriging
model. This selection procedure is repeated for various combinations of external drift variable sets
(e.g. elevation only, elevation andNDVI, elevation and slope etc.). For the final performance estimation,
we finally selected the kriging model with the smallest error which turns out to be the one just using
elevation as external drift and the two model configurations which include the NDVI as external drift
and have the smallest error of this group (i.e. elevation, NDVI and sky-view factor as well as elevation,
NDVI and aspect). The latter where included to double check if additional information to the elevation
actually has a negative influence in the much more comprehensive final performance test.

4. Results and discussion

4.1. Quantitative evaluation of the spatial prediction methods using 10-fold cross validation

The results of the model performance evaluation are given in Fig. 4. Each row shows the results for
onemethod. Each vertically spanning coloured line is the result of one of the 10 cross-validation folds
with the same training and testing dataset used and applied to each of the models as described in the
previous section.

Measuring the prediction accuracy by the root mean square error, the geostatistical kriging
approach using only the elevation as external drift (krigD) performs significantly better than the other
versions included in this final test. As mentioned earlier, this has already been expected from the
variable selection procedure. It has a median error of just above 0.85 K with 50% of the errors ranging
between about 0.8 and 1.0 K.

Compared to the kriging results, all linear methods except gam performworse while all non-linear
and tree based models perform better. Starting at least with neural networks (nnet), the largest RMSE
values of the best performing models lie in the range of the lowest RMSE values of the krigD or even
outperform these results entirely. Among these, averaging methods, especially when combined with
weak learners seem to perform better. This is in accordance withmany studies that generally propose
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Fig. 5. F-statistic comparison of all 17 spatial interpolation methods. Colours denote F-statistic (sum of squares of method
1/sum of squares of method 2), black squares indicate statistically significant differences in F-statistic. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

variations of regression tree ensembles for the interpolation of environmental data sets (see overview
in Section 1).

Regarding statistically significant differences between the models, Fig. 5 provides an overview of
the F-statistic between measured and modelled values for each model combination. The F-statistic is
expressed as the ratio of the sum of squares of method 1 (x-axis) and method 2 (y-axis). The black
squares denote statistical significance, i.e., method 1 performs significantly better than method 2 if
surrounded by a black square. It is obvious that there is no significant difference between the top two
models gbm and cubist. These are followed by a block of rf, AvNNet and nnet which all perform equally
well. Another large block is denoted by the strictly linear models pcr, pls, svmLinear and glm for which
no differences can be found.

A look on the performance of the spatial interpolation methods for the individual habitats reveals
that the error of the five best performing models is largest on grassland patches while especially the
linear models and the kriging variants have quite large problems in predicting the air temperature
in the alpine zone (i.e. the helichrysum areas). The latter is likely a consequence of both the very
limited amount of data from this area (only two measurements are available to compute the RMSE
in this habitat) and a highly non-linear transition of the temperature gradients from the upper forest
boundary to the helichrysum sites combined with height levels (>4,000 m a.s.l) which are more and
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Fig. 6. Mean of the root mean square error (RMSE) from the 10-fold cross validation for each of the 15 spatial interpolation
methods as a function of habitat type. Themethods are sorted by their predictive skill from top (good) to bottom (fair) based on
the performance visualized in Fig. 4. Formodel abbreviations please refer to Table 1. Krigingwith elevation only is labelled krigD,
kriging with elevation and NDVI is labelled krigDN and the one additionally including the sky view factor is labelled krigDSN.
Please note that results for the helichrysum zone are based on only two measurement locations per month on average.

more influenced by advective air-masses in mid-tropospheric wind fields than local boundary layer
conditions (see Fig. 6).

In general, the exact reason for the performance of most of the methods included in this study is
hidden to a large extend by theirmachine learning paradigm. Looking into the predictor importance of
the individual methods however reveals some insights. Fig. 7 shows the overall predictor importance
for the individual optimal models derived in each of the ten cross-validation runs. Except for the
support vector machines and neural networks, the elevation (dem) is the most important variable of
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Fig. 7. Importance of individual predictor variables for eachmethod. Grey colours indicate that the predictor has not been used
in any of the ten individual optimal models derived in each of the ten ‘‘outer’’ cross-validation runs. Colours give the variable
importance in the individual cross-validation runs multiplied by the number of cross-validation runs it has been used within
and normalized by ten. As an example, elevation (dem) has a value of 100 formost of themethodswhich indicates that elevation
has also been the most important variable within these models (scaled value of 100) and that it has been used within each of
the ten cross-validation runs (100 · 10/10 = 100). The predictor abbreviations are given in Table 2 and the methods are sorted
according to their quantitative performance from bottom to top (see Fig. 4). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

each optimal model from each method and for each of the cross-validation runs. NDVI values, either
untransformed (ndvi) for non-linear or transformed (ndiv_tr) for linear models are also important
and used by everymethod althoughwith quite large variations in the individual importance. All other
variables are only used by a subset of methods and with very different importance values. However,
at least one topography related parameter (i.e. svf , slp or asp) is always included. The same is true for
the mean regional temperature based predictors where at least one of Tareg , Ta_reg_upr or Ta_reg_lwr
is used by every method and at least two are used except by earth, ctree, pcr and svmLinear. This is
meaningful from a meteorological point of view since

• air temperature changes over the course of the year independently of any other local factor which
is accounted for by the regionally averaged, individual monthly air temperatures,

• air temperature is a non-linear function of elevation,
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• air temperature is a function of the land cover status which directly influences the boundary layer
conditions and is mapped by the NDVI and

• air temperature is a function of the radiative transfer geometry which in turn is highly influenced
by the morphology (i.e. the slope, aspect or sky view factor).

In summary, most of the errors are in a range of 0.4–0.7 K which is comparable to expected sensor
accuracies of about 0.5 K which result from instrumental and systematic errors. In this light, these
result are very encouraging although the true error rangemight be a little larger since cross-validation
and/or random sub-sampling approaches tend to slightly overestimate model performance. Aside
from that, the quantitative error analysis at individual locations is only one aspect of the performance
estimation since it does not account for spatial interpolation artefacts or unreasonable spatial shifts
off the validation locations. Therefore, a qualitative evaluation follows in the next chapter.

4.2. Qualitative evaluation of the spatial interpolation methods using visual assessment

Collins and Bolstad (1996) already stated that kriging gives the best visually verified results
although the quantitative performance indicators might not be the best within a group of evaluated
models. The obvious reason for such a contradiction lies in the fact that quantitative estimates based
on cross-validation approaches do only consider the error at the available locations while the overall
interpolationpattern canbehighly biased in between these locations (e.g. initial temperature decrease
with height with an exaggerated increase in the vicinity of the next known station location). In order
to get a qualitative estimate of the overall interpolation quality, we computed monthly mean air
temperature maps for each month in 2014 using the best four methods identified in the previous
section (i.e. gbm, cubist, rf and avNNet) and the two kriging versions using only elevation as external
drift (krigD) and using elevation, NDVI and the sky view factor (krigDSN).

Since for each method not one but ten individual optimal models have resulted from the cross-
validation approach, we trained eachmethod described in this chapter again using the entire available
dataset (i.e. no test sample has been excluded as it was the case before). Hence, the models resulting
from this training procedure and as a consequence also the related spatial predictions are slightly
different to any of the ten corresponding optimal models of the cross-validation study though the
error estimates can still be regarded as of the same magnitude.

For the krigingmodels, this approach implies that each of the 12months in 2014 has been used in-
dividually to retrieve the corresponding 12 monthly mean air temperature maps. The corresponding
variograms of the final kriD models are shown in Fig. 8. Especially the main rainy season (February–
June) exhibits comparably low range and sill values indicating that spatial temperature variability is
generally reduced during these months.

For the fourmachine learningmethods, the training dataset consisted of all available data of the 32
months and the final model was then applied to the predictor values valid for the individual months
in 2014. As predictors, only those variables have been used, which have also been used by the optimal
models resulting from the cross validation runs described in the previous section and visualized in
Fig. 7. Model tuning has been performed as described in Section 3.3.

In order to reduce the number of figures and for an easier visual assessment, we do not present the
results of the individualmonths but aggregate themonthly air temperaturemaps to amean annual air
temperature map for 2014. The reader is referred to the supplementary kml dataset for the individual
monthly temperature maps.

Fig. 9 shows the resulting interpolation patterns from the individual models in terms of the mean
annual air temperatures for 2014. All models except gbm show a generally decreasing temperature
pattern with elevation and the kriging models predict lower temperatures at the summit region. The
latter is an intrinsic consequence of the averaging nature of the depicted models which prohibits a
prediction of the actual observed minimum and maximum values.

The temperature decreasewith elevation is quite disturbed in the gbmmodel which shows awarm
elevation belt in the homegardens region (1,000 to 1,500 m a.s.l.) and also the most pronounced
temperature variations inside the forest belt (1,800 to 3,000 m a.s.l.). This likely indicates a strong
sensitivity of the model regarding the NDVI dataset which is also evident in the kidney-shaped forest
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Fig. 8. Variograms for the twelve finalmonthly krigDmodels for 2014. Values for nugget, range and sill alongwith the variogram
model thatwas used are given in the top left corner of each panel.Months are shown in the top right corner of each panel.Model
abbreviations are: ‘‘Ste’’: Matern, M. Stein’s parameterization, Gau: Gaussian, Exp: Exponential.

patch located below 1,000 m a.s.l. at the southern border of the map (close to coordinates 9,630,000
North and 320,000 East, forest area is called RAU). Except of course for krigD, the latter pattern is
also evident in the other models but with different signs and amplitudes. From this group, avNNet is
the model which seems to decrease air temperature as a function of denser vegetation much more
than cubist or rf. This is not only evident in the RAU forest patch or along the lower boundary of the
forest belt which runs just below the 2,000 m contour line but also in the huge forest clearings at the
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Fig. 9. Mean annual temperature maps for 2014 aggregated from monthly air temperature maps computed by (a) stochastic
gradient boosting (gbm), (b) cubist (cubist), (c) random forest (rf ), (d) model averaged neural networks (avNNet), (e) universal
kriging with elevation as external drift (krigD) and (f) universal kriging with elevation, NDVI and sky view factor as external
drift (krigDSN).

northern edge of the study area (just above the 2,000 m contour line between 330,000 and 340,000
East) which are considerably warmer.

Regarding the emphasis of the models on topographic features, it seems that it decreases from
gbm over cubist and rf to avNNet which is apparent from the valley structures. The consideration of
aspect as predictor variable by gbm, rf and avNNET is evident especially at the north facing slopes of
the summit region which are not different to the south facing ones in the other three models.
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Fig. 10. Differences in themean annual temperaturemaps for 2014 from Fig. 9 between (a) stochastic gradient boosting (gbm),
(b) cubist (cubist), (c) random forest (rf ), (d)model averaged neural networks (avNNet) and the universal krigingwith elevation
as external drift (krigD).

To visually enhance the differences between the spatial interpolation models, we computed the
mean annual temperature difference based on the maps in Fig. 9 between each of the four machine
learning models and kriging with elevation as external drift. In general, the resulting patterns shown
in Fig. 10 confirm the findings above. Especially the cooling of north-facing slopes and the warmer
summit regions are directly evident.

Two additional features are worth noting. The first one is a rather regular pattern of alternating
warmer and colder belts in the rf and avNNet model resultswhich cannot be explained by atmospheric
physics and reduces the applicability of the results for other studies to a certain degree. The second one
is a zonal temperature increase along the 2,000 m contour line in the cubist results which follows the
lower border of themountain forest zone.Wewill discuss potential reasons for this later in connection
with Fig. 13.

From a thermodynamic view, the internal structure of the atmospheric boundary layer is
influenced by the underlying land cover characteristics which should be noticeable and clearly visible
in interpolated temperature maps. In light of the visual characteristics of the different approaches
summarized above, the magnitude of these vegetation related influences is, however, questionable
at least in some areas. Therefore, we adopted the approach taken by Sanabria et al. (2013) where the
residuals frommachine learning predictionsmade at the observation points are spatially interpolated
using ordinary kriging. The residual interpolation is shown in Fig. 11. It indicates that the forest belt
is generally over-predicted, i.e., too warm, while neighbouring regions above and below are under-
predicted by cubist and to a much stronger extend by gbm. For the other two models, rf seems to be
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Fig. 11. Map of the interpolated residuals of (a) stochastic gradient boosting (gbm), (b) cubist (cubist), (c) random forest (rf )
and (d) model averaged neural networks (avNNet). The residuals have been computed at each of the available observations
locations and interpolated using kriging on a monthly basis. The map shows the average for the year 2014 over the twelve
monthly interpolations for each model. Black circles indicate all of the potentially available observation sites (i.e. the station
network already shown in 1).

fitted quite well to the observations with just some under-predictions in the upper forest belt region
between the 2,500 m and 3,000 m contour line. The avNNet model on the other hand clearly depicts
a systematic drift from south-west (over-prediction) to north-east (under-prediction).

The ‘‘adjustment’’ maps of Fig. 11 are simply added to the temperature maps of Fig. 9 in the
following which results in the residual adapted interpolations of the four machine learning models
that are shown in Fig. 12. As one can expect from the residualmaps, the resulting temperature patterns
for the adjusted random forest model rfOK and the average neural network model avNNetOK do not
changemuch and the temperature decrease with elevation which has a rather band-type pattern that
leads to the alternating warmer and colder belts in Fig. 10 is still notable. Regarding the adjustment
of the stochastic gradient boosting model, gbmOK now also shows the general temperature decrease
with elevation also the RAU forest area is still notable as a much too warm artefact. From our point
of view, the cubist model (cubistOK ) is the one which gains most additional quality from the residual
kriging approach. It alreadymade a good visual impression before and both the summit region as well
as the region along lower forest border which both used to be toowarm have been corrected although
the latter is still slightly evident.

Fig. 13 provides a more detailed look on the kriging-adjusted cubist result. It shows scaled profiles
of cubist, krigD and cubistOK that are plotted for cross-sections along three major climbing routes
(Mweka, Maua andMarangu). Temperature observations of research sites in the close vicinity of these
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Fig. 12. Mean annual temperature maps for 2014 as in Fig. 9 but corrected by the interpolated residual maps using ordinary
kriging from Fig. 11 for (a) stochastic gradient boosting (gbm), (b) cubist (cubist), (c) random forest (rf ) and (d) model averaged
neural networks (avNNet).

trails are also shown (black dots). Additionally, the standardized profile of the NDVI (averaged over
the 12 monthly NDVI datasets) as well as the elevation profile along these cross-sections is provided.

General characteristics of the cubist profiles are such that (i) temperature increases in response to
the NDVI increase at the lower montane forest border (at elevations between 1,600 m a.s.l. and 1,800
m a.s.l.), (ii) temperatures also increase at the upper forest border at approximately 3,000 m a.s.l. and
(iii) flattening of the terrain also seems to cause temperatures to increase. It may seem contradictory
that temperatures increase in response to both increases as well as decreases in NDVI (lower/upper
forest border, respectively) and we cannot rule out that it just happens by chance. However, this
may well be a realistic scenario resulting from the fact that the 2 m air temperature in the forest
belt represents within-stand conditions, whereas outside the forest it is more representative of the
ambient atmosphere.

Regarding the kriging based adjustment, it becomes evident that the major temperature jumps
along the profiles that are apparent in the cubist curve are generally decreased. The relative variations
within the curve basically remain unchanged. This is generally good news, as it means that we do not
loose the vegetation related patterns, they are simply adjusted to better fit the available observations.

5. Conclusions

In this study wewanted to estimate the performance of a variety of (machine learning) algorithms
for the spatial prediction of air temperature values on a monthly basis. Therefore we have computed
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Fig. 13. Profiles of the predicted mean annual air temperature for 2014 along (a) Mweka, (b) Maua and (c) Marangu route
based on cubist (red) and kriging with elevation as external drift (blue) which are both shown in Fig. 9, and the combined
cubist and residual kriging approach (green) from Fig. 12. Profiles of the NDVI (dotted) and the elevation (black) are taken
from the respective raster datasets. For the NDVI profile, the monthly datasets have been averaged. Black points represent the
location of temperature observations in the vicinity of the transects. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

a 10-fold cross validation study based on 32 months of observational data with 46 observations pairs
on average for each month. Prior to the performance estimate, a recursive variable selection and
model tuning has been computed for each of the 10 cross-validation runs using another nested cross-
validation approach.

In light of both the quantitative 10-fold cross-validation statistics form 4.1 as well as general
characteristics derived through the qualitative visual inspection in Section 4.2, we are confident that
cubist is able to produce more reliable spatial estimates than the other methods, including universal
kriging. However, it needs to be mentioned that for optimizing the kriging interpolation we have
focused on variable selection and not on other particular tuning options as we have simply used the
self-optimizing algorithm from the R automap package for this. Hence, there should be scope for some
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improvement regarding the kriging approach although the results indicate that this improvement
must be quite significant to outperform the best machine learning methods.

Especially, the post-processing of the cubist-based temperature maps using the residuals interpo-
lated with ordinary kriging is promising, as the land-cover related patterns remain nearly unchanged
while the overall estimates are adjusted towards the observations. On the one hand this means that
the cubist interpolation patterns are brought closer to those obtained by krigingwhich is desirable es-
pecially in locations where cubist might put too little emphasis on the influence of elevation or where
the averaging nature of the method prevents it from reaching the observed extremes. On the other
hand the ordinary kriging of the residuals produces rather smooth adjustments which ensures that
the identified land-cover induced patterns are not obliterated.
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