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Stability analyses of any excavations within the rock mass require reliable geotechnical input parameters
such as in situ stress field, rock mass strength and deformation modulus. These parameters are intrinsi-
cally uncertain and their precise values are never known, hence, their variability must be properly
accounted for in the stability analyses. Traditional deterministic approaches do not quantitatively con-
sider these uncertainties in the input parameters. To incorporate these uncertainties stochastic
approaches are generally used. In this study, a stochastic assessment of pillar stability using Artificial
Neural Network (ANN) is presented. The uncertainty in the rock mass properties at the Laisvall mine were
quantified and the probability density function of the deformation modulus of the rock mass was deter-
mined using probabilistic approach. The variability of the in situ stress was also considered. The random
values of the deformation modulus and the horizontal in situ stresses were used as input parameters in
the FLAC3D numerical simulations to determine the axial strain in the pillar. ANN model was developed to
approximate an implicit relationship between the deformation modulus, horizontal in situ stresses and
the axial strain occurring in pillar due to mining activities. The closed-form relationship generated from
the trained ANN model, together with the maximum strain that the pillar can withstand was used to
assess the stability of the pillar in terms of reliability index and probability of failure. The results from
this study indicate that, the thickness of the overburden and pillar dimension have a substantial effect
on the probability of failure and reliability index. Also shown is the significant influence of coefficient
of variation (COV) of the random variables on the pillar stability. The approach presented in this study
can be used to determine the optimal pillar dimensions based on the minimum acceptable risk of pillar
failure.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A pillar can be defined as the in-situ rock mass between two or
more underground openings. It is the main support in room and
pillar mines. The support provided by the pillars controls the rock
mass displacement throughout the zone of influence of mining,
while the mining proceeds.

The analysis and design of mine pillars generally seek to opti-
mize the size of the pillars so as to maximize the extraction ratio
(i.e. amount of ore extracted relative to the total amount of ore
available) while maintaining the stability of the mine. Hence the
design of pillars has both economic and safety implications.
The knowledge of the pillar strength and the determination of
the required safety factor for a given loading condition are the
most important aspects of pillar design. Conventional pillar design
methods comprise the calculation of the mean pillar stress (e.g. the
tributary area method and the method by Coates (1981) and the
estimation of the pillar strength using empirical formulae (e.g.
Obert and Duvall, 1967; Krauland and Söder, 1987; Sjöberg,
1992). Based on the stress and strength of the pillar the factor of
safety can be calculated. The factor of safety is the ratio of the pillar
strength to the induced stress in the pillar and the pillar fails when
the ratio is less than 1.

Though the conventional methods are widely used for pillar
design, Alber and Heiland (2001) have expressed some concerns
about this conventional approach for pillar design at shallow
depth. They observed that the pillar failure at shallow depth could
not be properly explained by comparing pillar strength with stres-
ses induced on the pillar by mining activities. They suggested
amongst other approaches that pillar failure could be related to
strain. Therefore, when considering the strain occurring in the
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Fig. 1. Simple structure of ANN model.
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pillar the factor of safety can be determined as the ratio of the max-
imum strain that a pillar can withstand to the strain occurring in
the pillar due to mining activities. Nevertheless, either ways of
determining the factor of safety are largely deterministic and do
not consider the inherent variability of the rock mass properties
and that of the in situ stress field. Mean values of these input
parameters are generally assumed. The results from the determin-
istic approach could be misleading depending on the distributive
character of the rock property variation (Kim and Gao, 1995).
Deng et al. (2003) have reported instances where pillars failed
despite the fact that the failed pillars had been considered stable
with factor of safety greater than 1.

Therefore, for a reliable design and analysis of construction ele-
ments such as mine pillars appropriate methods which incorporate
the variability in the rock mass properties must be used. The meth-
ods which consider this variability are known as stochastic or
probabilistic methods. With a stochastic approach, the stability
analysis can be considered as a random system, where the occur-
rence of a pillar failure is a random event depending on the out-
come of the random variables involved.

A number of stochastic approaches have been applied to various
geotechnical problems, including underground excavation prob-
lems (e.g. Chen et al., 1997; Lilly and Li, 2000; Cai, 2011; Idris
et al., 2011; Dohyun et al., 2012), tunnel support (e.g. Schweiger
et al., 2001; Li and Low, 2010; Oreste, 2005), subsidence (e.g.
Torano et al., 2000) and pillar stability (e.g., Pine, 1992; Joughin
et al., 2000; Griffiths et al., 2002; Deng et al., 2003; Cauvin et al.,
2009; Najafi et al., 2011; Recio-Gordo and Jimenez, 2012;
Wattimena et al., 2013). Pine (1992) presented a probabilistic
approach for pillar design whereby normal probabilistic distribu-
tions were assumed for the random variables and the safety mar-
gin. Joughin et al. (2000) employed the point estimate method
(Rosenblueth, 1981) to account for rock strength variability in
the probabilistic method they presented for the design of chromite
pillars in South Africa. Griffiths et al. (2002) analysed the stability
of underground pillar by using random field theory with
elasto-plastic finite element algorithm in a Monte Carlo frame-
work. Deng et al. (2003) presented a probabilistic mine design
method which combines the finite element methods, neural net-
work and reliability analysis. Cauvin et al. (2009) used probabilistic
approach to assess the effect of uncertainty in mining pillar stabil-
ity analysis. Najafi et al. (2011) utilized First Order Second Moment
(FORM) and Advanced Second Moment (ASM) for the probabilistic
stability analysis of chain pillar in a coal mine in Iran. A probabilis-
tic model based on linear classifier theory to predict the behaviour
of pillar in longwall and retreat room and pillar mining was pre-
sented by Recio-Gordo and Jimenez (2012). Wattimena et al.
(2013) employed logistic regression to predict the probability of
coal pillar stability for given pillar geometry and stress condition.

In general, stochastic assessment of pillar stability is performed
by two procedures: the first step is to quantify the uncertainty in
the rock mass properties in order to determine the basic statistical
parameters (i.e. mean and variance) and probability density func-
tions (PDFs) of the strength and deformation modulus of the rock
mass using the Monte Carlo method. The Monte Carlo (MC) simu-
lation technique is often adopted in the geotechnical stochastic
analyses with implicit or explicit solutions but when the analysis
is associated with numerical modelling then the MC simulation
technique becomes time consuming and less appealing.

In the second step, the probability of failure is determined with
respect to a specific failure criterion, which can either be the
induced pillar stress exceeding the pillar strength or the strain
occurring in the pillar exceeding the defined threshold strain value
for the pillar. The onset of failure in the context of this study is
defined as the limit state when the peak strength of the pillar is
exceeded or the strain occurring in the pillar exceeds the peak
strain for the pillar. For underground excavations this limit state
is not known explicitly, instead numerical analysis using the finite
difference method (FDM) or the finite element methods (FEM) can
be combined with function approximation tools to construct a
closed-form expression for the limit state surface. Recently, many
function approximation tools have been proposed such as the
response surface method (RSM), the point estimate method
(PEM), and the Artificial Neural Network (ANN) to model the rela-
tionship. ANN, due to its high performance, has been one of the
tools used in geotechnical engineering to model the relationship
between non-linear multivariate variables (Sonmez et al., 2006).

In this study, a stochastic approach was used to analyse the pillar
stability at the Laisvall mine in Sweden while considering the vari-
ability in the rock mass properties and in the in-situ stresses. The
uncertainty in the rock mass properties at the Laisvall mine were
quantified and the probability density function of the deformation
modulus of the rock mass was determined. Also the variability of
the horizontal in situ stresses was considered. The random values
of these parameters (i.e. deformation modulus and horizontal
in situ stresses) were used as input parameters for the FLAC3D

(Itasca, 2012) analyses to determine the axial strain in the pillar.
The ANN model was developed to approximate an implicit relation-
ship between the deformation modulus, horizontal stresses and the
pillar axial strain within the range of possible values of the random
input parameters. The closed-form relationship generated from the
trained ANN model together with critical axial strain, which the pil-
lar can withstand, was used to define a pillar performance function.
The performance function was used to assess the stability of the pil-
lar in terms of probability of failure and reliability index.
1.1. Artificial Neural Network (ANN)

The ANN, also referred to as neural network, is an information
system that imitates the behaviour of the human brain by emulat-
ing the operation and connectivity of the brain to generate a general
solution to a problem. ANN can be used to extract patterns and
detect trends from problems where the relationship between the
inputs and outputs are not sufficiently known. In recent years,
ANN has been frequently used for functions approximation in dif-
ferent fields of science, including geotechnical engineering (Sahin
et al., 2001). Basically, ANN consists of simple interconnected nodes
or neurons as shown in Fig. 1 where p is the input, w is the weight, b
is the bias, f is the transfer function and a is the output.

If the neuron has N number of inputs then the output a can be
calculated as:

a ¼ f ð
XN

i¼1

wipi þ bÞ ð1Þ

There are different types of transfer functions that can be used
in ANN such as hard limit transfer function, linear transfer func-
tion, log-sigmoid transfer (Beale et al., 2012). The choice of the
transfer function depends on the specification of a problem that
the neuron is attempting to solve (Beale et al., 2012).

The architecture of ANN consists of the number of layers, the
number of neurons in each layer and the neuron transfer functions.
Two or more neurons can be combined in a layer and a network
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could contain one or two layers whereby each layer has different
roles. There are output layers, input layers and intermediate layers
or hidden layers. There is always one output layer and one input
layer while there can be many hidden layers for an ANN.
However, it is known that a network with one hidden layer can
approximate any continuous function provided with sufficient
connection weights (Hornik et al., 1989). The number of neurons
in the input and output layer are determined by the number of
the model input and output variables. There is no any exact guide
for determining the number of neurons in the hidden layer, how-
ever some researchers (e.g. Aldrich and Reuter, 1994;
Kanellopoulas and Wilkinson, 1997; Seibi and Al-Alawi, 1997) have
proposed heuristic relations for determining the neuron size.

Before an ANN can be used to make projections or predictions it
has to be trained. In the training or learning process, the network is
presented with a pair of training datasets including input and cor-
responding target values. The network computes its own output
using its initial weights and biases. Then, the weights and biases
are adjusted iteratively to reduce the errors between the network
output and the target output. Mean square error is used as error
index during the training phase to improve the network perfor-
mance (Tawadrous et al., 2009). One of the most commonly used
learning algorithms in geotechnical engineering is the
back-propagation algorithm (BPA) proposed by Rumelhart et al.
(1986). In BPA there are two phases: forward prediction which cal-
culates the output values of the ANN from training data and error
back-propagation which adjusts the weight. There are many tech-
niques to adjust the error but the steepest descent method is often
used (Tawadrous et al., 2009). Once the training process of ANN is
completed predictions can be made for a new input dataset.
2. Description of the case studied

The Laisvall mine in northern Sweden, although closed in 2001,
was a lead–zinc mine owned and operated by Boliden Mineral AB.
The orebody, hosted in flat-lying quartzitic sandstone interlayered
with clayey sandstones, was mined using the room and pillar min-
ing method. The annual production before the closure of the mine
was 1.6 Mt. There were four main ore bodies in the mine, most of
them situated in the lower sandstone, except the Nadok orebody
which was entirely situated in the upper sandstone. The thickness
of the overlying strata above the Nadok orebody varied between
110 and 300 m (Söder and Krauland, 1990). In most of the orebod-
ies of the mine the roof consisted of the same type of sandstone as
the ore itself.

Söder and Krauland (1990) conducted a full-scale pillar test
between 1983 and 1988 in the Nadok orebody. This test comprised
9 pillars and the objective was to determine the stress level in the
pillar at failure (i.e., the bearing capacity) to serve as input to pillar
design and long term planning of the mine. The pillars were sub-
jected to increasing stresses by decreasing the cross-sectional area
of the pillars through blasting of slices of approximately 0.4 m
thickness, thereby reducing the widths and lengths of the pillars
in each of the mining steps. The pillars were initially 4.6 m high,
7.4 m wide and 8.1 m long. Pillar failure appeared to have occurred
after six slices were blasted.
3. Stochastic estimation of rock mass properties using GSI
system

Inputs for the rock mass parameters in the numerical simula-
tion were determined stochastically from the GSI (Geological
Strength Index) rock mass characterization system. The GSI system,
developed by Hoek et al. (1995), is based on the description of the
rock structure and the block surface condition. It is a system that
provides a complete set of mechanical properties for design pur-
poses when used in the generalized Hoek–Brown criterion (Cai
et al., 2007). The mechanical rock mass properties are the deforma-
tion modulus (Em), the Hoek–Brown strength parameters (mb, s and
a), the tensile strength, and the equivalent shear strength parame-
ters: cohesion (c) and the internal friction angle (/). When the GSI
system is used for rock mass characterization, two groups of
parameters need to be determined, which includes the uniaxial
compressive strength (UCS) and the material constant (mi) of intact
rock. The other group is the joint parameters which consist of joint
geometry and strength parameters (Cai, 2011). These parameters
varied considerably for the rock mass where the pillar test was
conducted as reported by Söder and Krauland (1990), Palmström
(1995), Exadaktylos and Stavropoulou (2008).

3.1. Evaluation of GSI from Vb and Jc

The determination of GSI based on visual observation may be
subjective. Recently, Cai et al. (2004b) proposed a new approach
to quantitatively determine GSI based on the block size and condi-
tion; block volume (Vb) and the joint condition factor (Jc). This
approach is well suited for the stochastic approach and therefore
adopted for this study.

The block size is determined from the joint spacing, joint orien-
tation, number of joint sets and joint persistence. According to Cai
et al. (2004b) the effect of the intersection angle between joint sets
is relatively small compared to the joint spacing hence they sug-
gested that for practical purposes the block volume for three or
more joints can be approximated using

Vb ¼ S1S2S3 ð2Þ

where Si is the spacing of each joint set.
The joint surface condition (Jc) is defined by the roughness,

weathering and infilling. It is similar to the factor used by
Palmström (1995) to quantify the joint surface condition. The com-
bination of these factors defines the strength of a joint or block sur-
face. Cai et al., 2004b defined Jc as:

Jc ¼
JW JS

JA
ð3Þ

where JW and JS are the large-scale waviness and small-scale
smoothness, respectively (Barton and Bandis, 1990; Palmström,
1995) and JA is the joint alteration factor (Barton et al., 1974).

Once the value of Jc and Vb are known the GSI value can be
determined using the equation proposed by Cai and Kaiser
(2006) which is expressed in terms of Jc and Vb, thus

GSI ¼ 26:5þ 8:79 ln Jc þ 0:9 ln Vb

1þ 0:0151 ln Jc � 0:0253 ln Vb
ð4Þ

By extension, since the variability in the material properties is
considered in this study, if the mean values and the coefficient of
variations of Jc and Vb together with their probability density func-
tions (PDF) are known then they could be used as input variables to
determine the distribution of the GSI using the Monte Carlo
simulation.

Palmström (1995) has conducted extensive evaluation of the
joint characteristics of the pillars at the Laisvall mine and reported
the Vb and Jc values for the rock mass at the mine. Exadaktylos and
Stavropoulou (2008), based on the results of Palmström (1995),
presented the range of values for the Vb and Jc, respectively, for
the quarzitic sandstone pillar at the Laisvall mine. The mean values
and the coefficient of variation (COV) for both Vb and Jc were esti-
mated based on the ‘‘Three-sigma rule’’ described by Dai and Wang
(1992). The three-sigma rule is based on the fact that 99.73% of all
values of a normally distributed parameter fall within three



Table 2
Statistical parameters for the UCS and mi.

Parameters Mean value COV (%)

UCS (MPa) 210 15
mi 17 10
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standard deviations of the mean. The normal distribution is
assumed for both Vb and Jc and the distributions were truncated
at their maximum and minimum values. The mean values and
the COV for the Vb and Jc together with their respective truncated
PDF were used as inputs in Eq. (4) to generate the distribution of
the GSI using the Monte Carlo simulation technique available in
the Excel add in program @RISK (Palisade, 2001). Table 1 shows
the statistical parameters for Vb and Jc and statistical parameters
for the GSI generated from the Monte Carlo simulation.

3.2. Determination of statistical parameters for UCS and, mi

The GSI value, the UCS and the mi of the intact rock are basic
inputs for the generalized Hoek–Brown failure criterion (Hoek
et al., 2002). The UCS and mi of the intact rock are determined by
laboratory testing as described by Hoek and Brown (1997). In this
study, the mean value and the range for UCS used for the rock
types in the Nadok orebody have been reported by Söder and
Krauland (1990), Palmström (1995). The information about the
variation of the UCS is not reported. A normal distribution with a
COV of 15% was assumed for the UCS. Generally, the COV of 15–
20% is applicable to most natural geotechnical materials (Rethati,
1988). A normal distribution with the mean value of 17 and COV
of 10% was assumed for the mi. This was taken from the value sug-
gested for sandstone by Marinos and Hoek (2000). Table 2 shows
the statistical parameters for the UCS and mi used in this study.

3.3. Determination of the rock mass properties and their Probability
Density Functions

The generalized Hoek–Brown criterion for jointed rock masses
was employed to estimate the rock mass strength parameters
and deformation modulus for the Nadok orebody. At failure the
generalized Hoek–Brown criterion relates the major effective prin-
cipal stress r1 to the minor effective principal stress r3 as follows

r1 ¼ r3 þ rci mb
r3

rci
þ s

� �a

ð5Þ

where mb, s, a are Hoek–Brown strength parameters for the rock
mass and rci is the UCS of the intact rock. Having determined the
statistical parameters (i.e. mean and COV) of GSI and mi Monte
Carlo simulation technique was used to determine the distributions
of the Hoek–Brown strength parameters for the orebody using the
following equations:

mb ¼ mi exp
GSI� 100
28� 14D

� �
ð6Þ

s ¼ exp
GSI� 100

9� 3D

� �
ð7Þ

a ¼ 1
2
þ 1

6
e�GSI=15 � e�20=3
� �

ð8Þ

where D is a factor which depends on the degree of disturbance the
rock mass has been subjected to by blast damage and stress relax-
ation. It varies from 0 for undisturbed in situ rock masses to 1 for
very disturbed rock masses. For this study, blasting damage was
assumed to be minimal, hence D = 0 was used.
Table 1
Statistical parameters for Vb, Jc and GSI.

Parameters Min. value Max. value Mean COV (%) Distribution

Jc 0.75 2.25 1.5 16.7 Normal
Vb (�103 cm3) 100 300 200 16.5 Normal
GSI 51 63.54 58.7 4.0 Normal
Different equations have been proposed to determine the defor-
mation modulus of the rock mass based on the range of the UCS
(Hoek et al., 2002). Hoek and Diederichs (2006) suggested that
when reliable estimates of Young’s modulus for intact rock are
available, the deformation modulus of the rock mass (Em) can be
calculated from:

Em ¼ Ei 0:02þ 1� D=2
1þ e ð60þ15D�GSI=11Þð Þ

� �
ð9Þ

where Ei is the Young modulus and it was determined from the
modulus ratio (MR) proposed by Deere (1968) thus:

Ei ¼ MRrci ð10Þ

The value of MR was determined from the mean values of UCS
and Ei for the intact rock reported by Söder and Krauland (1990).
Eqs. (9) and (10) were used to estimate the statistical parameters
and the PDF for deformation modulus (Em) for the rock mass by
using the already determined PDFs of the UCS and GSI. Similar to
the previous parameters, the PDF and the statistical parameters
were generated using the Monte Carlo simulation technique avail-
able in @RISK. Table 3 shows the probability density function
(PDF), mean, standard deviation (STDEV) and the coefficient of
variation (COV) for the deformation modulus (Em).

4. Variability in in-situ stress

The knowledge of in situ stresses is essential for the design of
underground excavations and construction elements such as mine
pillars. Due to spatial variation of the in-situ stress field at various
locations within the rock mass, there is always an uncertainty in
the results of in-situ stresses measurements (Cai, 2011).

In-situ stresses are usually reported as; vertical stress (rv),
maximum horizontal stress (rH), and minimum horizontal stress
(rh). The vertical stress is normally assumed to vary linearly with
depth as:

rv ¼ qgz ð11Þ

where q is the rock density, g is the gravity and z is the overburden.
For this study, the rock density for the rock mass was assumed to be
constant with a value of 2700 kg/m3 and the overburden varied
from 110 to 300 m.

The maximum horizontal stress (rH) and minimum horizontal
stress (rh) recorded at the mine varied between 20 MPa and
25 MPa (Marklund, 2013). Normal distribution was assumed for
the horizontal in situ stresses with coefficient of variation (COV)
of 3.7% using the three sigma rule. Only the variability in the hor-
izontal stresses was considered in this study.

5. Numerical analysis

Since the objective of the numerical analysis was to determine
the induced axial stress and the elastic axial strain occurring in the
Table 3
PDF, mean, standard deviation and coefficient of variation (COV) for Em.

Parameter Mean STDEV COV (%) PDF

Em (GPa) 23.47 4.04 17.17 Normal
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pillar due to the mining, linear elastic analyses were considered
sufficient. Series of elastic numerical analyses were carried out
using the FLAC3D code (Itasca, 2012) considering the possible vari-
ability in the rock mass properties and the in-situ stress conditions.

5.1. Model geometry

The layout of the test area and the geometry of the simulated
pillars are shown in Fig. 2. Roller boundary conditions were used
along all external boundaries. The mesh size used for the model
was 0.4 m � 0.4 m � 0.4 m. It was chosen based on the results from
the FLAC analysis where the induced axial stress in pillar was mon-
itored for different mesh sizes until further reduction in the mesh
size gave no significant difference in the model result.

5.2. Modelling sequence

The modelling sequence used in this study consists of the fol-
lowing steps:

(i) Generation of the model grid using a brick-shaped mesh.
(ii) Selection of appropriate boundary conditions and material

model.
(iii) Initialization of in-situ stresses and material properties.
(iv) Stepping of the model to initial equilibrium prior to any

excavations.
(v) Excavation of the roadways to create the rib pillar and later

excavating the rooms across the rib pillar to create the panel
pillar. These excavations were henceforth referred to as min-
ing step 0 in the modelling sequence.

(vi) Sequential loading of the pillar induced by blasting the pillar
in 6 steps, henceforth referred to as mining steps 1–6. Each
step extracts one slice of approximately 0.4 m from the
length of the pillar and one slice of approximately 0.4 m
from the width of the pillar.

Fig. 3 shows the mining steps 1–6 and Table 4 shows the pillar
dimensions corresponding to the mining steps. At each mining step
the axial stress and maximum vertical displacement at both ends
of the pillar were obtained. The mean pillar stress was estimated
by averaging the vertical stress component computed by FLAC3D

along the center line ab (see Fig. 4) of the pillar. The axial strain
(e) was calculated as follows:

e ¼ Ub � Ua

H
� 100 ð12Þ

where Ua and Ub are the vertical displacement at points a and b,
respectively while H is the height of the pillar.

5.3. Sensitivity analysis

In the room and pillar mining method, roadways are usually
developed ahead of mining and are initially subjected to the
in-situ stress state. As mining progresses, the pillars are subjected
to an increased induced stress which consequently leads to
Table 4
Mining steps and corresponding pillar dimension.

Mining steps Height, H (m) Width, W (m) Length (m) W/H (approx.)

0 4.6 7.4 8.1 1.61
1 4.6 6.7 7.8 1.46
2 4.6 6.3 7.2 1.37
3 4.6 5.9 6.6 1.28
4 4.6 5.5 6.2 1.20
5 4.6 4.9 5.9 1.07
6 4.6 4.5 5.3 0.98
increase in the rock mass response in terms of displacement or
strain. Traditionally, the stability of a pillar is assessed by using
the criteria which compares the strength of the pillar to the max-
imum average stress in the pillar. The maximum average stress
can be determined from two or three dimensional elastic numeri-
cal analyses while the strength is determined from empirical equa-
tions. The pillar stability can also be assessed by comparing the
strain monitored in the pillar during the numerical analyses with
the maximum strain that the pillar can withstand. Some of the
input parameters for the elastic numerical analyses are the defor-
mation modulus of the rock mass and horizontal in-situ stress. As
discussed previously, these parameters exhibit inherent variability
and uncertainty hence for this study there is need to find the
appropriate criteria for assessing the stability of the pillar while
considering the variability of these parameters. A sensitivity anal-
ysis was performed to determine the effect of the variability of
these input parameters on the axial strain of and the mean axial
stress in the pillar. Two cases were considered for the sensitivity
analysis as follows:

(i) The deformation modulus was varied between 20 and
32 GPa while the other input parameters were kept constant
and equal to their mean values.

(ii) The horizontal stresses were varied between 20 and 26 MPa
while the other input parameters were kept constant and
equal to their mean values.

The mean values of the input parameters used for the sensitiv-
ity analysis are shown in Table 5.
5.3.1. Results of the sensitivity analysis
The results of the sensitivity analysis are shown in Figs. 5 and 6.

It is evident from Fig. 5 that the variation in the horizontal stress
has significant effect on both axial strain and mean axial stress in
the pillar. The strain and the mean stress increased when the
width-to-height ratio of the pillar was reduced from 1.61 to 1.46
(i.e. mining step 0 to step 1). However, as shown in Fig. 6a the axial
strain in the pillar decreases for an increase in the deformation
modulus. Also the strain increases with reduction in the
width-to-height ratio. Therefore, from Fig. 6a it is evident that
the axial strain in the pillar is sensitive to the variations in the
deformation modulus as well as in the pillar geometry.
Conversely, the mean axial stress is not sensitive to any increase
in the deformation modulus as shown in Fig. 6a. However the axial
stress increased when the width-to-height ratio was reduced (i.e.
from mining step 0 to step 1). These results show that the distribu-
tion of elastic stress in the pillar is a function of the pillar geometry
and the in-situ stress. This has also been observed by Martin and
Maybee (2000), Lunder and Pakalnis (1997).

The sensitivity analysis shows that given the same pillar geom-
etry the stress in the pillar, under elastic conditions, will be the
same for pillars with different rock mass properties if they are sub-
jected to the same in situ stresses. Deformation (e.g. strain) is the
response of the rock mass when subjected to stress/load hence this
response (i.e. strain) can be used to analyse the stability of the pil-
lar instead of using a stress/strength criterion. Therefore, in this
Table 5
Mean values of the input parameters for the sensitivity analysis.

Parameters Mean values

Deformation modulus Em, GPa 23.47
Maximum horizontal stress, rH, MPa 22.50
Maximum horizontal stress, rh, MPa 22.50
Vertical stress, rv, MPa 5.43
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Fig. 2. The layout of the test area (a) and the geometry of the simulated pillar (b).

Fig. 3. Plan view of the simulated pillar showing the mining steps (not to scale).
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study strain-based criterion is used for assessing the pillar stability
in this study.

5.4. Determination of the pillar performance function

In order to determine the probability of failure for the pillar as
well as its reliability the relationship between the capacity and the
demand on the pillar must be established. Concluding from the
results of the sensitivity analysis presented above, the strain based
criterion is adopted for this study. Therefore, the pillar capacity is
expressed in terms of the critical strain (ecritical) and the demand
is the axial strain (e).

Sakurai (1981, 1997, 1999) has developed a concept of critical
strain for rock masses. The critical strain is the ratio of uniaxial
compressive strength to Young’s modulus i.e.

ecritical ¼
rcm

Em
� 100 ð13Þ

where ecritical is the critical strain, rcm is the uniaxial compressive
strength (UCS) of the rock mass and Em is the deformation modulus
of the rock mass. The UCS of the rock mass rcm is obtained by set-
ting r3 = 0 and r1 ¼ rcm in Eq. (5), giving:

rcm ¼ rcisa ð14Þ
The rock mass constants a and s are obtained from Eqs. (7) and
(8), respectively.

Since the critical strain may not be the strain at failure for most
rocks, Sakurai (1981) proposed a relationship between strain at
failure and critical strain as

efailure ¼
ecritical

1� Rf
ð15Þ

where efailure is the failure strain and Rf is a parameter representing
failure strength. According to Sakurai (1981) Rf ranges from 0.05 to
0.8. The range of Rf suggested by Sakurai does not have a general
application as it includes both weak and hard rocks. However, based
on the study conducted by Cai et al. (2004a) on the generalized
crack initiation and propagation thresholds of brittle rock masses
Cai (2011) proposed the Rf ranging from 0.1 to 0.3 for hard rock
masses. For this study 0.2 was assumed to be an approximated
value for Rf for the rock mass at the Laisvall mine based on a rough
estimate using the available data from the mine.

Therefore, for this study the performance function for the pillar
is the limit-state function which defines the relationship between
the failure strain and the axial strain due to mining. The limit state
function, g(X), and probability of failure Pf can be defined as:

gðXÞ ¼ RðXÞ � SðXÞ ð16Þ

Pf ¼ P½gðXÞ < 0� ð17Þ

where R is the failure strain and S is the axial strain. Both R(X) and
S(X) are PDFs of the random variable X.

Aside from the limit state function, the safety index or reliabil-
ity index (b) is another important quantity for the reliability of a
pillar. The reliability index can be defined as:

b ¼ lm

rm
ð18Þ

where lm and rm are the mean and standard deviation of the PDF of
g(X), respectively. The larger the reliability index, the smaller the
probability of pillar failure. The limit state function, g(X), is assumed
to follow a normal distribution hence b can be defined as

b ¼ �/�1ðPf Þ ¼ /�1ð1� Pf Þ ð19Þ

where /�1 is the inverse cumulative density function (CDF) of the
standard normal variable at the probability level ð1� Pf Þ.

5.4.1. Determination of closed-form equation for axial strain
In this study an approach that integrates ANN and finite differ-

ence analysis was adopted to obtain a closed-form equation of the



Fig. 4. Section of the pillar geometry showing the center line ab and height H (not
to scale).
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axial strain for each of the mining steps. The proceeding sections
describe the processes involved in achieving this.
5.4.1.1. Determination of model training dataset. An important step
in developing ANN models is to select the model input variables
that have the most significant effect on the model performance
(Faraway and Chatfield, 1998). For this study, the training datasets
are the deformation modulus and horizontal in-situ stresses as
input data and the corresponding axial strain as output or target
data. In order to approximate the relationship between the axial
strain and the random variables a training dataset is designed.
Thirty-six (i.e. 62) combinations of random values of Em and rH

were generated by considering equally spaced six sampling points
of each random values within the range of ±3 standard deviations
of their respective means. This represents almost the total
population of their normal distributions.
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Fig. 5. Effect of varying the horizontal stresses on: (a) axial strain a
The FLAC3D elastic simulations were carried out using each of
the 36 combinations of Em and rH together with constant values
for Poisson’s ratio (0.2) and mean value for overburden (i.e.
205 m) to generate the corresponding 36 axial strains. The 36 data-
sets were divided into 3 sections randomly for the ANN model
training, testing and validation. 70% of the datasets for the training,
15% for the testing and 15% for the validation.

The input and output data were normalized or scaled to be in
the range of ±1 because the ANN algorithm especially the
back-propagation, works best when the training datasets are
scaled or normalized (Beale et al., 2012). The following equation
was used for linear scaling of the input and target data (Goh and
Kulhawy, 2003).

xnorm ¼ 2
x� xmin

xmax � xmin

� �
� 1 ð20Þ

where xnorm is the normalized value of parameter x with maximum
and minimum values of xmax and xmin, respectively. The ranges of
values used for Em and rH as input parameters for the training data-
sets were 23.47 ± 4.04 GPa and 22.50 ± 0.83 MPa, respectively. The
corresponding maximum and minimum values of the output values
of the axial strain for the base case (i.e. at depth of 205 m) are
shown in Table 6.
5.4.1.2. Designing the architecture of the ANN. The multilayer per-
ceptron (MLP) feed-forward neural network was considered for
this study. MLP is commonly used in geotechnical engineering
(Sahin et al., 2001). For the development of the network, a com-
mercial software package MATLAB (MathWorks Inc., 2012) was
used to simulate the ANN operations. The network has one input
layer, one output layer and one hidden layer. The input layer has
two neurons and the output layer has seven neurons. The number
of neurons in the hidden layer was chosen to be 5 utilizing a trial
and error approach. The best configuration was achieved in this
work by using the linear transfer function (purelin) in the output
layer and the tansig transfer function in the hidden layer. The
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Fig. 6. Effect of varying deformation modulus on: (a) axial strain and (b) mean axial stress in the pillar at mining steps 0 and 1.

Table 6
Maximum and minimum values of axial strain.

Mining step Axial strain (%)

Max. Min.

0 0.083 0.037
1 0.090 0.040
2 0.095 0.042
3 0.100 0.044
4 0.102 0.045
5 0.111 0.049
6 0.116 0.051
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network was trained with Levenberg–Marquardt back-propagation
algorithm (trainlm).
5.4.1.3. Model training, testing and validation. The process of opti-
mizing the connection weights is known as training (Sahin et al.,
2001). The weights and biases were initialized to non-zero random
values. Then the normalized training dataset of the input and out-
put values generated from the elastic simulations with FLAC3D

were presented to the network. The performance of the ANN model
was measured in terms of an error criterion between the target
output and the calculated output. The output calculated at the
end of each feed-forward computation was compared with the tar-
get output to estimate the mean-squared error (MSE). Thereafter
the back-propagation algorithm adjusted the weights and biases
until the mean squared error was greatly minimized.

Fig. 7 shows the relationship between the output targets (axial
strain values from FLAC3D simulations) and the predicted values
obtained from the ANN training, testing and validation process
for the base case. Each diagram in the figure represents plots for
different percentages of the total dataset, for training (70%), valida-
tion (15%), test (15%) and all (100%). The model shows good corre-
lation to the training, validation, test and of course all the datasets
with R values greater than 0.9. R values is an indication of the rela-
tionship between the outputs and targets where R = 1 indicates
exact linear relationship.
5.4.1.4. Implementation of the trained network. Having trained the
ANN by optimizing the weights and biases, the network can be
used to predict target values given the input pattern within the
range of the input values used for the network training.

The optimal trained connection weights and biases were
extracted from the network model and used to develop a mathemat-
ical expression relating the input values, Em and rH and the output
variables, axial strain (e), for each mining step. The network model
has two input neurons, five hidden neurons, and seven output neu-
rons, each one for each mining step hence the closed-form equation
relating the inputs variables and output variables is as follows:

Tn ¼ f 2 B2 þ LW f 1ðB1 þ IW :PnÞð Þgf ð21Þ

where B1 is the bias vector for the input, IW is the vector for weight
connection between neurons of the hidden layer and the single out-
put, B2 is the vector for the bias at hidden layer neuron, LW is the
matrix for the hidden layer weight. Pn is a matrix of normalized
input vectors used as input values for the network training. Tn is
the corresponding matrix of normalized output vectors and f1 and
f2 are the transfer functions which are tansig and purelin, respec-
tively. The normalized output vectors (Tn) could be converted to
non-normalized output vectors (T) as follows:

T ¼ 0:5ðTn þ 1Þðmax T �min TÞ þmin T ð22Þ

where maxT and minT are the vectors containing the maximum and
minimum values of e, respectively which were used for the network
training and testing. These values for the base case have been pre-
sented in Table 6.

5.4.2. Pillar performance function
Using Eqs. (21) and (22), the pillar performance function can be

expressed as:

gðXÞ ¼ efailure � T: ð23Þ

The PDFs and the statistical parameters of rci, s, a and Em were
used as input values to determine the random values of the critical
strain (ecritical) as shown in Eqs. (13) and (14). The strain at failure,
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which is the peak strain, was then determined using Eq. (15). The
PDF and the statistical parameters of Em and rH were used as the
input values to generated T (i.e.e) in Eq. (22). The Monte Carlo
(MC) technique was used to simulate the performance function
(i.e. Eq. (23)) using the program @RISK. In each simulation, the val-
ues of the variables X (i.e. rci, s, a, Em and rH) were randomly gen-
erated according to their PDFs. The PDFs, means and standard
deviations of the performance function (g(X)) were determined
from the MC simulation after 105 simulations at each mining step.
The probability of failure Pf for the pillar at each mining step was
calculated as

Pf ¼ P½gðXÞ < 0� ¼ Nf

N
ð24Þ

where Nf is the number of simulations with g(x) < 0 (i.e. number of
pillar failures), and N is the total number of simulations. The relia-
bility index (b) was also estimated from the statistical parameters of
the performance function using Eq. (18).

6. Results and discussions

In this section the results of the stochastic assessment of the pil-
lar behaviour at the Laisvall mine are presented and discussed
below.

6.1. Effect of mining activities on the pillar stability

The effect of the mining steps or the gradual reduction of the
pillar width-to-height ratio on the stability of the pillar is demon-
strated with the base case (i.e. at depth 205 m) and presented in
Fig. 8. It is obvious from the figure that the mining steps have sig-
nificant effect on the pillar stability. By reducing the
cross-sectional area of the pillar the pillar strength is reduced
thereby allowing more strain to occur in the pillar. Consequently
the probability of pillar failure significantly increased as shown
in Fig. 8, while the pillar reliability index decreased as the
width-to-height ratio reduced.

6.2. Effect of mining depth

As mentioned previously, the overburden varied between 110
and 300 m. In order to determine the effect of the various mining
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depths additional probabilistic analyses following the same proce-
dure for the base case were performed. The mining depths consid-
ered were 220, 240, 260 and 280 m. Fig. 9 shows the effect of the
mining depth on the performance of the pillar. It can be seen that
the probability of pillar failure increases as the depth increases.
Likewise, the corresponding pillar reliability index decreases as
the mining depth increases; the lower the reliability index, the lar-
ger the corresponding probability of pillar failure. The failure prob-
abilities of the pillar at all the considered depths are very small up
to step 4 but increased significantly after step 4 for all the depths.

6.3. Effect of changing the coefficient of variation (COV) of the random
variables on pillar stability

The UCS of the intact rock is a factor in the determination of the
deformation modulus (Em) and the critical strain as indicated in
Eqs. (10) and (14). Therefore, any changes in the UCS will have
effect on the pillar stability. The effect of changing the coefficient
of variation (COV) of the UCS on the pillar stability was investi-
gated individually using five different values of COV (10%, 15%,
20% 25% and 30%). The results for the pillar at a depth of 280 m
are presented in Fig. 10 to illustrate the effect. The depth 280 m
is chosen as its results contain both small and large values of the
probability of failure hence it can represent the trend for the
remaining depths.

Since COV is a non-dimensional measure of variability the smal-
ler its value is the smaller the amount of uncertainty of the vari-
able. It can be observed from Fig. 10 that the probability of
failure increases as the COV of the UCS increases which shows that
when the variability in the material properties of the rock mass
increased then the probability of pillar failure will also increase.
The variation in the COV has no effect on the mean factor of safety
(Fig. 11). This shows that when the stability of a pillar is analysed
in terms of reliability and probability of failure the conventional
factor of safety is an inappropriate indicator of pillar stability.
Therefore, in such a case the probability of failure or reliability
index is the most useful criterion of pillar stability, because it com-
bines information on both the mean values and the variability.
Nevertheless, the factor of safety should not be abandoned in
favour of reliability analyses but it has to be used as a complemen-
tary tool to reliability analyses (Dai and Wang, 1992).

6.4. Assessment of pillar performance

The performance of a structure can be described in terms of the
specific limit state being reached. The limit state is the acceptance
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criteria established by considering the nature, importance, and
consequences of failure of the structure under consideration.
Many performance criteria in terms of reliability index (b), proba-
bility of failure (Pf) and mean factor of safety (mFS) have been
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or different mining depths at different mining steps.



Table 7
Typical values for reliability index and probability of failure and corresponding
performance level.

Reliability index 4 Probability of failure Performance level

5.0 2.9E�7 High
4.0 3.2E�5 Good
3.0 1.35E�3 Above average
2.5 6.21E�3 Below average
2.0 0.023 Poor
1.5 0.067 Unsatisfactory
1.0 0.159 Hazardous
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Fig. 13. Influence of Rf value on the pillar reliability index and performance level.
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proposed for geotechnical structures (Lunder and Pakalnis, 1997;
US Army Corps of Engineer, 1997; Priest and Brown, 1983). The pil-
lar performance for the different mining steps at different depth is
hereby assessed based on the criterion proposed by US Army Corps
of Engineer (1997). The criterion is summarized in Table 7.
Fig. 12a–g show b and the corresponding performance levels for
different depths and each mining step. The performance levels
based on the US Army Corps of Engineer criterion are indicated
in Fig. 12a–g. Targeted performance level of any geotechnical pro-
ject depends on the nature of the project and the level of risk that
can be accepted. Risk is a product of the probability of failure and
the consequence of the failure. For instance an underground
nuclear waste disposal will require high performance level because
of the severity of the consequence of its failure. Priest and Brown
(1983) proposed b = 2.3 for geotechnical structures if the conse-
quences of failure are moderately serious. Hence for this study a
performance level below average was chosen i.e. b = 2.5.
Therefore, based on the chosen performance level for the pillar it
can be seen from Fig. 12a–g that the targeted performance level,
below average, can be achieved for the pillar at all depths at mining
steps 0–2 (i.e. W/H = 1.61–1.37). The same performance level can
also be achieved for mining depths 205, 220, and 240 m at mining
step 4 (i.e. W/H = 1.20). At mining depth 205 m the targeted perfor-
mance level can only be achieved at mining step 5. The perfor-
mance level cannot be achieved for the pillar for all the depths at
mining step 6.
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Fig. 12. Pillar reliability index (b) and the corresponding per
It is obvious that the optimum dimension of the pillar that can
be achieved depends on the level of the risk that could be tolerated.
Therefore, when a targeted performance level is chosen for an
underground structure the procedure described in this paper can
be used for optimal design of pillar dimension especially when
the variability and uncertainty of the design input parameters
are to be considered. However, when using this approach with
the strain based criterion it should be noted that the value of Rf

(failure strength parameter) has a significant influence on the
probability of failure as well as the reliability index as illustrated
in Fig. 13. Fig. 13 shows the pillar reliability index at mining depth
280 m for different Rf values. For Rf = 0.1 the performance level (i.e.
below average) can only be achieved at mining step 0 while the
same performance level can be achieved up to mining step 4 if Rf

value is 0.3. Hence, the Rf value should be carefully determined
through field monitoring programs for specific mine before using
this approach.
280260240220

Depth (m)

(c) step 2

205
0

1

2

3

4

5

Below average
Above average

280260240220

Pi
lla

r r
el

ia
bi

lit
y 

in
de

x

Depth (m)

(d) step 3

205

Good

Below average
Above average

Good

280260240220

Depth (m)

(g) step 6

205

formance level for different depths at each mining step.



318 M.A. Idris et al. / Tunnelling and Underground Space Technology 49 (2015) 307–319
7. Conclusion

A stochastic assessment of the pillar stability of the Laisvall
mine has been presented in this paper. The uncertainty and vari-
ability in the rock mass parameters as well as that of the horizontal
in-situ stresses were considered. Elastic 3D numerical analyses
were performed to determine the axial strain in the pillar at differ-
ent mining steps for different depths. Artificial Neural Network
(ANN) was used to generate a closed-form expression for the rela-
tionship between the random variables (i.e. Em and rH) and the
axial strain using the results of the 3D numerical analyses. The
closed-form equation together with the strain at failure was used
to evaluate the performance function. The performance function
was determined from Monte Carlo simulations of 105 trials and
the probability of failure and reliability index were determined
from the simulation results. Based on the results and discussions
presented in this study, the main conclusions are summarized as
follows:

1. Rock mass properties as well as in-situ stresses are intrinsically
variable such that using their mean values could have signifi-
cant impact on the design performance as shown in this study.
Therefore, this variability should be properly considered in the
determination of the input parameters for the numerical analy-
ses using a stochastic approach. This will enable the evaluation
of the probability of failure during the planning stage, thereby
reducing the risk to an acceptable level.

2. The strain-based criterion used in this study seems appropriate
when the variability in the rock mass properties is considered in
the analysis as pillars with different rock mass properties
deform differently when subjected to the same stress condition.
The strain-based criterion can also be used without having to
determine the dimension of the pillar which is required to
determine the strength of the pillar from empirical equation
when using stress/strength criterion. Furthermore, strain is rel-
atively cheaper and easier to measure in the field than the
stress which is expensive and time consuming. Therefore using
the approach presented in this study may offer some potential
and advantages than the traditional strength/stress based
criterion.

3. The trained ANN model is a good approximation tool to gener-
ate an implicit relationship between the random variables (Em

and rH) and the axial strain as shown in this study, thereby
reducing the number of FLAC3D numerical simulations. Also
the ANN model was able to capture the tails of the distribution
of the random variable because, the range of the value for the
random variable which covers almost 99.7% (i.e. ±3 standard
deviation from the mean) of the distribution was considered.
It should be noted that the trained ANN model can only be used
in the similar situation described in this study within the range
of values of the training dataset.

4. The width-to-height ratio of a pillar is very significant to the
stability of the pillar and as the ratio reduces through the min-
ing steps the reliability index reduces and consequently the
probability of failure of the pillar increases.

5. Increase in the in-situ stresses which could be linked to the
increase in the depth affects the stability of the pillar. As the
depth increases the probability of pillar failure increases and
the reliability index of the pillar reduces.

6. The variation in the COV of the intact rock UCS has effect on the
reliability index and the probability of failure. This study indi-
cates that, an increase in the COV of the intact rock UCS results
in an increase in the probability of failure and reduces the reli-
ability index. However, the variation in the COV has no effect on
the mean factor of safety. Therefore, the mean factor of safety
may not be an adequate parameter to assess the stability of pil-
lar when considering the variability and uncertainties in the
rock mass material properties. Instead, the reliability index
and probability of failure are the most useful indicators for
assessing the stability of pillar in such situation.

7. The assessment of the pillar performance depends on the nat-
ure, importance and the consequence of the failure. The man-
agement decision on the level of risk that can be taken may
affect the design of the pillar with regard to its dimension dur-
ing the planning stage.

The approach presented in this study shows that when consid-
ering the uncertainty and variability of rock mass properties, the
stochastic approach can be a useful tool for analysing and assessing
the pillar stability. This will allow setting acceptable criteria for pil-
lar design based on the minimum acceptable risk or performance
level.
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