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Piles are long, slender structural elements used to transfer the loads from the superstructure through
weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces
compression and tension stresses in the piles. Hence, an important design consideration is to check that
the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to
its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.
In situations where measured data or numerical hypothetical results are available, neural networks stand
out in mapping the nonlinear interactions and relationships between the system’s predictors and
dependent responses. In addition, unlike most computational tools, no mathematical relationship
assumption between the dependent and independent variables has to be made. Nevertheless, neural
networks have been criticized for their long trial-and-error training process since the optimal configu-
ration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression
algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural net-
works, to approximate the relationship between the inputs and dependent response, and to mathe-
matically interpret the relationship between the various parameters. In this paper, the Back propagation
neural network (BPNN) and MARS models are developed for assessing pile drivability in relation to the
prediction of the Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and Blow per
foot (BPF). A database of more than four thousand piles is utilized for model development and
comparative performance between BPNN and MARS predictions.

� 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/3.0/).
1. Introduction

Piles are long, slender structural elements used to transfer the
loads from the superstructure through weak strata onto stiffer
soils or rocks. The selection of the type of pile depends on the
type of structure, the ground conditions, the durability (e.g., to
corrosion) and the installation costs. For driven piles, the impact
of the piling hammer induces compression and tension stresses
in the piles. Hence, an important design consideration is to check
that the strength of the pile is sufficient to resist the stresses
caused by the impact of the pile hammer. One common method
of calculating driving stresses is based on the stress-wave theory
(Smith, 1960) which involves the discrete idealization of the
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hammer-pile-soil system. As the conditions at each site is
different, generally a wave equation based computer program is
required to generate the pile driving criteria for each individual
project. The pile driving criteria include: (i) hammer stroke vs.
blow per foot (BPF) (1/set) for required bearing capacity; (ii)
maximum compressive stresses vs. BPF; (iii) maximum tension
stress vs. BPF. However, this process can be rather time
consuming and requires very specialized knowledge of the wave
equation program.

The essence of modeling/numerical mapping is prediction,
which is obtained by relating a set of variables in input space to
a set of response variables in output space through a model.
The analysis of pile drivability involves a large number of design
variables and nonlinear responses, particularly with statistically
dependent inputs. Thus, the commonly used regression models
become computationally impractical. Another limitation is
the strong model assumptions made by these regression
methods.
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An alternative soft computing technique is the artificial
neural network (ANN). The ANN structure consists of one or
more layers of interconnected neurons or nodes. Each link con-
necting each neuron has an associated weight. The “learning”
paradigm in the commonly used Back-propagation (BP) algo-
rithm (Rumelhart et al., 1986) involves presenting examples of
input and output patterns and subsequently adjusting the con-
necting weights so as to reduce the errors between the actual
and the target output values. The iterative modification of the
weights is carried out using the gradient descent approach and
training is stopped once the errors have been reduced to some
acceptable level. The ability of the trained ANN model to
generalize the correct inputeoutput response is performed in
the testing phase and involves presenting the trained neural
network with a separate set of data that has never been used
during the training process.

This paper explores the use of multivariate adaptive regression
splines (MARS) (Friedman, 1991) to capture the intrinsic nonlinear
and multidimensional relationship associated with pile drivability.
Similar with neural networks, no prior information on the form of
the numerical function is required for MARS. The main advantages
of MARS lie in its capacity to capture the intrinsic complicated data
mapping in high-dimensional data patterns and produce simpler,
easier-to-interpret models, and its ability to perform analysis on
parameter relative importance. Previous applications of the MARS
algorithm in civil engineering include predicting the doweled
pavement performance, estimating shaft resistance of piles in sand
and deformation of asphalt mixtures, analyzing shaking table tests
of reinforced soil wall, determining the undrained shear strength of
clay, predicting liquefaction-induced lateral spread, and assessing
the ultimate and serviceability performances of underground cav-
erns (Attoh-Okine et al., 2009; Mirzahosseini et al., 2011; Samui,
2011; Samui and Karup, 2011; Samui et al., 2011; Zarnani et al.,
2011; Lashkari, 2012; Zhang and Goh, 2013, 2014a, b; Goh and
Zhang, 2014). In this paper, the back propagation neural network
(BPNN) and MARS models are developed for pile drivability pre-
dictions in relation to the maximum compressive stresses (MCS),
maximum tensile stresses (MTS), and blow per foot (BPF). A data-
base of more than four thousand piles is utilized for model devel-
opment and comparative performance between BPNN and MARS
predictions.
Figure 1. Back-propagation neural netw
2. Neural network algorithm

A three-layer, feed-forward neural network topology shown in
Fig. 1 is adopted in this study. As shown in Fig. 1, the back-
propagation algorithm involves two phases of data flow. In the
first phase, the input data are presented forward from the input to
output layer and produce an actual output. In the second phase, the
errors between the target values and actual values are propagated
backwards from the output layer to the previous layers and the
connection weights are updated to reduce the errors between the
actual output values and the target output values. No effort is made
to keep track of the characteristics of the input and output vari-
ables. The network is first trained using the training data set. The
objective of the network training is to map the inputs to the output
by determining the optimal connectionweights and biases through
the back-propagation procedure. The number of hidden neurons is
typically determined through a trial-and-error process; normally
the smallest number of neurons that yields satisfactory results
(judged by the network performance in terms of the coefficient of
determination R2 of the testing data set) is selected. In the present
study, a Matlab-based back-propagation algorithm BPNN with the
LevenbergeMarquardt (LM) algorithm (Demuth and Beale, 2003)
was adopted for neural network modeling.
3. MARS algorithm

MARS was first proposed by Friedman (1991) as a flexible pro-
cedure to organize relationships between a set of input variables
and the target dependent that are nearly additive or involve in-
teractions with fewer variables. It is a nonparametric statistical
method based on a divide and conquer strategy in which the
training data sets are partitioned into separate piecewise linear
segments (splines) of differing gradients (slope). MARS makes no
assumptions about the underlying functional relationships be-
tween dependent and independent variables. In general, the
splines are connected smoothly together, and these piecewise
curves (polynomials), also known as basis functions (BFs), result in
a flexiblemodel that can handle both linear and nonlinear behavior.
The connection/interface points between the pieces are called
knots. Marking the end of one region of data and the beginning of
ork architecture used in this study.



Table 1
Summary of performance measures.

Measure Calculation
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Performance index (r) r ¼ RRMSE
1þr

y is the mean of the target values of yi; Y is the mean of the predicted Yi; N denotes
the number of data points in the used set, training set, testing set or the overall set.
Definitions of RRMSE, r and r are based on Gandomi and Roke (2013).

Table 2
Summary of input variables and outputs.

Inputs and
outputs

Parameters and parameter descriptions

Input Hammer Hammer weight (kN) Variable 1 (x1)
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another, the candidate knots are placed at random positions within
the range of each input variable.

MARS generates BFs by stepwise searching overall possible
univariate candidate knots and across interactions among all vari-
ables. An adaptive regression algorithm is adopted for automati-
cally selecting the knot locations. The MARS algorithm involves a
forward phase and a backward phase. The forward phase places
candidate knots at random positions within the range of each
predictor variable to define a pair of BFs. At each step, the model
adapts the knot and its corresponding pair of BFs to give the
maximum reduction in sum-of-squares residual error. This process
of adding BFs continues until the maximum number is reached,
which usually results in a very complicated and overfitted model.
The backward phase involves deleting the redundant BFs that made
the least contributions. An open MARS source code from Jekabsons
(2010) is adopted in performing the analyses presented in this
paper.

Let y be the target dependent responses and X ¼ (X1,., XP) be a
matrix of P input variables. Then it is assumed the data are gener-
ated based on an unknown “true” model. For a continuous
response, this would be:

y ¼ f ðX1;.;XPÞ þ e ¼ f ðXÞ þ e (1)

in which e is the fitting error. f is the built MARS model, comprising
of BFs which are splines piecewise polynomial functions. For
simplicity, only the piecewise linear function is expressed and
considered in this paper. Piecewise linear functions follow the form
max(0, x � t) with a knot defined at value t. Expression max(.)
means that only the positive part of (.) is used otherwise it is
assigned a zero value. Formally,

maxð0; x� tÞ ¼
�
x� t; if x � t
0; otherwise

(2)

The MARS model f(X), which is a linear combination of BFs and
their interactions, is expressed as

f ðXÞ ¼ b0 þ
XM
m¼1

bmlmðXÞ (3)

where each lm is a BF. It can be a spline function, or interaction BFs
produced by multiplying an existing term with a truncated linear
function involving a new/different variable (higher orders can be
used only when the datawarrants it; for simplicity, at most second-
order is adopted). The term b is constant coefficients, estimated
using the least-squares method.

Fig. 2 shows an example illustration of how MARS algorithm
would make use of piecewise linear spline functions to fit provided
data patterns. The MARS mathematical equation follows:
Figure 2. Knots and linear splines for a simple MARS example.
y ¼ �5:0875� 2:7678� BF1þ 0:5540� BF2þ 1:1900� BF3
(4)

in which BF1 ¼ max(0, x e 17), BF2 ¼ max(0, 17 e x) and
BF3¼max(0, x e 5) and max is defined as: max (a, b) is equal to a if
a>b, else b. The knots are located at x ¼ 5 and 17. These two knots
delimit/cut the x range into three intervals where different linear
relationships are identified.

The MARS modeling is a data-driven process. To construct the
model in Eq. (3), first the forward phase is performed on the training
data starting initially with only the intercept b0. At each subsequent
step, the basis pair that produces the maximum reduction in the
training error is added. Considering a current model with M basis
functions, the next pair to be added to the model is in the form of

bbMþ1llðXÞmax
�
0;Xj � t

�þ bbMþ2llðXÞmax
�
0; t � Xj

�
(5)

with each b being estimated by the least-squares method. This
process of adding BFs continues until the model reaches some
predeterminedmaximum number, generally leading to a purposely
overfitted model.

The backward phase improves the model by removing the less
significant terms until it finds the best sub-model. Model subsets
are compared using the less computationally expensive method of
Generalized Cross-Validation (GCV). The GCV is the mean-squared
residual error divided by a penalty that is dependent on model
complexity. For the training data with N observations, GCV is
calculated as (Hastie et al., 2009):
variables Energy (kN,m) Variable 2 (x2)
Hammer cushion
material

Area (m2) Variable 3 (x3)
Elastic modulus (GPa) Variable 4 (x4)
Thickness (m) Variable 5 (x5)
Helmet weight (kN) Variable 6 (x6)

Pile information Length (m) Variable 7 (x7)
Penetration (m) Variable 8 (x8)
Diameter (m) Variable 9 (x9)
Section area (m2) Variable 10 (x10)
L/D Variable 11 (x11)

Soil information Quake at toe (m) Variable 12 (x12)
Damping at shaft (s/m) Variable 13 (x13)
Damping at toe (s/m) Variable 14 (x14)
Shaft resistance (%) Variable 15 (x15)

Ultimate pile capacity Qu (kN) Variable 16 (x16)
Stroke (m) Variable 17 (x17)

Outputs Maximum compressive stress MCS (MPa)
Maximum tensile stress MTS (MPa)
BPF



Table 3
Division of data with respect to ultimate pile capacities.

Pile type Qu range (kN) Data

No. of training data No. of testing data Total

Q1 133.4e355.9 270 90 360
Q2 360.0e707.3 428 144 572
Q3 707.4e1112.1 808 249 1057
Q4 1112.2e1774.8 1296 421 1717
Q5 1774.9e3113.7 276 90 366
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GCV ¼
1
N
PN

i¼1½yi � f ðxiÞ�2�
1� Mþd�ðM�1Þ=2

N

�2 (6)

in which M is the number of BFs, d is a penalty for each basis
function included in the developed sub-model, N is the number of
data sets, and f(xi) denotes the MARS predicted values. Thus the
numerator is the mean square error of the evaluated model in the
training data, penalized by the denominator which accounts for the
increasing variance in the case of increasing model complexity.
Note that (M e 1)/2 is the number of hinge function knots. The GCV
penalizes not only the number of BFs but also the number of knots.
Table 5
Comparison of performance measures for BPNN and MARS.

Data sets BPNN

R2 R RRMSE (%) r (%)

Tr. Te. Tr. Te. Tr. Te. Tr.

Q1 MCS 0.996 0.974 0.998 0.988 1.508 3.825 0.755
MTS 0.993 0.966 0.996 0.984 11.98 22.58 6.001
BPF 0.999 0.970 0.999 0.987 0.741 6.361 0.371

Q2 MCS 0.998 0.991 0.999 0.996 0.935 1.689 0.468
MTS 0.995 0.944 0.998 0.975 11.96 32.54 5.986
BPF 0.982 0.988 0.991 0.995 5.691 4.495 2.859

Q3 MCS 0.981 0.965 0.991 0.982 2.310 3.106 1.160
MTS 0.946 0.802 0.973 0.915 34.53 62.30 17.50
BPF 0.981 0.950 0.990 0.975 7.051 9.673 3.543

Q4 MCS 0.968 0.963 0.984 0.981 3.064 3.227 1.545
MTS 0.982 0.711 0.991 0.876 23.05 65.36 11.58
BPF 0.926 0.982 0.962 0.946 13.99 16.93 7.128

Q5 MCS 0.999 0.993 0.999 0.997 0.702 1.684 0.351
MTS 0.998 0.906 0.999 0.956 4.662 33.71 2.332
BPF 0.993 0.929 0.996 0.965 3.534 10.29 1.770

Combined
Q1 to Q5

MCS 0.970 0.973 0.985 0.987 4.238 3.762 2.135
MTS 0.798 0.842 0.893 0.921 80.82 62.36 42.68
BPF 0.949 0.951 0.974 0.976 18.48 18.54 9.362

Table 4
Sample training and testing data sets for category Q1 type.

x1 (kN) x2
(kN,m)

x3
(m2)

x4
(GPa)

x5
(m)

x6
(kN)

x7
(m)

x8
(m)

x9
(m)

x10
(m2)

Training data
12.9 34.5 0.18 3.35 0.09 9.37 10.67 9.75 0.36 0.014
17.8 43.4 0.26 1.21 0.05 12.54 12.19 10.36 0.30 0.010
14.7 36.7 0.15 2.81 0.11 5.83 15.24 15.24 0.30 0.010
18.6 58.1 0.26 1.21 0.05 5.19 10.67 10.67 0.30 0.010
7.8 27.3 0.20 1.21 0.05 12.41 18.29 18.29 0.30 0.010
13.3 35.3 0.26 1.21 0.05 9.46 9.14 9.14 0.30 0.010
18.6 58.1 0.16 1.21 0.05 4.00 4.57 4.57 0.30 0.010
31.1 81.3 0.26 1.21 0.05 9.52 5.50 5.50 0.30 0.010
29.4 102.3 0.27 1.93 0.05 4.00 8.50 8.50 0.30 0.010
Testing data
12.9 34.5 0.18 3.35 0.09 9.37 10.67 9.75 0.36 0.014
14.7 36.7 0.15 2.81 0.11 5.83 15.23 15.23 0.30 0.010
18.6 58.1 0.26 1.21 0.05 5.19 12.19 6.40 0.36 0.014
A default value of 3 is assigned to penalizing parameter d and
further suggestions on choosing the value of d can be referred to
Friedman (1991). At each deletion step, a basis function is pruned to
minimize Eq. (3), until an adequately fitting model is found.

After the optimal MARS model is determined, by grouping
together all the BFs involving one variable and another grouping of
BFs involving pairwise interactions, the analysis of variance
(ANOVA) decomposition procedure (Friedman,1991) can be used to
assess the parameter relative importance based on the contribu-
tions from the input variables and the BFs.

4. Performance measures

Table 1 shows the performance measures utilized for prediction
comparison of the two metahueristic methods.

5. Pile drivability analysis

5.1. Database

In this paper, a database containing 4072 piles with a total of
seventeen variables is developed from the information on piles
already installed for bridges in the State of North Carolina (Jeon and
Rahman, 2008). Seventeen variables including hammer
MARS

R2 R RRMSE (%) r (%)

Te. Tr. Te. Tr. Te. Tr. Te. Tr. Te.

1.924 0.955 0.823 0.977 0.916 5.172 9.943 2.616 5.189
11.38 0.966 0.944 0.983 0.972 25.89 28.99 13.06 14.70
3.202 0.986 0.983 0.993 0.994 3.949 4.795 1.981 2.405
0.846 0.995 0.986 0.997 0.994 1.398 1.949 0.700 0.977

16.47 0.908 0.770 0.953 0.901 52.04 66.08 26.65 34.76
2.253 0.968 0.977 0.984 0.989 7.564 6.141 3.813 3.088
1.567 0.938 0.939 0.968 0.970 4.180 4.076 2.123 2.069

32.53 0.876 0.728 0.936 0.869 52.13 73.08 26.93 39.10
4.897 0.945 0.881 0.972 0.943 11.86 14.87 6.015 7.653
1.629 0.963 0.959 0.981 0.979 3.309 3.377 1.670 1.706

34.84 0.979 0.533 0.989 0.823 25.20 83.14 12.67 45.60
8.703 0.892 0.867 0.944 0.931 16.90 18.98 8.692 9.827
0.843 0.994 0.988 0.997 0.994 1.682 2.136 0.842 1.071

17.23 0.933 0.886 0.966 0.943 28.11 37.10 14.30 19.09
5.238 0.955 0.855 0.977 0.924 8.811 14.66 4.456 7.619
1.894 0.957 0.956 0.978 0.978 5.076 4.810 2.566 2.432

32.46 0.784 0.782 0.885 0.894 83.60 73.22 44.34 38.65
9.388 0.908 0.922 0.953 0.960 24.73 23.46 12.67 11.97

x11 x12
(m)

x13
(s/m)

x14
(s/m)

x15
(%)

x16
(kN)

x17
(m)

MCS
(MPa)

MTS
(MPa)

BPF

27 0.0030 0.66 0.33 95 138 1.26 78.7 11.7 5.5
34 0.0025 0.59 0.49 95 178 1.18 89.2 6.1 5.3
50 0.0025 0.59 0.39 85 178 1.19 114.5 12.3 6.3
35 0.0025 0.72 0.33 75 200 1.17 123.5 2.3 6.4
60 0.0025 0.59 0.59 92 200 1.95 102.2 8.8 11.1
30 0.0025 0.66 0.33 15 222 1.70 87.5 0.0 6.6
15 0.0025 0.59 0.33 45 222 1.05 111.0 0.0 7.3
18 0.0025 0.50 0.33 57 225 1.22 60.7 0.0 3.0
28 0.0025 0.66 0.33 87 265 1.23 138.7 0.0 5.1

27 0.0030 0.66 0.33 95 138 1.68 112.1 23.8 4.7
50 0.0025 0.59 0.39 85 178 1.68 154.5 29.4 5.3
18 0.0031 0.49 0.33 80 200 1.52 142.9 42.3 4.4



Table 6
Processing time comparison between BPNN and MARS (units: s).

Geotechnical applications BPNN MARS

Q1 MCS 224.88 6.16
MTS 56.23 9.03
BPF 200.38 8.82

Q2 MCS 79.71 18.87
MTS 208.37 4.54
BPF 46.26 13.90

Q3 MCS 285.73 13.74
MTS 70.10 22.84
BPF 106.02 33.46

Q4 MCS 139.40 80.51
MTS 144.50 83.56
BPF 137.99 121.30

Q5 MCS 173.12 10.30
MTS 148.19 5.22
BPF 203.11 16.72

Overall MCS 203.51 131.35
MTS 363.98 33.11
BPF 182.68 63.96

(using a PC with 3.0 GHz Intel Core2Quad Q9650 processor, 4 GB RAM).

Table 8
Basis functions and corresponding equations of MARS model for MCS of Q1.

BF Equation BF Equation

BF1 max(0, x17 � 2.44) BF14 max(0, 3.24 � x4) � max(0, x15 � 15)
BF2 max(0, x6 � 9.34) BF15 max(0, x17 � 1.44)
BF3 max(0, 9.34 � x6) BF16 max(0, 1.44 � x17)
BF4 max(0, 17.8 � x1) BF17 max(0, 2.44 � x17) � max(0, x3 � 0.18)
BF5 max(0, 4.57 � x8) BF18 max(0, 2.44 � x17) � max(0, 0.18 � x3)
BF6 BF5 �

max(0, 2.29 � x17)
BF19 max(0, 3.24 � x4) � max(0, x3 � 0.26)

BF7 max(0, 2.44 � x17) �
max(0, x1 � 29.4)

BF20 max(0, 3.24 � x4) � max(0, 0.26 � x3)

BF8 max(0, 2.44 � x17) �
max(0, 29.4 � x1)

BF21 max(0, 3.24 � x4) � max(0, x2 � 57.0)

BF9 BF5 �
max(0, x17 � 2.13)

BF22 max(0, 3.24 � x4) � max(0, 57.0 � x2)

BF10 BF5 �
max(0, 2.13 � x17)

BF23 max(0, 3.24 � x4) � max(0, x2 � 43.4)

BF11 max(0, 3.24 � x4) �
max(0, x2 � 54.2)

BF24 max(0, 3.24 � x4) � max(0, 43.4 � x2)

BF12 max(0, x1 � 17.8) �
max(0, 0.18 � x3)

BF25 BF5 � max(0, 5.83 � x6)

BF13 max(0, 0.0030 � x12)
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characteristics, hammer cushion material, pile and soil parameters,
ultimate pile capacities, and stroke were regarded as inputs to es-
timate the three dependent responses comprising of the maximum
compressive stresses (MCS), maximum tensile stresses (MTS), and
blow per foot (BPF). A summary of the input variables and outputs
are listed in Table 2.

For purpose of simplifying the analyses considering the exten-
sive number of parameters and large data set, Jeon and Rahman
(2008) divided the data into five categories based on the ultimate
pile capacity, as detailed in Table 3. In this paper, for each category
70% of the data patterns were randomly selected as the training
data set and the remaining data were used for testing.
5.2. Pile category Q1

Table 4 lists some sample training (Tr.) and testing (Te.) data sets
for Category Q1 piles. Q1 piles have been reanalyzed using MARS
Table 7
ANOVA decomposition of MARS model for MCS, MTS and BPF of Q1.

Function MCS MTS

GCV #Basis Variable(s) GCV

1 28.82 1 1 1.047
2 8.346 2 6 575.191
3 7.073 1 8 109.688
4 10.226 1 12 305.352
5 5.629 3 17 251.585
6 11.184 1 1 3 25.373
7 48.344 2 1 17 0.441
8 8.048 5 2 4 337.341
9 11.846 2 3 4 0.893
10 21.733 2 3 17 5.626
11 63.062 1 4 15 2.229
12 8.017 1 6 8 795.122
13 4.976 3 8 17 92.069
14 6.797
15 48.170
16 1.472
17 2.593
18 0.626
19 11.173
20 0.447
21 50.089
22 0.828
23 148.475
24 1.472
25 0.466
and BPNN. For the developed BPNNmodels, the optimum numbers
of hidden neurons are 8, 7, and 9 for MCS, MTS and BPF, respec-
tively. The MARS models predicting MCS, MTS and BPF comprise of
25, 43 and 40 BFs, respectively.

Comparisons of R2, r, RRMSE and r in rows 4, 5 and 6 of Table 5
indicate that the differences in the accuracy of the BPNN and MARS
models are marginal. Therefore, both methods serve as reliable
tools for prediction of pile drivability for Q1 piles. Rows 2, 3 and 4 of
Table 6 list the CPU processing time using BPNN and MARS. The
advantage of the processing speed of MARS algorithm is obvious,
which indicates that the distinct advantage of MARS over BPNN lies
in its convergence speed.

Table 7 displays the ANOVA decomposition of the built MARS
models for MCS, MTS and BPF respectively. For each model, the
ANOVA functions are listed. The GCV column provides an
BPF

#Basis Variable(s) GCV #Basis Variable(s)

2 5 39.657 2 1
1 6 9.750 2 2
2 7 1.760 2 13
1 8 3.005 2 15
2 11 8.034 2 16
1 17 2.976 2 17
1 1 6 66.894 3 1 3
2 3 7 0.370 2 1 6
2 3 17 0.235 2 1 13
2 5 7 0.231 1 1 16
1 5 11 43.396 2 2 3
4 6 7 0.357 1 2 4
3 6 8 0.403 2 2 16
1 6 9 0.557 4 2 17
4 6 11 0.280 2 3 13
1 6 16 0.705 2 4 15
2 6 17 0.227 1 4 17
1 7 8 0.170 1 5 13
1 7 17 0.191 1 6 15
1 8 16 0.221 2 7 15
2 8 17 0.375 1 13 15
1 11 15 0.984 1 16 17
2 11 17
2 14 17
1 15 17



Figure 3. Knot locations of MARS model for MCS for pile category Q1.

Table 9
No. of hidden neurons and No. of BFs for modeling.

No. of models Data

Q2 Q3 Q4 Q5

BFs MCS 46 30 62 42
MTS 33 25 65 28
BPF 39 50 68 50

hidden neurons MCS 9 10 9 9
MTS 9 10 10 9
BPF 8 10 9 9

Figure 4. Comparison of MCS using MARS and BPNN.
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indication on the significance of the corresponding ANOVA func-
tion, by listing the GCV value for a model with all BFs corre-
sponding to that particular ANOVA function removed. It is the GCV
score that is used to assess whether the ANOVA function is making
a significant contribution to the model, or whether it just
marginally improves the global GCV score. The #basis column
gives the number of BFs comprising the ANOVA function and the
variable(s) column lists the input variables associated with this
ANOVA function.

Table 8 lists the BFs of the MCS model and the corresponding
equations. The MARS model to estimate MCS for Q1 is given by
MCS
�
MPa

	
¼ 100:1� 44:81� BF1� 1:679� BF2þ 8:58

� BF3� 7:11� BF4� 79:87� BF5þ 412

� BF6� 12:7� BF7þ 2:25� BF8þ 134� BF9

� 387� BF10þ 8:4� BF11� 1817� BF12

þ 2:58� 104 � BF13þ 0:067� BF14þ 85

� BF15� 138:7� BF16� 98:1� BF17� 424:6

� BF18þ 902� BF19þ 85� BF20� 5:7

� BF21� 0:66� BF22� 2:4� BF23þ 0:65

� BF24� 18:9� BF25

(7)
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Fig. 3aed plots the knot locations for x1 (Hammer weight), x6
(Helmet weight), x8 (pile penetration) and x17 (stroke) respectively.
5.3. Pile categories Q2eQ5

The results for the remaining four pile categories Q2eQ5
analyzed using MARS and BPNN are described in this section.
Table 9 lists the number of BFs for MARS model and the number of
hidden neurons for BPNN model for each category, respectively.

Comparisons of R2, r, RRMSE and r in Table 5 between MARS and
BPNN shown in rows 7e9, rows 10e12, rows 13e15, and rows 16e18
are forQ2 toQ5 piles, respectively, fromwhich it is obvious that BPNN
gives only slightlymore accurate predictions thanMARS. BothMARS
and BPNN can serve as reliable tools for pile drivability prediction for
Q2 to Q5. Rows 5e7, 8e10, 11e13 and 14e16 of Table 6 list the CPU
processing time using BPNN and MARS models for Q2 to Q5, respec-
tively. The advantage of the processing speed of MARS is obvious,
indicating the advantage of MARS over BPNN in computational effi-
ciency. For brevity, the comparison of parameter relative importance
and the interpretable MARS models are not elaborated here.
5.4. Combined dataset Q1 to Q5

Additional analyses were also carried out using the entire 4072
pile data set. TheMARSmodels to predictMCS, MTS and BPF use 52,
37 and 35 BFs, respectively. As for the BPNNmodels, the numbers of
hidden neurons are 9, 9, and 8 for MCS, MTS and BPF, respectively.
Figure 5. Comparison of MTS using MARS and BPNN.

Figure 6. Comparison of BPF using MARS and BPNN.

Table 10
Basis functions and corresponding equations of MARS model for MCS overall data
sets.

BF Equation BF Equation

BF1 max(0, x16 � 1550) BF27 max(0, x15 � 15)
BF2 max(0, x17 � 2.29) BF28 max(0, 15 � x15)
BF3 max(0, 2.29 � x17) BF29 BF28 � max(0, x16 � 289)
BF4 max(0, x6 � 7.38) BF30 BF28 � max(0, 289 � x16)
BF5 max(0, 7.38 � x6) BF31 BF2 � max(0, x1 � 29.4)
BF6 max(0, 0.014 � x10) BF32 BF6 � max(0, x6 � 6.67)
BF7 max(0, x2 � 30.7) BF33 BF6 � max(0, 6.67 � x6)
BF8 max(0, 30.7 � x2) BF34 BF5 � max(0, 1.81 � x17)
BF9 BF1 � max(0, x7 � 8.00) BF35 BF3 � max(0, x1 � 29.4)
BF10 BF1 � max(0, 8.00 � x7) BF36 BF7 � max(0, x11 � 50)
BF11 max(0, x11 � 9) BF37 BF7 � max(0, 50 � x11)
BF12 max(0, 9 � x11) BF38 BF28 � max(0, x13 � 0.59)
BF13 max(0, 1550 � x16) �

max(0, x8 � 3.05)
BF39 BF28 � max(0, 0.59 � x13)

BF14 max(0, 1550 � x16) �
max(0, 3.05 � x8)

BF40 BF4 � max(0, x5 � 0.05)

BF15 max(0, 1550 � x16) �
max(0, x6 � 9.34)

BF41 BF4 � max(0, 0.05 � x5)

BF16 max(0, 1550 � x16) �
max(0, 9.34 � x6)

BF42 max(0, 1550 � x16) �
max(0, x11 � 24)

BF17 BF6 � max(0, x16 � 1067.5) BF43 max(0, 1550 � x16) �
max(0, 24 � x11)

BF18 BF6 � max(0, 1068 � x16) BF44 BF7 � max(0, 0.18 � x3)
BF19 BF11 � max(0, x4 � 3.24) BF45 max(0, x3 � 0.26)
BF20 BF11 � max(0, 3.24 � x4) BF46 max(0, 0.26 � x3)
BF21 BF11 � max(0, x1 � 29.4) BF47 BF5 � max(0, x4 � 1.97)
BF22 BF11 � max(0, 29.4 � x1) BF48 BF5 � max(0, 1.97 � x4)
BF23 BF6 � max(0, x7 � 3.05) BF49 BF5 � max(0, 44.7 � x2)
BF24 BF6 � max(0, 3.05 � x7) BF50 BF45 � max(0, 30 � x11)
BF25 BF7 � max(0, x17 � 2.90) BF51 BF11 � max(0, x2 � 54.2)
BF26 BF7 � max(0, 2.90 � x17) BF52 BF11 � max(0, 54.2 � x2)



W. Zhang, A.T.C. Goh / Geoscience Frontiers 7 (2016) 45e5252
Figs. 4e6 plot the BPNN and MARS estimations vs. the measured
values for MCS, MTS, and BPF models. For MCS prediction, high R2

are obtained from both methods. Compared with the MCS pre-
dictions, the developed BPNN and MARS models are less accurate in
predicting MTS mainly as a result of the bias (errors) due to the
significantly smaller tensile stress values. In addition, both BPNNand
MARS models can serve as reliable tools for prediction of BPF.

Comparisons of R2, r, RRMSE and r in rows 19e21 of Table 5
indicate that BPNN gives only slightly more accurate predictions
than MARS. Rows 17e19 of Table 6 compare the CPU processing
time. It is obvious that MARS performs better than BPNN in the
convergence speed.

It should be pointed out that the parameter relative importance
can also be assessed. For MARS this is carried out by evaluating the
GCV increase caused by removing the considered variables from the
developed MARS model. For the BPNN, this is commonly carried out
using the method by Garson (1991) and discussed by Das and
Basudhar (2006). For brevity, these comparisons have been omitted.

Table 10 lists the BFs of the MCS model and the corresponding
equations. The MARS model is in the form of:

MCSðMPaÞ ¼ 169:4þ0:0095�BF1þ35:6�BF2�47:5�BF3

�0:46�BF4�2�BF5þ8847�BF6þ9:2�BF7

�8:2�BF8�0:0025�BF9þ0:0062�BF10�3:2

�BF11þ470�BF12�0:0036�BF13�0:8

�BF14�0:0012�BF15þ0:006�BF16þ9:43

�BF17�6:1�BF18þ0:136�BF19�0:098

�BF20�0:83�BF21�0:17�BF22�540�BF23

þ1:34�105�BF24þ1:672�BF25�0:42�BF26

þ0:144�BF27�4:57�BF28þ0:0054�BF29

þ0:052�BF30þ87�BF31þ250�BF32�763

�BF33�16�BF34�28:1�BF35þ0:217�BF36

�0:2�BF37þ34:5�BF38þ31:3�BF39�50:2

�BF40�425�BF41þ0:0018�BF42�0:003

�BF43�7:4�BF44þ341�BF45þ51:4�BF46

þ5:67�BF47þ12�BF48þ0:96�BF49þ100:2

�BF50�0:2�BF51þ0:23�BF52

(8)
6. Summary and conclusions

A database containing 4072 pile data sets with a total of
seventeen variables is adopted to develop the BPNN and MARS
models for drivability predictions in relation to the prediction of the
Maximum compressive stresses, Maximum tensile stresses, and
Blow per foot. The pile data were divided into five categories Q1 to
Q5 based on the ultimate pile capacity. BPNN and MARS models
were built for each category and also using the combined data sets.
Performance measures indicate that BPNN and MARS models for
the analyses of pile drivability provide similar predictions and can
thus be used for predicting pile drivability. MARS can be considered
to be more computationally efficient than BPNN, as the MARS al-
gorithm builds flexible models using simpler linear regression and
data-driven stepwise searching, adding and pruning. In addition,
the developed MARS models are easier to be interpreted. Further-
more, since MARS explicitly defines the knots for each design input
variables, the model enables engineers to have an insight and un-
derstanding of where significant changes in the data may occur.
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