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Abstract

We present new symmetric fourth and sixth-order symplectic partitioned Runge–Kutta and Runge–Kutta–Nystr'om meth-
ods. We studied compositions using several extra stages, optimising the e1ciency. An e2ective error, Ef, is de3ned and
an extensive search is carried out using the extra parameters. The new methods have smaller values of Ef than other
methods found in the literature. When applied to several examples they perform up to two orders of magnitude better
than previously known method, which is in very good agreement with the values of Ef. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

During the last few years, there has been special interest in the search of e1cient methods for
numerically solving ordinary di2erential equations, while preserving some of the qualitative properties
of the exact solution [22]. For most physical problems the vector 3eld is separable in a number of
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exactly solvable parts. In such cases the exact solution can be approximated by a composition of
Iows associated to each part of the vector 3eld.

In this paper, we will consider the particular case in which the vector 3eld is separable in only
two parts

dy
dt

= fA(y) + fB(y); y0 = y(0)∈Rd; (1)

with fA; fB :Rd → Rd, and where the systems

dy
dt

= fA(y);
dy
dt

= fB(y) (2)

can be integrated in closed form. Let us denote by etA and etB the exact Iows of the systems (2).
Then, for a time-step h the composition

�s =
s∏

i=1

eaihAebihB = eh(A+B) + O(hm+1) (3)

(with appropriate coe1cients ai; bi) is a numerical method of order m and usually is referred to as
a partitioned Runge–Kutta method (PRK). For instance, the system

dq
dt

= g1(p);
dp
dt

= g2(q); (4)

where y = (q; p); q∈Rl and p∈Rd−l can be separated into two solvable parts, e.g., fA = (g1(p); 0)
and fB = (0; g2(q)). Denoting by (qn; pn) an approximation to the exact solution (q(nh); p(nh)), the
composition (3) is equivalent to the following algorithm for advancing (qn; pn) to (qn+1; pn+1)

P0 = pn Q0 = qn

do i = 1; s
Qi = Qi−1 + aihg1(Pi−1)
Pi = Pi−1 + bihg2(Qi)

enddo
qn+1 = Qs pn+1 = Ps.

Observe that such an implementation requires only one l-dimensional and one (d− l)-dimensional
vector for storage. In the particular case of a Hamiltonian system with the Hamiltonian function
H (q; p) = T (p) + V (q), we have d = 2l, and g1(p) = (@=@p)T (p) and g2(q) = − (@=@q)V (q).

Taking s su1ciently large, in [23,27] they proved in a simple and elegant way that it is possible
to get m as high as desired. Since then, a number of papers appeared in order to 3nd the most
e1cient composition at each order [24,25,18,13,20].

A particular equation which frequently appear in many physical problems is

d2x
dt2 = g(x); x0 = x(0)∈Rl; (5)

with g :Rl → Rl. If we consider y = (x; v) with v = dx=dt then, Eq. (5) can be written as (1) with
the exactly solvable vector 3elds fA = (v; 0) and fB = (0; g(x)). This equation appears, for example,
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when considering most nonrelativistic Hamiltonian systems with quadratic kinetic energy. The par-
ticular structure of fA simpli3es the analysis. The number of order conditions to be satis3ed by
the coe1cients {ai; bi}s

i=1 is considerably reduced for m ¿ 4, and more e1cient methods for this
particular equation can be obtained [17,4,21,18,15]. They will be referred as Runge–Kutta–Nystr'om
(RKN) methods.

The e1ciency of a method depends on its cost (usually the number of stages, s) and how large
the O(hm+1) term is. The experience shows that, in the PRK and RKN cases, compositions with the
minimum number of stages (to reach a given order) usually do not give the most e1cient algorithms
[22].

Symplectic PRK and RKN methods have been successfully used for numerically solving problems
in celestial mechanics [11,26,14], quantum mechanics [12], plasma physics [6], accelerator physics
and optics [8], chaos [7], etc. However, in spite of the interest shown, we have realised that the
search for numerical methods was far from complete. And that there is still room for more e1cient
methods, in particular when the order m¿ 4.

In this paper, we present new fourth and sixth-order symplectic PRK and RKN methods. We con-
sider symmetric compositions using more stages that strictly necessary for solving order conditions.
We de3ne the e2ective error, Ef, of a method taking into account the number of stages, s, and the
size of O(hm+1). If a composition has more variables than order conditions, an in3nite number of
solutions will exist and we will look for solutions which minimises Ef. The number of stages is
increased until Ef is not decreased by the possible solutions, or a higher order method is found.
For RKN methods we have to bear in mind that fA and fB are qualitatively di2erent and are not
interchangeable so, all types of compositions have to be analysed. While for the more general PRK
methods we make no special assumption on fA and fB, making them interchangeable.

This search allowed us to 3nd new methods which, according to the e2ective error, should perform
up half order of magnitude more e1cient for the fourth-order methods and nearly two orders of
magnitude for the sixth-order methods (at the same computational cost). These 3gures perfectly
agree with the numerical results obtained for di2erent examples and initial conditions. On the other
hand, it seems clear that a technique based on processing [16,1] technique can provide more e1cient
methods. Unfortunately, this technique cannot be used e1ciently in several cases, for example, if at
each step the solution is approximated using more than one exponential, as in [2,3]. In such cases it
is important to have methods which does not rely on processing to achieve their good performance.

2. Symmetric compositions and e�ective error

It is well known that the composition of an odd order method with its adjoint is equivalent to
a symmetric method of higher order, and in some cases the computational cost is reduced. For
instance, if we consider one step with the 3rst-order method �1 = ehAehB and in the next step we
use its adjoint �̃1 = ehBehA then it is equivalent to use the well known leap-frog or Strang symmetric
second-order method (for one step 2h)

�2 = ehAe2hBehA = e2h(A+B) + O(h3): (6)

The method is of second order but requires only one evaluation of eA and eB (instead of two) per
step because it is possible to concatenate terms and the First Same As Last (FSAL) property.



316 S. Blanes, P.C. Moan / Journal of Computational and Applied Mathematics 142 (2002) 313–330

Table 1
Number of order conditions for symmetric PRK and RKN methods of order m. In parentheses, we give the maximum
number of free parameters allowed before reaching a higher order method. This usually happens for particular families
of symmetric compositions, where some of the order conditions are redundant, this number being smaller than expected
from the number of order conditions

m 2 4 6 8

S 2(1) 4(3) 10(5) 28(3)
SRKN 2(1) 4(3) 8(7) 18(13)

It is for this reason we only study symmetric compositions and only even order methods are
considered. In addition, the number of order conditions for high order methods is considerably
reduced. This makes a search for solutions for the coe1cients {ai; bi} much easier and faster,
allowing a more careful numerical study when extra stages (or exponentials) are introduced in the
composition. In Table 1, we collect the number of order conditions and free parameters available
up to order 8 for the PRK and RKN cases.

The following types of symmetric compositions are considered:

• PRK: this is the case when fA and fB play the same role and are interchangeable. The family
of compositions considered is

Ss = ea1hAeb1hB : : : eashAebshBeas+1hA; (7)

with as+2−i = ai and bs+1−i = bi. Due to the FSAL property, this composition requires s evaluations
of eA and eB.

• RKN: they are compositions to solve (5) where fA and fB are qualitatively di2erent. Then, the
following two compositions have to be considered:

SRKNa
s = ea1hAeb1hB : : : eashAebshBeas+1hA; (8)

with as+2−i = ai and bs+1−i = bi, and

SRKNb
s = eb1hBea1hA : : : ebshBeashAebs+1hB; (9)

with as+1−i = ai and bs+2−i = bi, where again both compositions require s evaluations of eA and
eB.

Assuming that h is su1ciently small and f is su1ciently smooth, it becomes clear that the main
contribution to the error in the numerical solution originates from the leading error term

Ep = hm+1
#Lm+1∑

i=1

ciDm+1; i(A; B); (10)

where Dm+1; i correspond to independent elementary di2erentials or commutators of f ·� and g ·�
(for example, a basis of the subspace of order m + 1 of the Lie algebra generated by f · � and
g · �), whose dimension we denote by #Lm+1. The coe1cients ci only depend on the parameters
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{ai; bi}. To avoid dependence on the vector 3elds it has become standard practise to consider

E2 =

√√√√#Lm+1∑
i=1

c2
i (11)

as a measure of the error.
Finally, we de3ne the e2ective error of the method as Ef:=sE1=m

2 .
Observe that this de3nition is based on the assumption that all the elements Dm+1; i are of equal

magnitude. In addition, di2erent choices of basis give di2erent values of Ef and the method giving
the minimum value of Ef can depend on the basis chosen. We considered two: a Hall basis and the
basis given in [1]. In the PRK case the di2erences we observed were relatively small. Surprisingly,
if we interchange A and B the numerical value of Ef for m ¿ 4 usually changes because the basis
are not symmetric under this change, especially for the Hall basis. We found higher di2erences in
the RKN case and m ¿ 4, mainly because the smaller number of independent terms at leading order
and because fA and fB are now qualitatively di2erent so, a more careful search has to be carried
out.

2.1. Optimisation algorithm

Assume that we are searching for splitting mth-order methods with k parameters (k independent
values of ai; bi) used to satisfy the Nm:=

∑�m=2�
j=1 #L2j−1 order conditions (k¿Nm). Then, we have

r = k −Nm free parameters, and for each particular value of these free parameters we have a number
of solutions of the order conditions to be used for minimising the value of Ef. Thus we have
a constrained optimisation problem with nonlinear equality constraints and objective function. The
problem of 3nding a global minimiser of Ef is therefore quite substantial. We chose a randomised
approach for this search, where initial guesses were generated at random in some neighbourhood of
the origin. To each of these guesses, we applied a combination of Powell’s hybrid method (NAG
routine C05NBF) and the optimisation routine E04JYF. In case our routine did not converge to a
local minimiser, a new random value was generated and a new search was initiated. We let the
algorithm run until 10 000 local minima were found, and at the end of the computation a plot was
made checking that our random initial values had covered (approximately) all possible parameter
values.

This was repeated for all the di2erent types of methods, and varying number of stages. After the
calculation, the best few out of the 10 000 candidates were chosen manually and tested numerically
on the test problems of this paper, whereby the overall best method was chosen. The numerical
values we show for Ef are obtained using the basis given in [1].

3. Optimised methods

In this section we present the optimised schemes we found during our search. The coe1cients of
the methods are collected in Tables 2 and 3. We compare the e2ective error of the new optimised
methods with other composition methods of the same order we found in the literature.
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Table 2
New PRK methods using composition (7)

Order 4; S6, Ef = 0:56

a1 = 0:0792036964311957 b1 = 0:209515106613362
a2 = 0:353172906049774 b2 = − 0:143851773179818
a3 = − 0:0420650803577195 b3 = 1

2 − (b1 + b2)
a4 = 1 − 2(a1 + a2 + a3)

Order 6; S10, Ef = 1:12
a1 = 0:0502627644003922 b1 = 0:148816447901042
a2 = 0:413514300428344 b2 = − 0:132385865767784
a3 = 0:0450798897943977 b3 = 0:067307604692185
a4 = − 0:188054853819569 b4 = 0:432666402578175
a5 = 0:541960678450780 b5 = 1

2 − (b1 + · · · + b4)
a6 = 1 − 2(a1 + · · · + a5)

Table 3
New RKN methods using compositions (8) and (9)

Order 4; SRKNb
6, Ef = 0:28

b1 = 0:0829844064174052 a1 = 0:245298957184271
b2 = 0:396309801498368 a2 = 0:604872665711080
b3 = − 0:0390563049223486 a3 = 1

2 − (a1 + a2)
b4 = 1 − 2(b1 + b2 + b3)

Order 6; SRKNb
11, Ef = 0:78

b1 = 0:0414649985182624 a1 = 0:123229775946271
b2 = 0:198128671918067 a2 = 0:290553797799558
b3 = − 0:0400061921041533 a3 = − 0:127049212625417
b4 = 0:0752539843015807 a4 = − 0:246331761062075
b5 = − 0:0115113874206879 a5 = 0:357208872795928
b6 = 1

2 − (b1 + · · · + b5) a6 = 1 − 2(a1 + · · · + a5)

Order 6; SRKNa
14, Ef = 0:63

a1 = 0:0378593198406116 b1 = 0:09171915262446165
a2 = 0:102635633102435 b2 = 0:183983170005006
a3 = − 0:0258678882665587 b3 = − 0:05653436583288827
a4 = 0:314241403071447 b4 = 0:004914688774712854
a5 = − 0:130144459517415 b5 = 0:143761127168358
a6 = 0:106417700369543 b6 = 0:328567693746804
a7 = − 0:00879424312851058 b7 = 1

2 − (b1 + · · · + b6)
a8 = 1 − 2(a1 + · · · + a7)

3.1. Partitioned Runge–Kutta methods

In this case, we considered the family of symmetric compositions (7) where no structural assump-
tions on fA and fB were made.
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3.1.1. Fourth-order methods
For a fourth-order method it is necessary to take at least s = 3. The well known solution for s = 3

was given in [10,27,23,5] but this method has a large e2ective error, Ef = 1:33. Only few attempts
for optimising such methods are known to us [24,18]. The best results were presented in [18] for
s = 4 and 5 with Ef = 0:71 and 0:62, respectively. Our search resulted in a new method with s = 6
and Ef = 0:56, whose coe1cients correspond to the S6 scheme given in Table 2. For this method,
the error terms at order h7 are also small, allowing the methods to be used with relatively large time
steps. With s = 7 it is possible to get a sixth-order method due to some very fortunate circumstances
(when an special symmetric composition is considered [27]).

3.1.2. Sixth-order methods
Ten order conditions have to be satis3ed, and in order to have as many variables as order condi-

tions one has to take at least s = 9. Although this is a rather moderate number there are 18 terms
in the leading error constant. Thus it is highly possible that the error constants have a large number
of local minima and carrying out an exhaustive search for methods becomes almost impossible with
our approach. The only attempt we know for getting sixth-order methods using (7) and s = 9 was
done by Forest [9] obtaining a solution with Ef = 3:40. On the other hand, using symmetric com-
positions of a symmetric second-order method, Yoshida [27] found solutions with only s = 7. If this
second-order method is the Verlet method then the best one (solution A) has Ef = 2:55. In the same
way, but using s = 9, McLachlan [18] found one method with Ef = 2:13. Due to the di1culties when
optimising under determined problems we were only able to carry out our search for s¿ 9, and we
did it up to s = 15. The most e1cient method we found has Ef = 1:12 and corresponds to S10 given
in Table 2. According to the e2ective error this method is nearly twice as cheap or, equivalently, at
the same computational cost the error is a factor (2:13=1:12)6 � 47 smaller when comparing with
the best method known from the literature. Since the |ai| and |bi| are small, we expect the high
order error terms to be relatively small.

3.2. Runge–Kutta–Nystr9om methods

Now A and B are qualitatively di2erent. For such systems one can show that [B; [B; [B; A]]] = 0,
where [A; B] = AB−BA, leading to reductions in the number of order conditions and error terms (see
Table 1). So, more e1cient methods can be obtained for this family of problems. It is clear that
now A and B are not interchangeable, and we have to consider the two types of symmetric splitting
methods (8) and (9).

3.2.1. Fourth-order RKN methods
The same number of order conditions as in the general case has to be solved for symmetric

compositions. However, the number of error terms is reduced from six to four, and an optimisation
taking into account only these terms has to be considered. Nonsymmetric RKN methods with s = 4
were studied by Calvo and Sanz-Serna [4] and by Atela and McLachlan [17] giving solutions
with Ef = 0:47 and 0:50, respectively. However, in the last case, if the nonsymmetric method is
composed with its adjoint, the e2ective error is reduced to Ef = 0:44 because the concatenation of
one exponential allows to reduce the cost. SRKNa

s methods with s = 4 and 5 can be found in [18]
with Ef = 0:63 and 0:53, respectively (in the last case it is possible to get a method with Ef = 0:46).



320 S. Blanes, P.C. Moan / Journal of Computational and Applied Mathematics 142 (2002) 313–330

Table 4
The best e2ective error we obtained for PRK and RKN fourth-order methods using symmetric compositions with s-stages

s 3 4 5 6

Ss 1.33 0.71 0.62 0.56
SRKNa

s 1.23 0.63 0.46 0.42
SRKNb

s 1.32 0.64 0.36 0.29

Next, RKNb
s methods with s = 4 and 5 were studied in [3] and an improved method was found for

s = 5 with Ef = 0:36. So, in this work we considered methods with s = 6 and the best one we found
corresponds to the SRKNb

6 given in Table 3, with Ef = 0:29. We veri3ed that the error terms at order
h7 are also small. As in the general splitting case, it is possible to 3nd sixth-order RKN methods
with s = 7 so our search for fourth-order methods was restricted to s6 6.

3.2.2. Sixth-order RKN methods
For sixth-order SRKNa; b

s methods there are eight order conditions, hence it is necessary to take
s¿ 7. The only symplectic RKN methods we know from the literature are given in [9,21], corre-
sponding to the SRKNa; b

7 families. Out of the sixteen solutions for the SRKNa
7 presented in [21],

McLachlan [18] found the optimal, which has E = 1:023. In [9] two of the SRKNa
7 solutions were

presented and one for SRKNb
7, with Ef = 1:69. Several 3fth-order nonsymmetric RKN methods can

be found in the literature [17,21,15]. If these schemes are composed with their adjoint new sixth-order
symmetric RKN methods can be obtained. However, we 3nd that none of these compositions improve
the previous best value of Ef.

Next, we carried out a search for SRKNa; b
s methods with 76 s6 15. A task which was com-

plicated by the more unruly nature of the error coe1cients compared to fourth-order methods. The
best methods we found were the SRKNb

11 and SRKNa
14 given in Table 3, with Ef = 0:78 and 0:63,

respectively. We present these two methods because since the performance of RKN methods for
solving (5) depend highly on g(x). On the other hand, although SRKNa

14 has better e1ciency, it
uses slightly larger stages (

∑
i (|ai| + |bi|) is slightly bigger) and it is possible to have large er-

ror terms at higher order. This could make it less e1cient for big time-steps. We will test these
two methods in a number of examples and di2erent conditions, in order to shed light on how they
perform in di2erent situations.

Finally, for illustrating the bene3ts of using extra parameters in the numerical schemes, we present
in Table 4 the results we obtained for all types of fourth-order methods studied. For each type of
compositions and number of stages, we give the smallest value of Ef we were able to get. For s = 7,
it is possible to get Ef = 0 in all cases (obtaining six-order methods) so, we stopped our search for
fourth-order methods at s = 6. From this table, the bene3ts obtained when considering more variables
in the composition is clear. The extra cost is compensated by the reduction in the leading error term.

4. Numerical experiments

In the previous section, we presented a number of methods which have been obtained considering
the criterion of minimising Ef. From the de3nition of Ef one can see that its value will depend on
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the basis chosen. On the other hand, the same weight has been given to all elements of the basis in
the leading error term, but this is not a realistic situation for typical problems and initial conditions.
It is, therefore, important to test the performance of the methods on di2erent kinds of equations and
initial conditions. We will compare with the best splitting methods we found in the literature. These
methods are denoted by:

• LF2: the leap-frog or Strang splitting method. It is used as a reference.
• M4: the fourth-order (S,m = 5) given by McLachlan [18].
• Y4: the well known three stages fourth-order method presented in [27]. It is also used as a

reference because it is a very well known method.
• O4: the fourth-order method S6 from Table 2.
• Y6: the best sixth-order method presented in [27] (solution A).
• M6: the sixth-order (SS,m = 9) method given in [18].
• O6: the sixth-order method S10 from Table 2.
• M8: the eight-order (SS,m = 17) method given in [18], used as a reference.

In addition to reference methods we will consider, for the RKN case:

• AM4: the symmetric fourth-order method obtained from the nonsymmetric scheme given in [17],
and composed with its adjoint.

• O6-4: the fourth-order method SRKNb
6 from Table 3.

• OS6: the best sixth-order method presented in [21] (method 13).
• O11-6: the sixth-order method SRKNb

11 from Table 3.
• O14-6: the sixth-order method SRKNa

14 from Table 3.

4.1. PRK methods

In this section, we test the performance of the new optimised PRK methods O4 and O6 in several
systems which are separable in exactly solvable parts.

Example 1. As a 3rst example, let us consider the simple Volterra–Lotka problem

u̇ = u(v − 2); v̇ = v(1 − u); (12)

which has the 3rst integral I(u; v) = ln(uv2)− (u + v). The vector 3eld f(u; v) = (u(v − 2); v(1− u))
is separable in two solvable parts, i.e., fA = (u(v− 2); 0) and fB = (0; v(1− u)). Then, it is possible
to use the splitting methods for the general case. In the region 0 ¡ u; v the system has periodic
trajectories around (u; v) = (1; 2). In order to measure how sensible the methods are to the initial
conditions, we considered as initial conditions (u0; v0) = (); 2)) for )∈ (0; 1). We integrated up to
t = 100 × 2* and measured the average error in I(u; v). Figs. 1(a) and (b) show the result obtained
for the fourth and sixth-order methods. The time-step was chosen such that all methods require the
same amount of computation. If we increase the number of evaluations the error decreases according
to the order of each method (and the relative position between the curves does not change) so, the
errors correspond, essentially, to the leading term.
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Fig. 1. Average error in I(u; v) for initial conditions (u0; v0) = (); 2)).

In order to appreciate how methods of di2erent order perform at the same computational cost, we
took (u0; v0) = (1; 1), integrated until t = 100×2* and measured the average relative error in position
along t ∈ [80 × 2*; 100 × 2*]. Fig. 2(a) shows the results obtained for di2erent time-steps. For this
problem and initial conditions, M4 and O4 perform similarly, and the new sixth-order method O6 is
the best one if the desired error is between 10−3 and 10−11. Observe that the relative performance
between methods of the same order agree, approximately, according to the results theoretically
predicted from the e2ective error.

Example 2. Next, we consider the Lorenz system. The equations can be written as follows:

d
dt




x

y

z


=



−, , 0

−1 0

0 0 b






x

y

z


+




0 0 0

0 0 −x

0 x 0






x

y

z


 (13)

and it is a clear example in which the system is separable in the linear and nonlinear part,
both being exactly solvable. We will consider , = 10; b = 8

3 and r = 28, and initial conditions
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Fig. 2. Average error in position vs. number of evaluations.

(x0; y0; z0) = (0; 1; 0). We integrated the system until t = 15×2* and measured (in t ∈ [5×2*; 15×2*])
the average relative error for di2erent time-steps. We choose as the exact solution the numerical
result obtained with di2erent methods and su1ciently small time-steps. Fig. 2(b) shows the results
obtained. Now, O4 works slightly better than M4 and O6 performs similarly to the previous example.

Example 3. Let us now consider the ABC-Iow, whose equations are given by

x′ = B cos y + C sin z;

y′ = C cos z + A sin x;

z′ = A cos x + B sin y; (14)

where the vector 3eld is separable in three solvable parts, i.e.,

f = fA + fB + fC

= A(0; sin x; cos x) + B(cos y; 0; sin y) + C(sin z; cos z; 0):
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Fig. 3. Error for di2erent values of the parameter A.

Let us consider a 3rst-order method, i.e., �(h) = ehAehBehC and its adjoint �̃(h) = ehCehBehA. Then it
is known that with the coe1cients of a method for a system separable in two parts ({ai; bi}s

i=1 from
(3)) it is possible to build a method of the same order using the following composition of � and
�̃ [18]:

.(h) =
s∏

i=1

�(cih)�̃(dih); ci = ai − di−1; di = bi − ci

for i = 1; : : : ; s with d0 = 0. The methods we presented in this paper are not optimised for this
particular problem. However, we expect they will give very e1cient results. We compare our new
sixth-order method with Y6 and M6, which correspond to symmetric compositions of 7 and 9
symmetric second-order methods, respectively. As the basic second-order method for Y6 and M6
we take S2(h) = �(h=2)�̃(h=2).

We consider as initial conditions (x0; y0; z0) = (3:14; 2:77; 0) and integrated the system until t = 20×
2*. In order to appreciate the e1ciency in di2erent regimes we considered B = C = 1 and A = ) with
)∈ [0; 1]. In the limit ) → 0; the system can be considered as separable in only two parts, and in the
limit ) → 1 we have a general case. The time-step used for each method is such that all methods
require the same number of evaluations. Fig. 3 shows the results obtained. The new method clearly
performs better although, as expected, its best performance is achieved when the system is separable
in only two parts () = 0). The behaviour of the numerical errors around ) ≈ 0:8 indicates less regular
motion for this value of the parameter.
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Fig. 4. Average error in energy for the initial conditions: (q0; p0) = (0; )) (pendulum) and (x0; y0; px0; py0) = ()=2; 0; 0; )=4).

4.2. RKN methods

In the RKN case, the system is separable in two parts which are qualitatively di2erent, and the
performance of the methods can be highly dependent on the problem and initial conditions. We will,
therefore, make several tests in order to see if, on average, the performance of the methods agree
with the theoretically predicted from the e2ective error. The following Hamiltonian systems with
quadratic kinetic energy are studied:

Example 4. Let us consider the well known HTenon–Heiles Hamiltonian

H (q; p) = 1
2(p2

x + p2
y) + 1

2(x2 + y2) + x2y − 1
3 y3: (15)

We considered the set of initial conditions (x0; y0; px0; py0) = (); 0; 0; )=2), with )∈ [0; 1
2 ] and we

integrated the system until t = 100 × 2*. The time-step is such that all methods require 20 000
evaluations of the potential. Figs. 4(a) and (c) show the average error in energy for fourth and
sixth-order methods, respectively.

Example 5. Next, we consider the simple Hamiltonian associated to the pendulum

H = 1
2 p2 − cos(q): (16)
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We choose the set of initial conditions (q; p) = (0; )) with )∈ [0; 3:5], and integrated the system
until t = 100×2*. The time-step is such that all methods require 40 000 evaluations of the potential.
Figs. 4(b) and (d) show the average error in energy.

From these two examples it seems clear that the relative performance of the methods depend on
the initial conditions. Among the fourth-order methods O6-4 is the best and at order six it is not so
clear, but it seems that O14-6 gives the best results.

Example 6. As an example of a Hamiltonian where the potential has a singularity, we choose the
Kepler problem. Its Hamiltonian is given by

H (q; p) =
1
2

(p2
x + p2

y) − 1√
q2

x + q2
y

(17)

and we take as initial conditions

px = 0; py =

√
1 + e
1 − e

; qx = 1 − e; qy = 0;

where e is the eccentricity. These correspond to an orbit of period 2* and energy − 1
2 . We integrated

the system for 10 periods and measured the average error in position (along the last 2 periods)
for di2erent values of the eccentricity. Figs. 5(a) and (b) show the results obtained for fourth and
sixth-order methods. The time-step is such that all methods require the same number of evaluations
of the potential. Very similar results are obtained when measuring the average error in energy, and
the same comments as in the previous examples are still valid.

Example 7. Next, we consider the Toda-lattice Hamiltonian

H =
1
2

N∑
i=1

p2
i +

N−1∑
i=1

(eqi−qi+1 − 1) + (eqN−q1 − 1): (18)

This system has several conserved quantities. One of them, I =
∑N

i=1 pi, is exactly preserved by
the splitting methods. We will take N = 10, initial conditions q0 = 0; p0 =−1; qi = 0; pi = 1

9 ; i = 2;
: : : ; 10, and integrated until t = 100 × 2*. The average error in energy is measured for di2erent
time-steps. Fig. 6(a) shows the results obtained. The scheme O11-6 works slightly worse than O14-6,
and does not appear in the 3gure for clarity.

Example 8. Finally, we measure the performance of the new RKN methods in the one-dimensional
nonlinear Schr'odinger equation

i
@
@t

.(x; t) =−1
2

@2

@x2 .(x; t) − )|.(x; t)|2.(x; t)

= (T + V).: (19)
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Fig. 5. Average error for di2erent values of the eccentricity.

This system is separable in two exactly solvable parts. We will solve the system for V. =−|.|2.
in the coordinate space and T. = − 1

2 @2
x. in the momentum space. Periodic boundary conditions

are assumed for ., and fast Fourier transformations, FFT, are used to carry out the coordinate
transforms. Observe that {V; {V; {V; T}}}= 0, where {.∗(x; t); .(y; t)}= i0(x − y) and .∗ is the
complex conjugate of . hence it is possible to apply RKN methods.

As initial conditions we take .(x; 0) = 2 sin(x) and we split the interval x ∈ [0; 2*] in N = 128
parts, where periodic boundary conditions are assumed. We integrated the system until t = 5 × 2*
for di2erent time-steps. The system has many preserved quantities (norm, energy, momentum, etc.).
The splitting methods preserve the norm and momentum of the wave function up to round o2 errors,
so we measured the average error in energy

E =
1
2

∫ (∣∣∣∣@.
@x

∣∣∣∣
2

− |.|4
)

dx (20)

as an indication of the computational error. Fig. 6(b) shows the results obtained. Observe that the
same algorithm can be used for a more general potential V(|.(x; t)|; x; t), which includes the linear
Schr'odinger equation.
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Fig. 6. Average error in energy vs. number of evaluations.

We observe from the 3gures that the value of Ef do not explain exactly the relative performance
between methods of same order, for each particular problem studied. However, if we estimate an
average for di2erent problems and initial conditions, we see that Ef is a good indicator of the
performance of a method. On the other hand, if a method has too many stages per step it is possible
that the method loses accuracy very quickly when bigger time steps are taken, mainly because high
order error terms are large, and this is not reIected in the value of Ef, this being an interesting
open problem that deserves attention.

5. Conclusions

In this paper, we presented new symmetric fourth and sixth-order PRK and RKN methods. The
methods are especially designed for the case in which the vector 3eld is separable in two parts
f = fA +fB, but still can be applied e1ciently if it is separable in more than two parts. If the Iows
associated to fA and fB retain some of the properties of the Iow associated to f (i.e., same Lie
group) then, the new methods will preserve several qualitative properties: in a classical Hamiltonian
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problem the symplecticity is preserved, in quantum mechanics the unitarity is preserved, etc. So, the
methods are Geometric Integrators.

We have studied PRK and PRKN methods up to 15 stages. The additional stages were used to
minimise a measure of the error committed by the methods, and numerical experiments with the
new composition schemes underline the e2ectiveness of our approach.

A number of examples using di2erent initial conditions have been studied. We observed that,
for most of the problems, the new methods clearly perform more e1ciently (than other methods
found in the literature) and in accordance with the e2ective error. Then, the bene3ts in using extra
parameters when building a numerical method seems clear.

In searching for fourth-order methods we stopped introducing more stages when a sixth-order
method could be obtained. There are several possibilities for taking more stages into account without
running into problems with Ef = 0.

For example, it is possible to de3ne an e2ective error taking into account the error terms at order
h5 and at order h7, i.e., Ef = E(4)

f + h2E(6)
f but, this criterium is highly problem dependent. There is

not a standard criterium in the literature to compare the relative weight of E(4)
f and E(6)

f . We must
remember that it is still not clear which are the correct weights one should give to the di2erent
elements in E(4)

f . At the same time Ef depends on h and one has to choose a particular value of h.
After the submission of this paper Ref. [19] appeared, and this problem is partly addressed. The

paper gives a rule for increasing the number of stages without reaching a high order method. It
seems like a very promising technique but, at this moment it is only valid for compositions of basic
symmetric methods. It is not clear how and if it is possible to apply this technique (and to give
more e1cient methods) for a system separable in two parts or in an RKN case.

The methods we presented in this paper are not especially designed to be used with variable
time-steps. If this is done in a Hamiltonian system, in general, we will observe a linear error growth
in the error in energy. If we transform the equations in order to use 3xed time steps then usually
the system will not be separable and the methods we propose cannot be directly applied.

Acknowledgements

S.B. acknowledges the Ministerio de EducaciTon y Cultura (Spain) for a postdoctoral fellowship.
The work of P.C.M. is supported by the Norwegian Research Council through contract 119089=410.

References

[1] S. Blanes, F. Casas, J. Ros, Symplectic integrators with processing: a general study, SIAM J. Sci. Comput. 21 (1999)
711–727.

[2] S. Blanes, P.C. Moan, Splitting Methods for the time-dependent Schr'odinger equation, Phys. Lett. A 265 (2000)
35–42.

[3] S. Blanes, P.C. Moan, Splitting methods for non-autonomous di2erential equation, J. Comput. Phys. 170 (2001)
205–230.

[4] M.P. Calvo, J.M. Sanz-Serna, The development of variable-step symplectic integrators, with applications to the
two-body problem, SIAM J. Sci. Comput. 14 (1993) 936–952.

[5] J. Candy, W. Rozmus, A symplectic integration algorithm for separable Hamiltonian functions, J. Comput. Phys. 92
(1991) 230–256.



330 S. Blanes, P.C. Moan / Journal of Computational and Applied Mathematics 142 (2002) 313–330

[6] J.R. Cary, J. Doxas, An explicit symplectic integration scheme for plasma simulations, J. Comput. Phys. 107 (1993)
98–104.

[7] P.J. Channell, C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990) 231–259.
[8] A.J. Dragt, Computation of maps for particle and light optics by scaling, splitting and squaring, Phys. Rev. Lett. 75

(1995) 1946–1948.
[9] E. Forest, Sixth-order Lie group integrators, J. Comp. Phys. 99 (1992) 209–213.

[10] E. Forest, R.D. Ruth, Fourth-order symplectic integration, Physica D 43 (1990) 105–117.
[11] B. Gladman, M. Duncan, J. Candy, Symplectic integrators for long-term integrations in celestial mechanics, Celest.

Mech. 52 (1991) 221–240.
[12] S. Gray, D.E. Manolopoulos, Symplectic integrators tailored to the time-dependent Schr'odinger equation, J. Chem.

Phys. 104 (1966) 7099–7112.
[13] W. Kahan, R.C. Li, Composition constants for raising the order of unconventional schemes for ordinary di2erential

equations, Math. Comp. 66 (1997) 1089–1099.
[14] H. Kinoshita, H. Yoshida, H. Nakai, Symplectic integrators and their application to dynamical astronomy, Celest.

Mech. 50 (1991) 59–71.
[15] Lin-Yi Chou, P.W. Sharp, Order 5 symplectic explicit Runge–Kutta–Nystr'om methods, preprint, 1999.
[16] M.A. LTopez-Marcos, J.M. Sanz-Serna, R.D. Skeel, Cheap enhancement of symplectic integrators, in: D.F. Gri1ths,

G.A. Watson (Eds.), Numerical Analysis 1995, Dundee, 1995, Pitman Research Notes Mathematical Series, Vol.
344, Longman, Harlow, 1996, pp. 107–122.

[17] R.I. McLachlan, P. Atela, The accuracy of symplectic integrators, Nonlinearity 5 (1992) 541–562.
[18] R.I. McLachlan, On the numerical integration of ordinary di2erential equations by symmetric composition methods,

SIAM J. Sci. Comput. 16 (1995) 151–168.
[19] R.I. McLachlan, Families of high-order composition methods, preprint, 2000, http:==www.massey.ac.nz= RMcLach.
[20] A. Murua, J.M. Sanz-Serna, Order conditions for numerical integrators obtained by composing simpler integrators,

Philos. Trans. Royal Soc. A 357 (1999) 1079–1100.
[21] D.I. Okunbor, R.D. Skeel, Canonical Runge–Kutta–Nystr'om methods of orders 3ve and six, J. Comp. Appl. Math.

51 (1994) 375–382.
[22] J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.
[23] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo

simulations, Phys. Lett. A 146 (1990) 319–323.
[24] M. Suzuki, General theory of fractal path integrals with applications to many-body and statistical physics, J. Math.

Phys. 32 (1991) 400–407.
[25] M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys.

Lett. A 165 (1992) 387–395.
[26] J. Wisdom, M. Holman, Symplectic maps for the N-body problem, Astron. J. 102 (1991) 1528–1538.
[27] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990) 262–268.


