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Abstract

Logistic regression and artificial neural networks are the models of choice in many medical data classification tasks. In this

review, we summarize the differences and similarities of these models from a technical point of view, and compare them with other

machine learning algorithms. We provide considerations useful for critically assessing the quality of the models and the results based

on these models. Finally, we summarize our findings on how quality criteria for logistic regression and artificial neural network

models are met in a sample of papers from the medical literature.
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1. Introduction

Predictive models are used in a variety of medical

domains for diagnostic and prognostic tasks. These

models are built from ‘‘experience’’, which constitutes

data acquired from actual cases. The data can be pre-

processed and expressed in a set of rules, such as it is

often the case in knowledge-based expert systems, or

serve as training data for statistical and machine learn-
ing models. Among the options in the latter category,

the most popular models in medicine are logistic re-

gression (LR) and artificial neural networks (ANN).

These models have their origins in two different com-

munities (statistics and computer science), but share

many similarities.

In this article, we show that logistic regression and

artificial neural networks share common roots in sta-
tistical pattern recognition, and how the latter model

can be seen as a generalization of the former. We briefly

compare these two methods with other popular classi-

fication algorithms from the machine learning field, such
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as k-nearest neighbors, decision trees, and support vec-
tor machines.

There are now several implementations of predic-

tive modeling algorithms readily available, both as

free and commercial software. The quality of the

results obtained using these models mainly depends

on three factors: the quality of the data set employed

in model-building, the care with which adjustable

model parameters were chosen, and the evaluation
criteria used to report the results of the modeling

process.

It is imperative that these details be presented in

papers using predictive modeling, as otherwise the va-

lidity of the claims in the papers cannot be assessed by

the reader. We therefore analyze the model-building

process of logistic regression and neural network models

in some detail, and point out which factors need to be
considered when judging research results using predic-

tive models.

To gauge the current state of reporting results in the

literature, we sampled 72 papers comparing both logistic

regression and neural network models on medical data

sets. We analyzed these papers with respect to several

criteria, such as size of data sets, model parameter
reserved.
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selection scheme, and performance measure used in re-
porting model results.
2. The data classification task

The task of classifying data is to decide class mem-

bership y0 of an unknown data item x0 based on a data

set D ¼ ðx1; y1Þ; . . . ; ðxn; ynÞ of data items xi with known
class memberships yi. For ease of discussion, we con-

sider only dichotomous classification problems, where

the class labels y are either 0 or 1. The xi are usually m-
dimensional vectors, the components of which are called

covariates and independent variables (in statistics par-

lance) or input variables (by the machine learning com-

munity). In most problem domains, there is no

functional relationship y ¼ f ðxÞ between y and x. In this
case, the relationship between x and y has to be de-

scribed more generally by a probability distribution

P ðx; yÞ; one then assumes that the data set D contains

independent samples from P . From statistical decision

theory, it is well known that the optimal class mem-

bership decision is to choose the class label y that

maximizes the posterior distribution P ðyjxÞ [1].
There are two different approaches to data classifi-

cation: the first considers only a dichotomous distinction

between the two classes, and assigns class labels 0 or 1 to

an unknown data item. The second attempts to model

P ðyjxÞ; this yields not only a class label for a data item,

but also a probability of class membership. The most

prominent representatives of the first class are support

vector machines. Logistic regression, artificial neural

networks, k-nearest neighbors, and decision trees are all
members of the second class, although they vary con-

siderably in building an approximation to P ðyjxÞ from
data. Some details on these models, including a com-

parison on their respective advantages and disadvan-

tages, are given below.

Currently, logistic regression and artificial neural

networks are the most widely used models in biomedi-

cine, as measured by the number of publications indexed
in MEDLINEEDLINE: 28,500 for logistic regression, 8500 for

neural networks, 1300 for k-nearest neighbors, 1100 for
decision trees, and 100 for support vector machines.

2.1. Support vector machines

These models are algorithmic implementations of

ideas from statistical learning theory [2], which concerns
itself with the problem of building consistent estimators

from data: how can the performance of a model on an

unknown data set be estimated, given only characteris-

tics of the model, and performance on a training set?

Algorithmically, support vector machines build op-

timal separating boundaries between data sets by solv-

ing a constrained quadratic optimization problem [3,4].
By using different kernel functions, varying degrees of
nonlinearity and flexibility can be included in the model.

Because they can be derived from advanced statistical

ideas, and bounds on the generalization error can be

calculated for them, support vector machines have re-

ceived considerable research interest over the past years.

Performances on par with or exceeding that of other

machine learning algorithms have been reported in the

medical literature.
The disadvantage of support vector machines is that

the classification result is purely dichotomous, and no

probability of class membership is given.

2.2. k-Nearest neighbors

Classification based on the k-nearest neighbor algo-
rithm differs from the other methods considered here, as
this algorithm uses the data directly for classification,

without building a model first [5,6]. As such, no details

of model construction need to be considered, and the

only adjustable parameter in the model is k, the number
of nearest neighbors to include in the estimate of class

membership: the value of P ðyjxÞ is calculated simply as

the ratio of members of class y among the k nearest

neighbors of x. By varying k, the model can be made
more or less flexible (small or large values of k, respec-
tively).

The advantage that k-nearest neighbors have over

other algorithms is the fact that the neighbors can pro-

vide an explanation for the classification result; this

case-based explanation can provide an advantage in ar-

eas where black-box models are inadequate.

The major drawback of k-nearest neighbors lies in the
calculation of the case neighborhood: for this, one needs

to define a metric that measures the distance between

data items. In most application areas, it is not clear how

to, other than by trial and error, define a metric in such a

way that the relative (but unknown!) importance of data

components is reflected in the metric.

2.3. Decision trees

This algorithm repeatedly splits the data set accord-

ing to a criterion that maximizes the separation of the

data, resulting in a tree-like structure [7,8]. The most

common criterion employed is information gain; this

means that at each split, the decrease in entropy due to

this split is maximized. The estimate of P ðyjxÞ is the ratio
of y class elements over all elements of the leaf node that
contains data item x.

A major disadvantage of decision trees is given by the

greedy construction process: at each step, the combi-

nation of single best variable and optimal split-point is

selected; however, a multi-step lookahead that considers

combinations of variables may obtain different (and

better) results. A further drawback lies in the fact that
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continuous variables are implicitly discretized by the
splitting process, losing information along the way.

Compared with the other machine learning methods

mentioned here, decision trees have the advantage that

they are not black-box models, but can easily be ex-

pressed as rules. In many application domains, this ad-

vantage weighs more heavily than the drawbacks, so

that these models are widely used in medicine.
2.4. Logistic regression and artificial neural networks

These models differ from the three algorithms above

in the sense that they both provide a functional form f
and parameter vector a to express P ðyjxÞ as
P ðyjxÞ ¼ f ðx; aÞ:

The parameters a are determined based on the data

set D, usually by maximum-likelihood estimation. As

the functional form of f differs for logistic regression

and artificial neural nets, the former is known as a
parametric method, whereas the latter is sometimes

called semi-parametric or non-parametric. This distinc-

tion is important because the contribution of parameters

in logistic regression (coefficients and intercept) can be

interpreted, whereas this is not always the case with the

parameters of a neural network (weights).
3. Logistic regression vs. artificial neural network models

For the following, let all data vectors xi contain an

additional component 1. This will facilitate notation in

allowing us to write a simple dot product a � x for a

linear combination of vector components instead of the

more cumbersome a � xþ a0.
Generally, a logistic regression model calculates the

class membership probability for one of the two cate-

gories in the data set:

P ð1jx; aÞ ¼ 1

1þ e�ða�xÞ ;

and P ð0jx; aÞ ¼ 1� P ð1jx; aÞ. Here, we write P ð1jx; aÞ to
make the dependence of the posterior distribution on the

parameters a explicit. It can be shown that this model is

correct when both the class-conditional densities pðxj1Þ
and pðxj0Þ are multinormal with equal covariance ma-

trices [6].

The hyperplane of all points x satisfying the equation
a � x ¼ 0 forms the decision boundary between the two

classes; these are the points for which Pð1jx; aÞ ¼
P ð0jx; aÞ ¼ 0:5. A logistic regression model that includes

only the original covariates is called a main effects model;

including interaction terms such as products makes the
model nonlinear in the covariates, and therefore more

flexible. Although higher flexibility may be desirable

in general, it carries with it a higher risk for model
overfitting (‘‘memorizing the training cases’’), which can
potentially reduce a model�s accuracy on previously

unseen cases. In predictive modeling, fitting the training

cases is just part of the task: correctly classifying new

cases is the most important goal.

Maximum likelihood estimation of the optimal pa-

rameter values a requires the maximization ofQn
i¼1 P ðyijxi; aÞ. Although the functional forms for lo-

gistic regression and artificial neural network models are
quite different, a network without a hidden layer is ac-

tually identical to a logistic regression model if the lo-

gistic (sigmoidal) activation function is used [9,10].

Artificial neural networks are aggregations of per-

ceptrons. For multi-layer feedforward networks, the

output is

oN ¼ 1

1þ e�ðb�oHþb0Þ
;

and this output is again taken as P ð1jx; b; b0; aÞ. Here,
oH is a vector of perceptron outputs, each with its own a
parameters; these perceptrons are usually called hidden

neurons. Due to the nonlinearity in these hidden neu-

rons, the output oN of an artificial neural network is a

nonlinear function of the inputs. In a classification

context, this means that the decision boundary can be

nonlinear as well, making the model more flexible

compared to logistic regression. In Section 4, we sum-
marize a sampling of publications from the biomedical

field to assess whether this higher degree of flexibility

results in improved classification accuracy on real-world

data sets.

3.1. Parameter estimation techniques

For both logistic regression and artificial neural net-
works, the model parameters are determined by maxi-

mum likelihood estimation, i.e., the parameters a are

chosen to maximize
Qn

i¼1 P ðyijxi; aÞ. Usually, it is easier
(and equivalent) to minimize �

Pn
i¼1 log P ðyijxi; aÞ. A

variety of numerical optimization algorithms, from

simple gradient descent to more complicated second-

order methods, can be used to determine the optimal

parameter values [11].
Artificial neural networks are usually trained by

minimizing an error function; an appropriate choice of

such a function for binary classification problems is the

cross-entropy error

E ¼
Xn

i¼1
y log oN þ ð1� yÞ logð1� oNÞ:

Given only a limited size data set D, any model for
P ðyjxÞ based on this data set will be influenced by the

particular choice of D. The model-building challenge is
to abstract the underlying distribution from the partic-

ular instance D of samples. The problem of memorizing

the data set instead of identifying the underlying



S. Dreiseitl, L. Ohno-Machado / Journal of Biomedical Informatics 35 (2002) 352–359 355
distribution is known as overfitting. Various methods to
avoid overfitting have emerged over the years; these can

be categorized as either restricting model complexity, or

restricting the influence of the data on the model pa-

rameters.

In logistic regression, the model complexity is already

low, especially when no or few interaction terms and

variable transformations are used. Overfitting is less of

an issue in this case. Performing variable selection is a
way to reduce a model�s complexity and consequently

decrease the risk of overfitting. As mentioned before,

this may cause a loss in the model�s flexibility. Com-

pared to logistic regression, neural network models are

more flexible, and thus more susceptible to overfitting.

Network size can be restricted by decreasing the number

of variables and hidden neurons, and by pruning the

network after training. Alternatively, one can require
the model output to be sufficiently smooth. This can be

achieved by regularization; in a neural network context

this is called weight decay. Weight decay, as the name

implies, limits the magnitude of the weights and is a

method that is analogous to logistic regression�s
shrinkage [10,12]. Weight decay and shrinkage make

decision boundaries smoother. Sufficiently smooth de-

cision boundaries are not as flexible as unrestricted de-
cision boundaries, so that they cannot adapt to the

particularities of a data set. For weight decay, one needs

to empirically determine a weight reduction factor; this

is usually done by cross-validation or bootstrapping (see

Section 3.3).

The alternative to restricting model complexity is to

only partially adapt the model to the data set. This can

be achieved by early stopping, when parameter adapta-
tion is terminated before the maximum-likelihood esti-

mate is found. The use of early stopping requires a

subset of the training data to be used as a holdout set, to

terminate training when adaptation shifts away from the

data generator to the particular instance of data set.

The Bayesian framework provides an alternative to

maximum-likelihood parameter estimation, and thus to

the problem of overfitting. In this framework, one does
not calculate a single best parameter vector aML, but

rather a distribution P ðajDÞ over the parameters as

P ðajDÞ ¼ P ðDjaÞP ðaÞ
PðDÞ :

In this equation, the denominator does not depend on

a and can therefore be ignored. In the remaining term,

P ðDjaÞ ¼
Qn

i¼1 P ðyijxi; aÞ is the likelihood, and PðaÞ the
prior distribution over the parameters. For large data

sets, the posterior P ðajDÞ becomes sharply peaked

around aML, so that the choice of prior distribution has

little effect on the calculation. For smaller data sets, this
influence is more pronounced, and can be used to in-

corporate prior knowledge into the model [9,13]. Weight

decay can be seen as representative of this reasoning, as
smooth decision boundaries correspond to a preference
for smaller weights.

In-depth discussions of the topics mentioned here can

be found in the books of Bishop [9] and Ripley [6] for

artificial neural networks, Neal [14] for a Bayesian per-

spective on neural network training, and Hosmer and

Lemeshow [15] and Harrell [16] for logistic regression.

3.2. Variable selection

In many application domains, it is not only important

to be able to separate two data sets, but also to deter-

mine which variables are the most relevant for achieving

this separation. On the one hand, the removal of su-

perfluous variables can lead to more accurate models; on

the other, money, time and effort can be saved by

dropping unnecessary tests or asking only relevant
questions.

For logistic regression models, it is possible to test the

statistical significance of the coefficients in the model

[15]; these tests can be used to build models incremen-

tally. The three most common approaches are to start

with an empty model and successively add covariates

(forward selection), to start with the full model and re-

move covariates (backward selection), or to both add
and remove variables (stepwise selection).

Due to the nonlinear nature of artificial neural net-

works, the statistical tests for parameter significance that

are used in logistic regression cannot be applied here.

Instead, one can use automatic relevance determination

[9] or sensitivity analysis [17] to heuristically assess the

importance of input variables for the classification re-

sult.

3.3. Model evaluation

The two criteria to assess the quality of a classification

model are discrimination and calibration. Discrimination

is a measure of how well the two classes in the data set are

separated; calibration determines how accurate the

model probability estimate f ðx; aÞ is to the true proba-
bility P ðyjxÞ. To provide an unbiased estimate of a

model�s discrimination and calibration, these values have
to be calculated from a data set not used in the model

building process. Usually, a portion of the original data

set, called the test or validation set, is put aside for this

purpose. In small data sets, there may not be enough

data items for both training and testing. In this case, the

whole data set is divided into n pieces, n� 1 pieces are
used for training, and the last piece is the test set. This

process of n-fold cross-validation builds n models; the

numbers reported are the averages over all n test sets

[18,19]. The extreme case of using only one data item for

testing is known as leave-one-out cross-validation.

An alternative to cross-validation is bootstrapping,

a process by which training sets are sampled with
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replacement from the original data sets [20]. When using
the complete data set as testing data, the estimate of

generalization error will be too low, as data items are

used for both training and testing. It is, however, pos-

sible to estimate the bias, and thus to adjust an overly

optimistic generalization error estimate. Bootstrapping

was shown to be superior to cross-validation on many

data sets [16,21].

Common measures of discrimination are sensitivity,
specificity, accuracy and the area under the ROC curve

(or, equivalently, the c-index). For all these measures,

there exist statistical tests to determine whether one

model exceeds another in discrimination ability [22,23].

Calibration is a measure of how close the predictions

of a given model are to the real underlying probability.

Almost always, the true underlying probability is un-

known and can only be estimated retrospectively by
verifying the true binary outcome of the data being

studied. Calibration thus measures the similarity be-

tween two different estimates of a probability. One of

the ways to assess calibration is to take the difference

between the average observation and the average out-

come of a given group as a measure of discalibration. A

more refined way to measure calibration requires di-

viding the sample into smaller groups sorted by pre-
dictions, calculating the sum of predictions and sum of

outcomes for each group, and determining whether

there are any statistically significant differences between

the expected and observed numbers by a simple v2

method [15].
Table 1

Percentage of papers (out of 72) satisfying five quality criteria

Details

given (%)

Details not

given (%)

LR model building details 76 24

ANN model building details 51 49

Generalization error estimate 89 11

Statistical discriminant testing 61 39

Calibration information 25 75

Table 2

Summary of comparing the discriminatory power of artificial neural

networks with logistic regression models, as percentage of 72 papers

ANN

better (%)

LR better

(%)

No

difference (%)

Stat. testing 18 1 42

No stat. testing 33 6 0
4. Logistic regression and artificial neural network
comparisons in the literature

We reviewed 72 papers that compare the classifica-

tion performance of artificial neural networks with lo-

gistic regression models. The references were obtained as

a sample from PUBMEDUBMED and chosen for ease of avail-

ability; a general literature review is beyond the scope of

this paper.
The objective of this sampling was to determine the

overall standard of publications reporting results based

on logistic regression and artificial neural network

modeling. We focused on those papers that use both

methodologies to see whether one of them consistently

outperforms the other on medical data sets.

For this study, we analyzed the 72 papers with re-

spect to the following criteria: whether details of the
model building process are given (variable selection

scheme for logistic regression, parameter selection and

overfitting avoidance for artificial neural networks),

whether unbiased estimates of the generalization error

are reported (by using test sets, cross-validation, or

bootstrapping), whether measures of discriminatory

power were given (and statistical testing using these
measures), and whether calibration information is in-
cluded.

Every paper was rated in each of these five categories

as either giving details or not. The latter was the case

when no details were reported in the paper, or when the

methodology used in the paper was questionable (such

as not taking overfitting avoidance into account, or re-

porting a model�s superiority over another without sta-

tistical testing).
The results of this survey are summarized in Table 1.

It is interesting to note that details on model building

are given more often for logistic regression than for

artificial neural networks. This may be due to the fact

that forward, backward, and stepwise variable selection

schemes are implemented in standard logistic regression

software, and thus easily used and reported. It takes

more effort and considerations on the part of the user to
achieve the same level of sophistication with artificial

neural networks, as many advanced methods are not

available in all software packages. These model building

details may also be considered not important for pub-

lication by authors, although they help to assess the

quality of the findings obtained with the model.

Since all the papers surveyed compare the perfor-

mance of logistic regression with artificial neural net-
works in discriminating two data sets, it is

understandable that only a quarter of them give cali-

bration information.

The results of comparing the discriminatory power of

logistic regression and artificial neural network models

are summarized in Table 2. It can be seen that both

models perform on about the same level more often than

not, with the more flexible neural networks generally
outperforming logistic regression in the remaining cases.
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5. Discussion

An increasingly large number of data items are col-

lected routinely, and often automatically, in many areas

of medicine. It is a challenge for the field of machine

learning and statistics to extract useful information and

knowledge from this wealth of data.

Mistakes in model building and evaluation can have

disastrous consequences in some medical applications.
Special care must therefore be taken to ensure that the

models are validated, preferably by using an external

data set and checking the model�s plausibility by sur-

veying a panel of experts in the domain [24,25].

The latter is possible only for so-called white-box

models that allow an interpretation of model parame-

ters. Examples of such algorithms are decision trees

(which may be expressed as a set of rules), k-nearest
neighbors (which provides exemplars similar to cases to

be classified), and logistic regression (where coefficients�
sizes determine their relative importance for the classi-

fication result).

Black-box models, such as support vector machines or

artificial neural networks, do not allow such an inter-

pretation, and can only be verified externally. Con-

trasting views on the role of artificial neural networks as
predictive models are given in [26,27]. Nevertheless, their

discriminating power is often significantly better than

that of white-box models, which may explain their

popularity in domains where classification performance

is more important than model interpretation.

Most of the papers summarized in Section 4 have

shown logistic regression and artificial neural networks

to work well on a wide variety of data sets. Their per-
formance is generally better, at least on continuous data,

than that of decision trees and k-nearest neighbors. This
may be explained by the fact that the decision tree al-

gorithm does not construct a decision boundary between

classes per se, but rather splits the data set optimally at

each tree node. As explained in Section 2, this may result

in suboptimal classification results. The performance of

k-nearest neighbors is generally worse on high-dimen-
sional data because, when the relative importance of

dimensions is not weighted, the data from spurious and

irrelevant dimensions may negatively influence the dis-

tance calculation [28].

Support vector machines, on the other hand, have

shown comparable performance in the few studies on

medical data sets [29,30]. They are not as widely used yet

as logistic regression and artificial neural networks, in
part because few easy-to-use software implementations

are available, and the kernel functions and kernel

function parameter settings have to be estimated from

the data (mostly by cross-validation or bootstrapping).

In short, the widespread use of logistic regression and

artificial neural network models seems to be motivated

by the fact that they have lower generalization error
than decision trees and k-nearest neighbors, while being
easier to build than support vector machines.

The following points should be kept in mind when

using logistic regression and artificial neural networks as

data classification tools; pitfalls to avoid when com-

paring classifiers are given in [31].

5.1. Logistic regression

With anything more than a few covariates, a variable

selection scheme should be used to remove spurious

covariates. If computationally feasible, one should in-

clude interaction terms to make the model more flexible.

A variable selection scheme can then be used to remove

unnecessary interaction terms. The p value for statistical
testing of variable significance for inclusion in and ex-

clusion from the model is generally set to 0.05, but this
threshold should be modified given expert opinion.

5.2. Artificial neural networks

One layer of hidden neurons is generally sufficient for

classifying most data sets. The number of neurons in the

hidden layer needs to be set empirically, e.g. by cross-

validation or bootstrapping. One should avoid the use
of plain backpropagation or backpropagation with

momentum, as these minimization algorithms are slower

to convergence than second-order algorithms such as

conjugate gradients or quasi-Newton methods. It is

imperative to not overfit the network during training;

this can be achieved either by restricting the topology of

the network (i.e., decreasing the number of nodes), by

early stopping, or by using weight decay. If computa-
tionally possible, one should consider the use of a

Bayesian approach that averages over several plausible

networks.

5.3. Estimate of generalization error

A classification result may be overly optimistic if

performance cannot be measured on a data set not used
for model building. In the ideal case, testing on a sep-

arate data set will provide an unbiased estimate of

generalization error. If the original data set is too small

for this approach, the recommended strategy is to use

cross-validation or bootstrapping to make the best

possible use of the limited amount of data.

A discussion of model evaluation, especially as it per-

tains tomedical data and the use of logistic regression and
artificial neural network models, can be found in [32–35].

5.4. Measuring the discriminatory power of a model

The most commonly used measures of discriminatory

power are the area under the ROC curve (AUC), sen-

sitivity, specificity, and accuracy. While sensitivity and
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specificity of a classifier are reported for a single
threshold (mostly taken as classifier output o ¼ 0:5), the
area under the ROC curve represents a common mea-

sure of sensitivity and specificity over all possible

thresholds. One should be aware, though, that the AUC

measure remains the same when classifier outputs are

transformed monotonically. This means that models

may exhibit good discrimination (as measured by AUC),

but may be poorly calibrated.
Accuracy is the only discrimination measure influ-

enced by the class distribution in the data set. This

measure must therefore be treated with caution when

the case distribution in the training set is different from

the case distribution of the population on which the

classifier is used.

5.5. Assessing claims in the literature

Most studies on the use of classification algorithms in

biomedicine focus on one of two questions:

• Is it possible to distinguish one class of data items

from another, based on some set of measurements

(features)?

• Is it possible to build a decision-support system that

helps in the diagnosis/prognosis of unknown cases?
Although both approaches use the same methodol-

ogy for model building, the use of performance indica-

tors is different: for the first, the question of

discrimination is more important, whereas for the sec-

ond, good calibration is essential. For both of them, the

appropriate performance indicators need to be pub-

lished to substantiate any claims of model performance.

More studies currently published are motivated by an-
swering the first question, as can be seen from the rel-

atively low number of papers that report calibration

information (see Section 4).

When assessing the model-building process reported

in a paper, one should check whether the following

questions were addressed in a satisfactory manner:

• How is the choice of classifier motivated?

• How were the parameters of the classifier, and the pa-
rameters of the training process chosen?

• How is the performance of the classifier evaluated?

For logistic regression and artificial neural network

models, the points to consider in evaluating the descrip-

tion of a model-building process are given in Section 3.

Answering the questions above allows the reader to

determine the overall quality of the result reported in a

paper, and to distinguish between overly optimistic
claims (such as when performance is reported on the

training set) and needlessly pessimistic ones (when

model parameters are chosen in a suboptimal manner).

The latter is especially common in studies that promote

‘‘new’’ algorithms. Needless to say, some articles do not

even report comparisons and instead just report the

performance of a single method.
6. Conclusion

In this methodology review, we explained the use of

logistic regression and artificial neural network models

for biomedical data classification. We outlined the

common foundations of both models in statistical pat-

tern recognition, and briefly compared these models

with other classification algorithms. We showed how to

build logistic regression and artificial neural network
models, how to evaluate them, and which performance

indices to report.

We surveyed papers that compare both models to

determine the current level of publication standard, and

noticed that the information relevant for measuring the

methodological soundness of a paper is reported more

often for logistic regression models. We conjecture that

this is due to the fact that the model-building process is
easier for logistic regression, and may be considered too

detailed and not worthy of publication for artificial

neural networks. This greatly limits the readers� ability
to reproduce the reported results.

We discussed the application areas, relative merits

and common pitfalls of classification algorithms in

biomedicine. So far, there is no single algorithm that

performs better than all other algorithms on any given
data set and application area. For logistic regression, the

popularity may be attributed to the interpretability of

model parameters and ease of use; for artificial neural

networks, this may be due to the fact that these models

can be seen as nonlinear generalizations of logistic re-

gression, and thus at least as powerful as that model.

The evidence summarized in Section 4 shows that of the

tasks where performance was compared statistically,
there was a 5:2 ratio of cases in which it was not sig-

nificantly better to use neural networks. It remains to be

seen whether newer machine learning algorithms, such

as support vector machines and other kernel-based al-

gorithms, can prove to be significantly better than both

logistic regression and artificial neural networks.

Until further studies are conducted and some guide-

lines for predictive modeling evaluation are utilized,
there may continue to exist a publication bias in favor of

the newer machine learning methods, often with disre-

gard to proper evaluation of the results. This may mis-

lead readers into thinking that the new methods are not

subject to the pervasive trade-offs between flexibility and

overfitting that are typical of classical models such as

logistic regression and artificial neural networks.
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