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Abstract-In this paper some enhancements for automated theorem-proving programs, techniques which can 
be combined with the various well known inference rules which are employed in such programs, are given. 
Proofs of some of the more difficult problems previously sought by use of automated theorem proving were 
obtained by a program utilizing these enhancements. Among those proven in less than 3 min were: 

I. xi = e implies ((x, y). p) = e. 
2. Boolean rings are commutative. 
3. Subgroups of index 2 are normal (without case analysis). 
The most powerful enhancement is that of ordering generated clauses with a heuristic which assigns an 

integral value to each term that occurs in any clause. The heuristic is designed to favor those clauses 
containing less “complex” terms. By changing input parameter values the values assigned to terms can be 
varied to any desired extent which in turn can sharply affect the proof search. Another enhancement is that of 
dynamic adjunction of demodulators including as a subcase the previous approach which has demodulators 
occurring only as input clauses. Methods are given for rapidly selecting the possible set of demodulators for 
use with a generated clause and for controlling the adjunction to reflect potential importance of the 
demodulator. 

I. INTRODUCTION 

Many of the algorithms found in the literature on automated theorem proving are of interest and 
often useful, but are seldom sufficient in themselves since a straightforward implementation of 
such algorithms often yields a program incapable of finding proofs for moderately difficult 
theorems. In order to find such proofs, it is generally necessary to add various enhancements, 
which may initially seem ad hoc, to the algorithm. In this paper several such enhancements, 
usable in conjunction with the various well known approaches, will be given in detail. The 
techniques discussed herein were discovered in the process of implementing a number of the 
better known algorithms. A program utilizing these enhancements and the inference rules 
(occasionally employed simultaneously) of hyper-resolution and UR-resolution, the latter 
discussed in Section 5, has found proofs for a number of theorems which were previously 
considered quite difficult from the viewpoint of automated theorem proving. Among the 
theorems proven with this program are the following: 

(1) Let G be a group of exponent 3; i.e. for all x, x3 = e, the identity. For any pair x and y, let 
h(x, y) be the commutator of x and y, h(x, y)= xyx-’ y-‘. Then for all x and 

Y h(h(x, y), Y) = e. 

(2) 

(3) 

(4) 

Pl 

P2 

P3 
P4 

If R is a Boolean ring (x2 = x for all x), then R is commutative. This proof was obtained 
without the lemma, usually included as an input clause, that R has characteristic 2 
(x +x = 0 for all x). 
Subgroups of index 2 are normal. This proof was obtained without the usual case analysis 
approach; i.e. was obtained without breaking the problem into two subproblems. 
Suppose that a Boolean algebra is defined as a set B together with two binary operations 
(+) and (.) such that 
The operations (t) and (.) are commutative. 

There exist in B distinct identity elements 0 and 1 relative to the operations (+) and (.) 
respectively. 

Each operation is distributive over the other. 
For every a in B there exists an element a’ in B such that 

a+~‘=1 and a.~‘=0 
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Suppose further that the following identities have been proven: 
For all a, b in B 

ai-a=a a.a=a 

a+l=l a.O=O 

a+(a.b)=a a.(a+b)=a 

THEOREM. The operator (+) is associative. 
(5) Using the axioms, given by Tarski[3] for plane geometry, one can show that the relation 

“betweeness” is symmetric. 
Since the number of lemmas which are included in the formulation of problems such as the 

above critically determine their relative diIhculty, the clauses which were used as input to the 
programs are included in Appendix A. 

A careful re-evaluation of the features in the program and the performance of the program on 
the previous set of problems led the authors to the following conclusions: 

(a) With respect to clause generation, clause retention and most importantly the time required 
to obtain a proof, this program compares favorably with other reported implementations. 

(b) The program would not have successfully obtained proofs of most of the problems 
mentioned above had not the techniques presented in the following sections been 
included. 

(c) Either the exact methods described below or variants of these methods could be profitably 
employed in conjunction with most strategies which have been proposed to date. 

(d) By considering these techniques, others may see generalizations or improvements which 
could significantly affect the development of automated theorem provers. 

2.COMPLEXITY OFTERMS 

A variety of authors have utilized some measure of the “complexity” of terms and restricted 
the use of terms exceeding some specified degree of complexity. Examples of these measures, 
which have been tried with varying amounts of success, are as follows: 

(1) Complexity of a term is equal to the number, excluding parentheses and commas, of 
symbols therein. 

(2) Integers can be associated with each symbol. In this case the complexity of a term is 
determined by summing the integers associated with the symbols that occur in the term. 
For example, suppose that the following associations were used: 

a 1 
b 3 

g 1 
f 2 

any variable 1 

With measure 2 the complexity of f (g(a), g(x)) would be one less than that of g(f (a, b)), 
while with measure 1 g(f(a, b)) would have less complexity. 

(3) The complexity of a term can be measured by the maximum depth of nesting of the 
function symbols that occur in the term. In this case f(g(a), g(x)) is of the same 
complexity as g(f(a, b)), but f (f(g(x), y), z) v;ould be more complex than f(f(a, b), 

f (x9 4). 
(4) The complexity of terms is measured indirectly by counting the number of symbols 

excluding parentheses and commas occurring in a literal. 
The motivation for employing some measure of term complexity is rather obvious. If the set 

of allowable terms is not restricted in some manner, the sets of generated clauses and retained 
clauses may become so large that the clause space gets saturated and/or the time required to 
complete the proof search becomes prohibitive. Since the degree of complexity of all terms 
occurring in a given refutation is bounded, the corresponding restriction of the allowable term 
sets can result in a sharp reduction in the number of extraneous clauses, while still permitting the 
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proof search to be successful. In most cases that have been studied, some such restriction is 
absolutely necessary to obtain the desired proof. On the other hand the choice of an overly 
restrictive bound may result in the derivation of a proof substantially longer than necessary or 
may even cause the proof search to terminate unsuccessfully. 

The effectiveness of a measure of complexity is determined by how well it can be used to 
circumscribe the terms required in a proof. The more difficult it is to describe the syntax of 
“interesting” or “potentially valuable” terms, the more difficult it will be to define the appropriate 
measure of complexity of terms. A restriction based on the appropriate choice of the four given 
measures works well for most of the theorems cited in the literature. The mathematical difficulty 
of most such problems could honestly be classed only as trivial. As theorem provers are applied 
to increasingly demanding problems, these measures will have to be generalized into more 
appropriate measures. For example, in certain ring theory problems it may be important to have 
the proof search concentrate heavily on terms which simultaneously contain the function 
symbols for the operators of addition and multiplication rather than on those terms which contain 
only one of those two function symbols. Since, in order to achieve this emphasis, the context in 
which a symbol occurs must be taken into account, none of the previous four measures of 
complexity would suffice. The following definitions are used to describe the measure 
implemented in the program under discussion. 

Definition. Any term which is neither a constant nor a variable will be referred to as a 
composite term. 

Definition. Let t =f(t,, tz, t3,. . . , t,,) be a composite term. Then f is the major function 
symbol of t. 

Definition. If t is the composite term f(t,, t2, t3,. . . , tn), the i”’ argument of t is ti. 
Definition. A c-pattern can be formed by the following rules: 
(1) A constant symbol is a c-pattern. 
(2) A function symbol of degree n > 0 followed by n “arguments” inclosed by parentheses 

and separated by commas is a c-pattern. The “arguments” in this case must be either 
c-patterns or integers. 

(3) Any c-pattern can always be constructed by repeated application of the previous two 
rules. 

Definition. A c-pair is an ordered pair. The first element of the pair must be c-pattern and the 
second element must be an integer. 

Definition. A c-set is an ordered set of c-pairs. 
Instead of giving the precise algorithms for obtaining the complexity of a term, let us consider 
some specific examples. In each of these examples let S be a c-set composed of the following 
c-pairs. 

1 (4 1) 
2 (b,2) 
3 (g(l), 1) 
4 (f(s(O), O), 99) 
5 (f(1, l), 1) 

Further, suppose that each variable is to be assigned a complexity of 1. 
Example 1. To determine the complexity of the constant b, simply go down the list of c-pairs 

until b can be matched. In this case the second element of the c-pair, 2, is the complexity of b. 
Example 2. To determine the complexity of gCf(a, b)), the c-pair (g(l), I) is used. The 

c-pattern g(1) “matches” glf(a, b)). The integer occurring as an argument of the c-pattern 
means that the complexity of the corresponding subterm should be multiplied by that coefficient. 
Thus, g(l) indicates that the complexity of f(a, b) should be multiplied by 1. The final result is 
obtained by adding the second element of the c-pair to the complexity of f(a, b). The complexity 
of f(a, b) is equal to 

(1 x complexity of a) + (1 x complexity of b) + 1 

by the 5th c-pair. Thus, the complexity of f(a, b) is 4, and the complexity of g(j(a, b)) is 5. 
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For the next example, remember that a c-set is an ordered set. Thus, if two c-patterns apply, 
the earlier of the two is used. 

Example 3. The complexity of f(g(x), a) is 99, since the first c-pattern which matches is the 4th 
pattern in the list. No subterms need be evaluated, since all of the coefficients are 0. The 
increment given by the second element of the c-pair is 99, which is then the complexity of the 

term. 
The actual c-sets used by the program to obtain proofs to the problems in Appendix A are 

given in Appendix 9. 

3.THE BASIC ALGORITHM 

Algorithm 1, which follows, is the underlying algorithm of strategy and flow for the program 
under discussion. For this algorithm let h(C) be a function which assigns to any clause C a 
non-negative integer. 

Algorithm 1. This algorithm takes as input an ordered set of clauses S = {C,, Cz, Cj, . . . , Cn} 
and attempts to establish the unsatisfiability of S by utilizing some inference rule I (such as 
hyper-resolution, unit-resolution, etc.). The following variables are used: 

LIST 1. This variable is an ordered list of clauses. The list is ordered on a field in each clause 
which will be referred to as the KEY of the clause. Whether clauses with equal values are entered 
on a first-in first-out or first-in last-out basis is determined by an input parameter. 

LIST 2. This variable is an ordered list of clauses. This list has the property that all clauses 

which can be inferred by the inference rule I from clauses in the list have already been generated. 
G LIST. This variable is also an ordered list of clauses. It roughly corresponds to the set of 

clauses which have been generated, but not yet added to LIST 1. 
D LIST 1. This variable is a list of clauses which are to be deleted because they were 

subsumed by clauses which were added at a later point in time. 
D LIST 2. This variable is a list of clauses which are in either LIST 1 or LIST 2, but can be 

further demodulated. 
DEMOD-SET. This variable represents the set of demodulators. The structure of this variable 

will be discussed in the next section. 
Originally all lists are empty, the DEMOD-SET contains no demodulators. 

Step 1. Add C,, Cz, . . , C, to G LIST. Set the KEY field in each clause to 0. Go to Step 5. 
Step 2. If LIST 1 is empty, stop (no proof has been derived). Else, move the first clause in 

LIST 1 to the end of LIST 2. 
Step 3. Generate the set of clauses which can be inferred from the clauses in LIST 2 using the 

inference rule I subject to the restriction that one of the parent clauses must be the clause just 
moved to LIST 2. As each such clause is generated perform the following actions: 

(a) Demodulate the clause using the demodulators in DEMOD-SET. This process is 
described in the next section. 

(b) If the clause violates some restriction such as too many literals, the occurrence of an 
excessively complex term, etc. terminate processing of the clause. 

(c) If the clause is subsumed by a clause in LIST 1, LIST 2, or G LIST, terminate processing 
of the clause. 

(d) If the clause is the null clause, stop. If the clause is a unit clause and can be unified with a 
unit clause of the opposite sign in LIST 1, LIST 2, or G LIST, stop (a proof has been 
completed). 

(e) If any clause in LIST 1, LIST 2, or G LIST is subsumed by this clause, note the subsumed 
clause in D LIST. 

(f) Add the clause to G LIST. 
(g) Set the KEY field in the clause to the value which results from applying h to the clause. 
Step 4. Delete any clause noted in D LIST from the list containing the clause. Reset D LIST to 

the null list. 
Step 5. For each positive unit equality clause in G LIST that should be used as a demodulator, 

perform the following actions: 
(a) Add the corresponding demodulator to DEMOD-SET. 
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(b) For any clause in LIST 1, LIST 2, or G LIST which can be demodulated by the added 
demodulator note the clause in D LIST 2. 

Step 6. Add the clauses in G LIST to LIST 1. For each clause use the KEY field to determine 
where in LIST 1 the clause should be inserted. Reset G LIST to the null list. 

Step 7. For each clause noted in D LIST 2 perform the following actions: 
(a) Create the demodulant of the clause. Set the KEY field in the demodulant to the value in 

the KEY field of the demodulated clause. 
(b) Add the demodulant to G LIST. 
(c) Delete the demodulated clause from the list containing it. 
Step 8. Reset D LIST 2 to the null list. If G LIST is empty, go to Step 2. Else, go to Step 5. 

The function h, from which the value of the KEY field of each clause is obtained, strongly affects 
the performance of the program. For the results cited in this paper h assigned to each clause C 

(the number of literals in C minus 1) x K + (the maximum of the complexities of the 
composite terms of C). 

K is an input parameter and generally is set to 1. The purpose of K is to take into account in the 
function h the number of literals of C for each clause C. 

For a more detailed discussion of how the set of clauses generated in Step 3 can be 
determined efficiently when hyper-resolution is used as the inference rule the reader is referred 
to[2]. The algorithms and data structures presented in that paper have been generalized in a 
natural way and are part of the present implementation under discussion. Programs have been 
written implementing positive hyper-resolution, negative hyper-resolution, Pl-resolution, unit 
resolution and UR-resolution. 

4. DEMODULATION 

The advantages of demodulation have been adequately covered elsewhere[4]. There are 
several aspects, however, of this implementation which are worth commenting on: 

(a) Given a clause C and a set W of demodulators, there may be several (final) distinct 
demodulants of C. As currently implemented, only one of these demodulants will be 
generated. Such an approach, although common, is questionable; in the future the authors 
intend to implement the more general approach. The reader should note that Algorithm 1 
must be modified if all demodulants of a given clause are to be generated. 

(b) In most implementations the set of demodulators is given as input and is not altered during 
the execution of the program. This is not true of this implementation. With more difficult 
problems, a significant advantage can be gained by adding demodulators as appropriate 
positive unit equality clauses are deduced. For example, one criterion, now present in the 
program, for adjoining a clause of the demodulator list is: adjoin the equality clause C if 
and only if the difference in the term complexity occurring in the two argu- 
ments of the literal of C is greater than or equal to the value of some input parameter. 
By setting this input parameter to a very large positive integer and by inputting some 
possibly empty set of demodulators one can have the present program perform with 
respect to demodulation as the previous implementations cited in the literature have. If 
the input parameter is set to 0, it is possible for a term t to be a demodulant of itself. For 
example, if F(x, y) - > F(y, x) is a demodulator, 

F(R(~), b)- > F(b, g(a))- > F&(a), b) 

To prevent this phenomenon the following restrictions on demodulation are used: 
(1) For t to be replaced by t’, the complexity of t must be at least as great as that of t’. 
(2) If t and t’ are of equal complexity, an arbitrary but fixed ordering of terms will be used to 

determine whether or not t can be replaced. 
(c) Because the number of demodulators in the set W can increase to a relatively large 

number, a means of rapidly selecting a subset of W that could be used to demodulate a 
term t was implemented. The process can be described as follows: 
(1) Let (Y = >/3 be a new demodulator, where (Y =f(t,, tz, t3,. . . t,). Associate with (Y 

the following ordered n + I-tuple: 

(f, 01, a,. . . a,) 
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where ai is the leftmost symbol in ti, unless ti is a variable. In this case let ai be V*. As 
an example, with f(x, g(x)) = >e the 3-tuple (j, V*, g) would be associated. The 
n + I-tuple associated with a term will be called the d-key of the term. 

(2) For each demodulator (Y = >p, add the d-key of (Y to a “demodulation” tree. Thus, for 
the set of demodulators 

demodulator d-key 
d, f(x, e) = > x ti V*, e) 
d, f(e,x)= >X ti e, V*) 
4 f(x, g(x)) = > e cf, v*,g) 
4 f(g(x),x)= >e cf, $5 v*) 
d, MAY),~(Y))= >x tifrg) 
4 A+)) = > x (g, g) 
dc f(x, g(f(y, x))) = > Y ti V”, g) 

the tree, would be created. 

4 

Fig. 1. 

The set of demodulators represented by a given branch is attached to the appropriate 
leaf, and the resulting tree is converted to a binary tree. The result for the previous 

example would be 

. 

9 
f ” . 

f 9 V* 
. w 

Cd,) 

. 
V” 

Cd,) 

. . . . 
9 V” & cd:,d& 

(d,) Cd 3) 

Fig. 2. 

(3) Given any term t with its associated d-key, it is a simple matter to determine the 
branches of the binary tree that represent potential demodulators. For example, if the 
term t = fCf(x, a), g(u)) were to be demodulated, the d-key associated with t would 
be cf, f, g). The branches of the tree that represent potential demodulators are (f, f, g) 
and cf, V*, g), and the resulting set of demodulators is (d4, dz, de). 

The use of such a “screening” technique to reduce the number of required unification attempts 
can dramatically reduce the time required to demodulate a term or clause. 

5. UR-RESOLUTION 

When hyper-resolution is used as an inference rule on a problem which formulates as a Horn 
set, only positive unit clauses are generated. The fact that only unit clauses are generated appears 
beneficial. However, in those problems in which the clauses contradicting the theorem contain a 
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negative unit clause, the negative unit clause cannot be utilized until the last step of the proof. 
This inability to exploit the denial of the theorem until the last step of the proof is a serious 
drawback of hyper-resolution. In order to retain the positive effect of generating only unit clauses 
and to allow the use of negative unit clauses, an inference rule yielding unit resolvents (similar to 
one discussed by Chang[l]), Unit-Resulting (UR) resolution, was defined and implemented. 

Definition. Suppose that the ordered set of (possibly non-unique) clauses 

{N, E,, Ea.. . Ei-,, Ei+,, . . . Eq) 

satisfy the following conditions: 

(i) No two clauses in the set contain occurrences of the same variable. 
(ii) Each of the clauses Ek, 1 5 k 5 q, k# i is a unit clause. 
(iii) The clause N contains 4 literals, which may be ordered and referred to as 

(L,, Lz, L3,. . . Lq). 
(iv) There exists a most general substitution (Y such that LY unifies the literal in Ek with L, 

(except that the signs must be opposite), 1 5 k % q, k # i. 

Then the unit clause 
{Lb} 

is called the UR-resolvent of the ordered set of clauses. It is convenient to represent the 
UR-resolvent as 

(N, E,, Ez,. . . %,,I, Ei+,, . . . Eq), 

since it is then clear which literal in N is matched. 
Example. Consider the clauses 

N = { - P(V0, VI, V2), - P(V1, V3, V4), - P(V0, V4, VS), P(V2, V3, VS)} 

A = {P(VO, VO, E)} B = {P(E, VO, VO)} 

which arise typically from the axioms of an associative multiplicative system with an identity. 
The clause {P(E, E, E)} is a UR-resolvent represented an (N, A, A, B, I). 

UR-resolution has been successfully implemented. The results of this implementation are 
given in a later section. It is only proper to note that authors in the past have considered inference 
procedures in which unit clauses are inferred by a sequence of unit resolutions. It should be 
stressed that in the implementation of UR-resolution it was not implemented as a sequence of 
unit resolutions. Rather, the program proceeds by extending a substitution until all of the 
pertinent literals are unified. Only then is the substitution applied to a literal, creating the 
UR-resolvent. It is essentially the same distinction that exists between viewing hyper-resolution 
as a positive inference rule and viewing it as producing a resolvent by a sequence of Pl 
resolutions. 

6. SCHEMATA 

In many instances it will be the case that UR-resolution will produce a clause that is already in 
the clause space, a clause which demodulates to a clause in the clause space, or having some 
other property which would preclude it from being added to the clause space. It is desirable to 
classify those clashes which give rise to resolvents which should not be added to the clause 
space. For example suppose the clause space contains the following clauses: 

w = { - P(V0, Vl, V2), - P(V1, v3, V4), - P(V0, v4, V5), P(V2, v3, VS)) 

A = {P(VO, VO, E)} B = {P(VO, E, VO)} C = {P(E, VO, VO)} 

Then the UR-resolvent (N, B, C, A, I) is A, and the UR-resolvent (N, B, C, B, I) is B. In fact if X is 
any unit clause in the clause space, the UR-resolvent (N, B, C, X, I) is X. Thus, there is no need to 



8 R. OVERBEEK 

form the resolvents of the form (N, B, C, X, I). In order to describe such a family of clashes the 
following concepts have proven useful. 

Definition. A schema is an ordered set 

s = {&A,, AZ,. . . Ai-,,I, Ai+l,. . .A,} 

where 

(i) A0 is a clause containing n literals, and 
(ii) Ak, 1 I k 5 n, kf i is either a clause or a variable. 
Thus if A and B are clauses, each of the following ordered sets is a schema. 

(a) {A B, I> 

@I {A, 1, Xl 

Cc) {A, X, I, X, Bl 

(4 {A, X, 1, Y, Bl 

Here the symbols X and Y are used to denote distinct variables. The concept of a schema 
facilitates the description of families of UR-resolvents as described below. 

Definition. A schema S = (A,,, A,, . . . , A,) is said to match the UR-resolvent (N, E,, . . . Ei_,, 
I, El+,, . . . Eq) providing. 

(i) Ao=N and n=q 
(ii) there is an assignment of values to the variables of S such that for each Ak 15 k 5 q, 

k # i, Ak = & i.e. if A,, is a clause, Al, = Ek ; and if Al, is a variable the value of the variable 
A,, is Ek. 

Example. Consider the clauses: 

N = { - P(V0, Vl, V2), - P(V1, V3, V4), - P(V0, V4, V5), P(V2, V3, VS)} 

A = (P(V0, VO, E)} B = {P(VO, E, VO)} 

The clause {P(E, E, E)} obtained by clashing A against the first and second literals of N and B 
against the third literal of N is a resolvent represented by (N, A, A, B, I). This UR-resolvent 
matches each of the schemata 

(4 W, A, A B, I> 

(b) {N, X, X, B, I) 

(c) IN, X, X, Y, I> 

(d) IN, X, Y, B, I} 

but not the schema 

(e) {N, X, B, X, 11 

The theorem proving program has the capability of accepting a set of schema as input. In this 
case only UR-resolvents which match no schema are formed. By a judicious selection of the set 
of input schema a significant reduction in the number of generated clauses can be obtained for 
some problems. 

7. THEIMPLEMENTATIONOFUR-RESOLUTION 

UR-resolution has been successfully implemented. Generally it seems that for this type of 
theorem, the schemata may be used to reduce the number of generated clauses by 5 to 20%. AS 
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there are no known necessary and sufficient conditions for selecting schemata as input to the 
theorem-prover, a representative set of the schemata used for theorem 4 are discussed here. 

(A) Consider the following clauses: 

C7 = { - PROD(V0, Vl, V2), - PROD(V0, V3, V4), - SUM(V1, V3, V5), 

- SUM(V2, V4, V6), PROD(V0, VS, V6)) 

C31= {PROD(VO,O, 0)) C4 = {SUM(VO, 0, VO)} 

If C4 is used to remove the third and fourth iiterals of C7, and C31 used to remove the second 
literal the resulting clause is 

{ - PROD(V0, Vl, V2), PROD(V0, Vl, V2)). 

As this is a tautology it suggests the two schemata (C7, I, C31, C4, C4, X} and (C7, X, C31, C4, 
C4, I} to be used as input to the theorem prover. Indeed if A is any unit clause such that (C7, A, 
C31, C4, C4, I) or (C7, I, C4, C4, A) is a UR-resolvent, the resolvent is A. 

(B) Consider the clause 

C8 = { - SUM(V0, Vl, V2), - SUM(V0, V3, V4), - PROD(V1, V3, V’S), 

- SUM(V0, VS, V6), PROD(V2, V4, V6)} 

C29 = {PROD(VO, VO, VO)}. 

If C29 is used to remove the third literal, the resulting clause is 

{ - SUMWO, Vl, V2), - SUM(V0, Vl, V6), - SUM(V0, Vl, V6), PROD(V2, V4, V6)). 

It is easily seen that any clause A that matches against the first three literals may be used to form 
the UR-resolvent (C8; A, A, C29, A, I). The resolvent if {P(t, t, t)} where t is the third argument of 
A. But this is subsumed by the axiom C29 = {P(VO, VO, VO)}, so the schema (C8, X,X, C29, X, I} 
should be used to prevent such clashes. 

(C) Consider the clause 

C6 = { - PROD(V0, Vl, V2), - PROD(V0, V3, V4), - SUM(V1, V3, VS), 

- PROD(V0, V5, V6), SUM(V2, V4, V6)). 

and the derived clauses 

C40 = {PROD(VO, Vl, F2(Vl, VO)) 

C42 = {PROD( 1, VO, VO)} 

If C40 is used to remove the first and second literals, and C42 used to remove the fourth literal the 
clause 

{ - SUM(V1, V3, VS), SUM(Fl(V1, l), F2(V3, l), V5)) 

is obtained. If A = SUM(t1, t3, t5) is used to clash against the first literal of this clause, the clause 
SUM(F2(t 1, l), F2(t3, I), t5) is obtained. Since this clause demodulates to A, the schema 
(C6; C40, C40, X, C42, I) is used to prevent such clashes. 

(D) Finally if clause C42 is used to remove the first and second literals of C7, the clause 

{ - SUM(V1, V3, VS), - SUM(V1, V3, V6), PROD(l, V5, V6)) 

is obtained. If A and B are any clauses such that (C7, C42, C42, A, B, I) is a UR-resolvent, the 
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resolvent is of the form PROD(l, t5, t6), where t5 is the third term of A, and t6 is the third term 
of B. However, this resolvent will be obtained from the clauses 

Cl2 = { - SUM(V0, Vl, V2),- SUM(V0, Vl, V3), EQUAL(V2, V3)j 

and 

C20 = { - EQUAL(V0, Vl), - PROD(V2, V3, VO), PROD(V2, V3, VI)} 

as follows. The UR-resolvent (C12, A, B, I) is C = {EQUAL (t5, t6)) then the clash 

(C20, c, C40,l) 

is {P(l, t5, t6)). Since there is no reason to generate the clause twice, the schema 
(C7, C42, C42, X, Y, 1) was added to prevent one derivation of this clause. 

In summary the schemata presented above are used to curtail the generation of UR-resolvents 
that (i) are already in the clause space, or (ii) demodulate to a clause in the clause space or (iii) 
may be derived by another series of inferences. In both theorems each schema was added for one 
of these reasons. 
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APPENDIX A 

---- TtiE FDLLO~!ING ARF CROIJP AXIOIIS ---- 

. . . . TtiE OPERATION * IS CLOSED , . . . 

CL P(X,Y,F(X,Y)) 

,.,. E IS A LEFT AEID RIGHT IDENTITY . . . . 

CL P(E,X,X) 
CL P(X,E,X) 

. . . . G(X) IS A LEFT AND RIGlIT INVERSE ,... 

CL P(G(X),X,E) 
CL P(X,G(X),E) 

. . . . THE OPERATION * IS ASSOCIATIVE . . . . 

CL -P(X,Y,VO) -P(Y,Z,V) -P(VO,Z,lJ) P(X,V,kI) 
CL -P(X,Y,VlJ) -P(Y,Z, VI -P(X, V,W) P(VO,Z,I4) 

. . . . . THE OPERATION l IS WELL DEFIIJED . . . . 

CL -P(X,Y,Z) -P(X,Y,\J) EQllAL(Z,W) 

---- EQUALITY AXlOt.lS ---- 

CL EQUAL(X,X) 
-EQrJAL(X Y) -EQ1lAL(Y,Z) 

:: -EQUAL(X:Y) 
EQfJAL(X, %I 

EQUALCY, XI 

---- EQUALITY SUBSTITUTION AXIObIS ---- 

CL -EQUAL(X,Y) EQUAL(G(X),G(Y)) 
CL -EQUAL(X;Y) ECiUAL(F(X,i~),F(Y,W)) 
CL -EQUAL(X,Y) EQIJA L (F (14, X 1, F ( W, Y 1 1 
CL -EQUAL(X,Y) -P(X,iJ,Z) P(Y,hJ,Z) 
CL -EQUAL(X,Y) -P(\J,X,Z) P(II, Y, Z) 
CL -EQUAL(X,Y) -P(W,Z,X) P(\J,Z,Y) 
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TH EOR EM 1 

----- SPECIAL t1YPOTHESIS ---- 

. . . . X CUBED EQUALS THE IDENTITY E . . . . 

CL -P(X,X,Y) P(X,Y,E) 
CL -P(X,X,Y) P(Y,X,E) 

---- THE NEGATION OF THE THEOREM ---- 

. . . . ((X,Y),Y)=E . . . . 

CL P(A,B,C) 
CL P(C,G(A),D) 
CL P(D,G(B),H) 
CL P(H, B, J) 
CL P(J,G(H),K) 
CL -P(K,G(B),E) 

THEOREM 2 

---- THE FDLLOlJlNG ARE RING AXIOh!S ---- 

. . . . E IS AEJ ADDITIVE IDENTITY . . . . 

CL S(E,X,X) 
CL S(X,E,X) 

. . . . TtiE SUM IS CLOSED , . . . 

CL S(X,Y, J(X,Y)) 

. . . . PROllUCT IS CLOSED , . . . 

CL P(X,Y,F(X,Y)) 

. . . . G(X) IS TtlE LEFT AND RlGtlT ADDITIVE INVERSE ..,. 

CL S(G(X),X,E) 
CL S(X,G(X),E) 

. . . . ADDITION IS ASSOCIATIVE . . . . 

CL -S(X,Y,VO) -S(Y,Z,V) -S(X,V,W) S(VO,Z,~I) 
CL -S(X,Y,VO) -S(Y,Z,V) -S(VO,Z,W) S(X,V,U) 

. . . . MULTIPLICATION IS ASSOCIATIVE . . . . 

CL -P(X,Y,VO) -P(Y,Z,V) -P(X,V,lJ) P( vu, z, W) 
CL -P(X,Y,VO) -P(Y,Z,V) -P(VO,Z,W) P(X, v, WI 

a... ADDI TI ON I S CO~1f.l~lTATI VE . . . . 

CL -S(X,Y,Z) S(Y,X,Z) 

. . . . blULTIPLlCATIOH DISTRIBUTES OVER AOPITION . . . . 

CL -P(VO,Vl,VZ) -P(VO,V3,V4) -S(Vl,V3,V5) 
-P(VO,V5,VG) S(V2,V4,VG) 

CL - P( vo, Vl, v2 ) -P(VO,V3,V4) -S(Vl,V3,V5) 
-S( V2, WC, V6 1 P(V0, V5,V6) 

CL -P(VO,Vl,V2) -P(V3,Vl,V4) -S(VO,V3,V5) 
-P(V5, Vl, VG) S( v2, v4, V6 1 

CL -PC-VO,Vl,V2) -P(V3,Vl,V4) -S(VU,V3,V5) 
-S(V2, v4, V6 1 P(V5,Vl,V6) 

---- EmTlJALI TY AXIOIIS ---- 

CL E!llJ.~L ( x, x 1 
CL -EQUAL(X,Y) EQtlAL(Y, X) 
CL -E,1IJAL(X,Y) -EQtJAL(Y,Z) EQIJALCX, Z) 

II 

____ E:(UALI TY SlJRSTI TUTION AXIOMS ---- 

;: -EQU/?L(X,Y) -S(X,rJ,Z) S(Y,‘vJ,Z) 

-E(ltJAL(X,Y) -S(\d,X,Z) S(\I,Y,Z) 

CL -EQUAL(X,Y) -S(II,Z,X) S(\J,Z,Y) 

CL -E:]IJAL(X,Y) -P(X,kI,Z) P (Y, !%!, 2 ) 
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CL -EQIfAL( X, Y) -P(iI, X 
CL -liQUAL(X,Y) -P(ll,L 
CL -EQlJAL(X,Y) EQIJAL 
CL -E!)IIAL(X,Y) C Q Ii A I_ 
CL -EQUAL(X,Y) EQUAL 
CL -EQIIAL( X, Y 1 E’lUA L 
CL -EdUAL(X,Y) EQUAL 

,Z) PC’,, Y, Z) 
,X1 l’(‘l, z, Y) 
(G(X),G(Y)) 
(F(X.IJ).F(Y.bI)) 
(F(!/;X),F(:J;Y)) 
(\J(X,IJ),J(Y,\I)) 
(J(!!,X),J(\r,Y)) 

. . . . SUII Al!D PRnDllCT AKE llELL DCFI i’EQ . . . , 

CL -S(X,Y,!i) -S(X,Y,Z) EQIlAL(‘I, 7.1 
CL -P(X,Y,II) -P(X,Y,Z) EIIJAL(‘J,Z) 

---- LEllt:hS PROVED ---- 

. . . . CANCELLATI OH LAI.17 . . . . 

CL -S(X,Y,Z) -S(X,li,Z) EQUAL(Y,bI) 
CL -S(X,Y,Z) -S(ii,Y,Z) EQIIAL(X,‘I) 

---- T’IE NEGATIOII OF THE THEOREM ---- 

. . . . x**2 = x => CDI,lIIUTAT I VI TY . . . . 

CL P(X,X,X) 
CL t’(A, B,C) 
CL -P(B,A,C) 

TttEOREM 3 

---- LFti?l9S PRUVED ---- 

. . . . ESTABLI StiED IDENTITIES . . . . 

CL EQUAL(F(X, E),X) 
CL EIIUAL(F(E,X),X) 
CL EQllAL(F(C(X),X),E) 
CL EQltAL(F(X,r;(X)),E) 
CL EQlJAL(r;(c(X)),X) 
CL EQIJAL(G(F), F) 

---- THE IJEGATlOll OF T,tE THEOREId ---- 

. . . . THE FOLLOWI PIG CLAUSES DENY THAT . . . . 

. . . . SUBGROUPS OF IIJPEX 2 ARE NORIIAL . . . . 

CL (J(E) 
CL -u(x) O(r;(X)) 
CL -O(X) -O(Y) -P(X,Y,Z) U(Z) 
CL -EQUAL(X,Y) -D(X) O(Y) 
CL -EQUAL(X,Y) EQUAL(I (i/,X), I(1I,Y)) 
CL -EQUAL(X,Y) E,~UAL(I(X,I,~),I(Y,il)) 
CL II(X) 3(Y) D(I (X,Y)) 
CL O(X) 0(Y) P(X, I (X,Y),Y) 
CL O(B) 
CL P(B,G(A),C) 
CL P(A,C,D) 
CL -O(D) 

---- A BOOLEAN ALGERRA IS nEF1NEt-I TO BE A SET (9) ---- 
---- TOCETHER IITti T:JO RIHARY OPERATIONS (+), (. 1 ---- 
---- SATISFYING T!iE FOLLO’~lNr; .AXIOMS ---- 

* . . . DEFI III TI 014 dF THE SIJM AND PROnlJCTS . , . . 
. . . . PKEFIXES AND FIINCTIONS . . . . 

CL SUM(X,Y,Fl(X,Y)) 
CL PROD(X,Y,FZ(X,Y)) 

. . . . Pl) . . . . 

. . . . TtiE OPERATIONS (+I AND (. 1 ARE COI.‘b*IJTATIVF . . . . 

CL -S\JCI(X,Y,V3) SlJivl(Y,X,V3) 
CL -PROn(X,Y,V3) PROD(Y,X, V3) 

. . . . P2) I... 

. . . . THERE CXISTS IN (RI IDENTITY ELEblEIdTS (Cl,?21 . . . . 
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. . . . RELATIVE TO THE OPERATICIrIS (+) 4Nn (.) . . . . 

. . . . RESPECTIVFLY . . . . 

CL SlJM(X, Cl, Xl 
CL SUM(Ci x. Xl 
CL PRoNX:Ci, X) 
CL PRiID(CZ,X,X) 

. . . . P3) . . . . 

. . . . EACti OPERATIOIJ r)lSTRl OllTFS r)VFR T'?E (ITtiER . . . . 

. . . . x.(Y+z) = cx,y, +(x.z) (Y+z).x = (Y.X) + (Z.X) . . . . 

CL -PRUD(X,Y,Vl) -PROC(X,Z,VZ) -SUrl(Y,Z,V3) -PROn(X,!!3,!'4) 
SUf?(Vl,V2,V4) 

CL -PRUD(X,Y,Vl) -PROD(X,Z,V2) -SIJrI(Y,Z,V3) -SIJM(Vl,V2,V4) 
PRUD(X,V3,w+) 

CL -Pf?L)D(Y,X, vl) -PKOD(Z,X,V2) -SIJrI(Y,Z,V3) -PROD(VJ,X,V4) 
SUK( Vl, v2, v4 1 

CL -PROD(Y,X,'/~) -PROO(Z,X,V2) -SIJf."(Y,Z,V3) -SUM(Vl,VZ,V4) 
PR3D(V3,X,'/4) 

. . . . x+(Y.z) = (X+Y).(X+Z) (Y.z)+X = (Y+x).(Y+z) . . . . 

CL -Suti(X,Y,Vl) -SIII*lo(,Z,V2) -PROD(Y,Z,V3) -SlJbl(X,V3,\!4) 
PROD(V1,'/2,V'+) 

CL -SuM<X,Y,Vl) -Sull(X,Z,V2) -PROI?(Y,Z,V3) -PROD(vl,'/Z,V4) 
suf:(X, V3,V4) 

cL -suc!(Y,x,vi) -s~~(z,x, v2) -pRo~(Y,z,v3) -suk.~(v3,x, v4) 
PRUD(Vl,VP,V4) 

CL -SIJI!(Y,x,Vl) -surt(z,x,vz) -PROn(y;Z,v3) -PanD(Vl,V2,v4) 
SUM(V3, x, v4 1 

. . . . P4) ..*. 

. . . . FO9 EVERY ELE:.IEr!T (X) 114 A YOULEA:I +‘iLGE3RA . . . . 

. . . . THE'iE EXISTS -(XI SlJCIi TIiAT: . . . . 

. . . . x + -(X) = c2 A:ln -(X) x = Cl 

. . . . x . -o() = Cl AI!P -(X) 1 x = Cl :::: 

CL SIJlI(X,F5(XJ,C2) 
CL SuM(F3(X),X,C2) 
CL PR?ID(X,F3(X),Cl) 
CL PRbD(F3(X),X,Cl) 

. . . . THF OPERATIc~ilS (+) A117 (.I ARE '!ELL DEFINED . . . . 

CL -su::(x,Y,v~) -surI(x,Y,v4) E?'JAL( v3, v4 1 
CL -PRU~I,(X,Y, V31 -PROD(X,Y, V4) F!-HlAL(V3,Y4) 

---- EQIIALI TY AXIO!-IS ---- 

CL EQIJAL(X,X) 
CL -E:>UAL(X,Y) EQUAL(Y,X) 
CL -EQUAL(X,Y) -EQUAL(Y,'/l) Ei1UAl(X,Vl) 

---- Ei(UALIT‘I SIIBSTITUTtO'~ A)!IOf:S ---- 

CL -EQllAL(X,Y) -SlJ~lo!,Vl,V2) SUb~(V, 'Vl, v2 1 
CL -E,)UAL(X,Y) -SlJi~i(Vl,X,V2) SIII.'( Vl, Y, v2 ) 
CL -E,2,U:+L(X,Y) -SlJil(Vl,V2, XI SU!'( '/l,'!?,Y) 
CL -EQUAL(X,Y) -PROD(X,Vl,~~Z) o?on(y,vi,v2) 
CL -:]lJAL(Y,Y) -PxDD(Vl,X,'J2) PRO~(Vl,Y,V2) 
CL -EQilAL(X,Y) -PROD(Vl,VZ,X) Pf?OD( Vl,VZ,Y) 

CL -t?lUAL(X,Y) E!1VAL(Fl(X,'/l),Fl(Y,vl)) 
CL -ClUAL(X,Y) EI(IJAL(F:~('/~,X),F~(V~,Y)) 
CL -E')l:AI_(X,Y) El~WAL(F2(X,Vl),F2(Y,vl)) 
CL -EIIUAL(X,Y) EQlJAL(F2(Vl,X),F2(Vl,Y)) 
CL -EQ1JAL(X,Y) CI(UAL(F3(X),F3(Y)) 

---- LEI.GI~AS prtovEn ---- 

. . . . TIIF TIlEORC:l PROVER llA$ PRCVIOUSLY GIVF'I pR"r)FS . . . . 

. . . . FOR TIIF. FOLLOIIING lOENTITlES . . . . 

. . . . FOR EL~MFIdTS X,Y I rl 9 moLEa ALGERf?A CR): . . . . 

. . . . x + x = x ,!lrrn x . x = u . . . . 

CL Slll’( x, x, io 
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CL PRUD( X, X,X) 

. . . . x + C2 = Cl AIJP 

CL SlJf’( x, c2, CL 1 
c L I’ 110 I) ( x , c 1 , c 1 ) 

. . . . x + (X.Y) = x AND 

CL SIJI,i(X,F2(X,Y)X) 
CL PI?OD(X,Fl(X,Y),X) 

---- TIIE NEGATION OF TliE TtiEOREll ---- 

. . . . x + (Y+z) = (x+Y) + 2 .,.. 

CL SlJrr(C4, c5, C7) 
CL SUil( c3, c7, c3 1 
CL SIJtj(C3,C4,CI)) 
CL Sll!.~(CJ,C5,Cl0) 
CL -EQllALiCa,Clll) 

x . r1 = Cl . . . . 

x . (x+Y) = x . . . . 

TtiEUkEH 5 
TtIlS PROBLEII nFA,LS \/IT11 T4RSKI ‘S AXIOMATIZATInN OF FLF’IENTARY 
GE0HETn.Y. TtlE PROBLEfl IS TO SIiO!J TliAT IF TtiE Pnl NT A LI ES 
tBETI!EEIJ POI FJTS R AND C, THEN A MUST LllI ‘7ET’dEEN C AND B 
THE t1EANI’lGS OF THF FUNCTIOIJS A’lD PRE~-IICATES ARF AS FOLLO:JS: 

Cl, c2, C3 ARE IlJTllOOlJCE~ AS SKOLELl FIINCTIONS IN T’IF: CONVE9TFn 
FORtI OF TIIE “LO1IER ~I~lENSlON” (All). 

Fl IS A SKOLEI.1 FUNCTIOH IHTROlIttCFD I rJ THE COtIVERTED FORP Oc 
“PASC:l’S AXIOM” (Al). 

F2 AliD F3 ARE SKOLEM FIJNCTIONS IIITROI)IJCED 1 NT0 T’IE COWVERTED 
FOR!1 OF “EUCLID’S AXIOM” (As). 

F4 IS A SKOLEId FUNCTION INTRODUCED I Id TYF CONVERTED cl)QM OC 
THE “AXlOt! OF SEGMENT CONSTRUCTIOII” (AlO). 

F5 IS A SKOLEM FUEJCTION INTRODUCED IIJTO T’jF CONVERTEn FORPI OF 
TliE WEAKENED “ELE:.lENT.hRY CONTI IJiJlTY AXIOMS” (A13’). 

A, 13, AND C ARE THE POINTS t.1EtITIONED IN TtIF STATEMENT OF T’fF 
PROBLEM. 

B(X,Y,Z) IS TRUE IFF Y LIES BETIIEFN X AND Z. 
L(Xl,Yl,XZ,YZ) IS TRlJE IFF Xl IS THE SAME DISTANCE FROFd Yl 

TIIAT X2 IS FROh1 Y2. 

Iic)TE THAT THE llEAKENED FORM OF AXIOM Al3 (A13’) IS USED. 

. . . * Al . . . . 

CL - B(X,Y,X) EQUAL( X, Y 1 

. . . . A2 . . . . 

CL -B(X,Y,V) -B(Y,Z,V) B(X,Y,Z) 

..,. A3 . . . . 

Z,V) B(X,V, CL -B(X,Y,Z) -B(X,Y,V) EQUAL(X,Y) 8(X, 

. . . . A4 . . . . 

CL L(X,Y,Y,X) 

. . . . A5 . . . . 

CL -L(X,Y,Z,Z) EQUAL( X, Y) 

. . . . Ao . . . . 

Z) 

CL -L(X,Y,Z,V) -L(X,Y,VZ,W) L(Z, v, V2,W) 

. . . . A7 . . . . 

CL -B(X,!d,V) -B(Y,V,Z) B(X,Fl(W,X,Y,Z,V),Y) 
CL -B(X,\J,V) -B(Y,V,Z) B(Z,W,Fl(I!,X,Y,Z,V)) 

. . . . A8 . . . . 
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CL -H(X,V,W) -R(Y,V,Z) 
CL -I%(X,V,W) -R(Y,V,Z) 

EQUAL(X,V) B(X,Z,F2(!q,X,Y,Z,V)) 

CL -R(X,V,kJ) -B(Y,V,Z) 
EQUAL(X, VI R(X,Y,F3(W,X,Y,Z,V)) 
EQUhL(X,V) B(F2(bI,X,Y,Z,V),IJ, F3(lJ,X,Y,Z,V)) 

. . . . AY . . . . 

CL -L(X,Y,Xl,Yl) 
-R(X,Y,Z) 

-L(Y,Z,Yl,z1) -L(X,V,xl,vl) -L(Y,V,Yl,Vl) 
-R(Xl,Yl,Zl) EQUAL(X,Y) L(Z,V,Zl,Vl) 

. . . . Ale) . . . . 

CL d(X,Y,F4(X,Y,W,V,) 
CL L(Y,F4(X,Y,LJ,V),l~l,V) 

. . . . All . . . . 

CL -B(Cl,C2,C3) 
CL -U(C2,C3,Cl) 
CL -R(C3,Cl,C2) 

. . . . Al2 . . . . 

CL -L(X,IJ,X,V) -L(Y,W,Y,V) 
B(Y,Z,X) R(Z,X,Y) 

-L(Z,W,Z,V) En,tJAL(W,V) B(X,Y,Z) 

. . . . Al3 . ...' 

CL -L(V,X,V,Xl) -L(V,Z,V,Zl) -B(V,X,Z) -B(X,Y,Z) 
L(V,Y,V, FI;(X,Y,Z, Xl,Zl, VI) 

CL -L(V,X,V,Xl) -L(V,Z,V,Zl) -B(V,X,Z) -S(X,Y,Z) 
M(Xl,F5(X,Y,Z,Xl,Zl,V),Z1) 

. . . . EQUALITY AXIOIIS . . . . 

EQUAL ( X X 1 
:: -EQUAL(X’Y) EQUAL(Y X) 
CL -EQtJAL(X:Y) -EQUAL(Y;Z) EQUAL(X,Z) 

____ EQIJALITY SUBSTITUTION AXIO!,lS ---- 

CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 

:‘L 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 
CL 

-EQUAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL( X, Y) 
- EiUALt X; Y) 
-EQUAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL(X,Y) 
-EWIAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL( X,Y 1 
-EQlJAL(X,Y) 
-EQUAL(X,Y) 
-EQIJAL(X,Y) 
-F.QUAL(X,Y) 
-E:IUAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL( X, Y) 
-EQUAL(X,Y) 
-EQUAL(X,Y) 
-EQUAL( X, Y) 
-E@JAL(X,Y) 
-EQUAL(X,Y) 
-EQlIAL(X, Y) 
-EQUAL(X;Y, 
-EQUAL(X,Y) 
-EQlJAL(X,Y) 
-E;lUAL(X,Y) 
-E!>IIAL(X,Y) 
-EQUAL( X, Y 1 
-EQtJAL(X,Y) 

-B(X,\J,Z) B(Y,W,Z) 
-B(\I,X,Z) B(\J ” 7’ , #,&I 

-B(W,Z, XI R(II ,Z,Y) 
-L(X,V,IJ,Z) L (Y. V,W,Z) 
-L(V, X,CJ, Z) L(V;Y;\d,Z) 
-L(V,Id,X,Z) L( v, II, Y, z 1 
-L(V,W,Z,X) L(V,W,Y,Z) 

EQIJAL(Fl(X,Vl.V2.V3.V4).Fl(Y,Vl,V2,V3,V4)) 
EQIJAL(Fl(V1.X. ;vj;v~;v4,;Fl(vi,Y;v2,v3,V4)) 

EQUAL(Fl(Vl,V2,X,V3. ,V4),Fl(Vl,V2, Y,V3,V4)) 

EQlJAL(Fl(Vl,V2,V3,X,V4),C1(Vl,V2,V3,Y,V4)) 
EQUAL(F1(‘/1,V2,‘~3,‘~4,X),F1(V1,V2,V3,V~~,Y~~ 
EQUAL(F2(X,Vl,V2,V3,V4),F2(Y,Vl,V2,V3,V4)) 
EQUAL(FL(Vl,X.V2.V3.V4).F2(Vl,Y,V2,V3,’~4)) 
EQIJAL(F?fVl v 
EQIJAL(F 
EQUAL(F2tVl;W;V3;Vb,X);F2(Vl,V2,V3,V4,Y)) 
EQUAL(F3(X,Vl,V2,V3,V4),F3(Y,Vl,V2,V3,V4)) 
EQUAL(F3(Vl.X.V2.‘/3.V4),F3(Vl,Y,V2,V3,V4)) 
EQ(,Pl (FT(l. ._., ,..‘i;V~,X;V3;V4,;F3(Vl;Vi,Y,V3,V4)) 

\L(F3(Vl. V2,V3,X,V4),F3(Vl,V2.V3,Y,V4)) 
:;k(Fhl;V2;V3;V&X),F3(V1,V2,V3,V4,Y~~ 
EQUAL(F4(X,Vl,V2,V3),F4(Y,Vl,V2,’13)) 
FOUAL(F4(Vl,X.V2,V3),F4(Vl,Y,V2,V3)) 

EQUAL(F4(Vl;V2;V~,X,;F4(Vl;Vj,Y)) 
EQtJAL(FS(X,Vl,V2,V3,V4,VS),F5(Y,Vl,V2,V3,V4,V5)) 
E~lJAL(F5(Vl,X,V2,V3,V4,VS),F5(Vl,Y,V2,V3,V4,V5)) 
EQUAL(FS(Vl,VZ,X,V3,V4,VS~,F5~Vl,V2,Y,V3,V4,V5~~ 
EQtJAL(FS(Vl,V2,V3,X,V4,V5), F5(Vl,V2, V3,Y, V4,V5)) 
EQUAL(F5(Vl,V2,V3,V4,X,VS), FS(Vl,V2,V3, V4,Y,VS)) 
EQtJAL(F5(Vl,V2,V3,V4,VS,X),FS(Vl,V2,’J3,V4,VS,Y)) 

---- TtlE f~EGATI011 OF THE TttOERbI ---- 

CL ts(A,B,C) 
CL -B(C,B,A) 
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Appendix B 

Theorem 1. Theorem 4. 
CPU time - 1 min. 9 sec. CPIJ time - 6 rlin. 26 SCC. 
C-sets C-sets 

1. 
2. 

w;y 
3. &,2L 
4. (J,ll) 
5. (!1,9) 
u. (E,l) 
7. (D,cl) 
0 3. (C,3) 
9. (B,l) 
10. (A,11 

Theorc I 2. 
CPU tine - 3 min. 14 sec. 

c-sets 

1. (F(O,F(3,0)),99) 
n 
L. (F(F(3,0),0),99) 
3. (r,(l),l) 
4 
5: 

(F(l,l),l) 
(J(l,l),l) 

b. (C,3) 
7. (A,l) 
3. (E,l) 
Theorem 3. 
CPU time - 1 min. 45 sec. 
C-sets 
1. (A,l) 
2. (B,l) 
3. (C,l) 
4. (r!,l) 
5. (E,l) 
6. (G(l),l) 
7. (F(l,l),l) 
c 3. (l(l,l),l) 

1. (F2(1,1),1) 
2. (Fl(l,l),l) 
3. (F3(1,1),1) 
4. (Cll,l) 
5. (ClU,S) 
6. (C9,3) 
7. (C8,5) 
8. (C7,3) 
9. (rG,l) 
10. (C5,l) 
11. (C4.1) 
12: cc3;1, 
13. (C2,l) 
14. (Cl,l) 

Theorer? 5. 
CPIJ tirle - 0 min. 33 sec. 
C-sets 

1. (F5(1,1,1,1,1,1), 
2. (r-4(1,1,1,1),1) 
3. (F3(1,1,1,1,1),1) 
4. (FZ(l,l,l,l,l),l) 
5. (Fl(l,l,l,l,l),l) 
G. (r,l) 
7. (B,l) 
8. (A,11 
9. (C3,l) 
10. (C2,l) 
11. (Cl,l) 

1) 


