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Wheat biomass can be estimated using appropriate spectral vegetation indices. However,
the accuracy of estimation should be further improved for on-farm crop management.
Previous studies focused on developing vegetation indices, however limited research exists
on modeling algorithms. The emerging Random Forest (RF) machine-learning algorithm is
regarded as one of the most precise prediction methods for regression modeling. The
objectives of this study were to (1) investigate the applicability of the RF regression
algorithm for remotely estimating wheat biomass, (2) test the performance of the RF
regression model, and (3) compare the performance of the RF algorithm with support vector
regression (SVR) and artificial neural network (ANN) machine-learning algorithms for
wheat biomass estimation. Single HJ-CCD images of wheat from test sites in Jiangsu
province were obtained during the jointing, booting, and anthesis stages of growth. Fifteen
vegetation indices were calculated based on these images. In-situ wheat above-ground dry
biomass was measured during the HJ-CCD data acquisition. The results showed that the RF
model produced more accurate estimates of wheat biomass than the SVR and ANN models
at each stage, and its robustness is as good as SVR but better than ANN. The RF algorithm
provides a useful exploratory and predictive tool for estimating wheat biomass on a large
scale in Southern China.
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and
hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

NDVI (Normalized Difference Vegetation Index), Green-NDVI,
RVI (Ratio Vegetation Index), and MTVI2 (Modified Triangular

Biomass is one of the most useful indicators of crops
vegetation development and health. Measuring biomass
directly is a destructive and expensive procedure. More recent
estimates are based on remotely sensed data, such as
vegetation indices (VIs) [1-4]. Kross et al. [1] established
relationships between corn biomass and VIs such as the
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Vegetation Index 2) computed from the SPOT and Landsat
images. Gnyp et al. [3] found that SAVI (Soil-Adjusted
Vegetation Index), OSAVI (Optimized Soil-Adjusted Vegeta-
tion Index), and MTVI2 had stronger relationships with rice
biomass at the jointing stage than that at booting. Gao et al. [4]
proposed that maize biomass could be estimated by VIs
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calculated using Chinese environmental satellite (HJ) images
[e.g. NDVI, RVI, and the enhanced vegetation index (EVI)]. Jin
et al. [5] reported that the estimation accuracy of wheat
biomass was better using a combination of VIs and radar
polarimetric parameters (RPPs) than using VIs or RPPs alone.

Remote estimation of biomass requires application of diverse
methods and techniques. In recent years machine-learning
algorithms were trialed for ability to perform flexible input-
output nonlinear mappings between remotely sensed data and
biomass [6-8]. Typically, artificial neural networks (ANNs) and
support vector regressions (SVRs) were employed to couple with
VIs to build monitoring models with improved prediction
accuracy of remote estimation of biomass in crops. For instance,
Wang et al. [9] provided an effective model for assessing the
biomass of wheat with ANNs and VIs (i.e. RVI, NDVI, GNDVI,
SAVI, OSAVI, RDVI) calculated based on ASD FieldSpec data.
Clevers et al. [10] estimated grassland biomass using SVRs and
VIs such as the RVI, NDVI, WDVI, SAVI, GEMI (Global Environ-
mental Monitoring Index), and EVI (Enhanced Vegetation Index)
calculated based on ASD FieldSpec data.

Among various machine-learning algorithms, the emerg-
ing Random Forest (RF) algorithm proposed by Leo Breiman
and Cutler Adele in 2001 has been regarded as one of the most
precise prediction methods for classification and regression,
as it can model complex interactions among input variables
and is relatively robust in regard to outliers. The RF algorithm
presents several advantages; it runs efficiently on large
datasets, it is not sensitive to noise or over-fitting [11], it can
handle thousands of input variables without variable dele-
tion, and it has fewer parameters compared with that of other
machine-learning algorithms (e.g. ANN or SVR). The RF
classification algorithm has been applied to many remote
sensing domains such as land cover classification [12-14] and
other fields related to the environment and water resources
[15-16]. To our knowledge, only a few studies have reported
the use of the RF regression algorithm in remote sensing
applications, including monitoring of forest growth, wetland
vegetation, and water resources [6,17-18]. Furthermore, few
studies have employed the RF regression algorithm based on
VIs for estimating the biomass of winter wheat.

The major objectives of this study were to: (i) investigate the
applicability of the RF regression algorithm in combination with
VIs to remotely estimate wheat biomass, (ii) test the perfor-
mance of RF regression for estimating biomass, and (iii) compare
the performance of RF with that of other machine-learning
algorithms for the estimation of wheat biomass. Specifically,
based on VIs calculated from China’s environmental satellite (HJ)
charge-coupled device (CCD) images, we employed the RF
algorithm to construct models to estimate wheat biomass, and
then, the RF algorithm was compared with the SVR and ANN
machine-learning algorithms in terms of accuracy, goodness of
fit, and robustness for estimating wheat biomass.

2. Data source
2.1. Experimental design and data acquisition

Experiments were carried out in four counties (YiZheng,
JiangYan, GaoYou and TaiXing) of Jiangsu province during the

winter wheat growing seasons of 2010, 2011, 2012 and 2014. The
local wheat cultivars were Yangmai 13, Yangmai 15, Yangmai 16,
and Yangfumai 2. For each year’s experiment, fifteen sample
sites were established in each county and a plot 0of 30 x 30 m was
randomly demarcated at each site. Within each plot, five
subplots of 0.4 m x 0.4 m were established at least 10 m from
each other. During three growth stages (jointing, booting and
anthesis) wheat plants from each subplot (positions determined
with a Global Positioning System GPS, Trimble GeoExplorer 2008
Series GeoXH, Trimble Navigation Limited, USA) at each site
were collected, sealed in plastic bags, and sent to a laboratory for
analysis. In the laboratory, the wheat plants from each subplot
were dried in an oven at 80 °C for 48 h, after which the dry
weight was determined. The dry weight was divided by the
surface area of the subplot, and then the weight was converted
to kg ha™*. The biomass values of plants from the five subplots
within each plot were averaged to represent the biomass of the
entire plot.

For each stage, the pooled data from 2010, 2011, 2012 and
2014 were randomly divided into a training dataset and an
independent test dataset (75% and 25% of the pooled data,
respectively). For the training dataset, the number of samples
was 174 at jointing, 174 at booting, and 147 at anthesis. For the
test dataset, the number of samples was 58 at jointing, 58 at
booting, and 49 at anthesis. The training dataset was used to
establish models to predict biomass during each growth stage,
and the test dataset was used to test the quality and reliability
of each prediction model.

2.2. Remote sensing data and preprocessing

Remotely sensed data (HJ satellite charge-coupled device) of
wheat from the three stages were retrieved online from the
China Centre for Resources Satellite Data and Application
(CRESDA). The HJ satellite charge-coupled device (HJ-CCD)
satellite system is China’s environmental disaster and envi-
ronmental monitoring satellite system. It includes two optical
satellites, HJ-1A and HJ-1B, which are symmetrically equipped
with two CCD cameras. They comprise four multispectral
bands with a 30-m resolution and a 720-km swath. The
spectral ranges of the four bands are 430-520 nm (B;-blue),
520-600 nm (B,-green), 630-690 nm (Bs-red) and 760-900 nm
(Bs-near infrared).

All HJ-CCD image data used in this study were completely
corrected using ENVI4.7 remote sensing image processing
software. Ground control points were located with a differential
GPS unit during the field experiments. The map projection used
a geographic coordinate system (Lat/Lon) as the projection
type (WGS84) and a pixel size of 30 m x 30 m. A radiometric
calibration was conducted using the HJ satellite calibration
coefficients (e.g. gains and offsets). Atmospheric corrections
were conducted using the MOTRAN 4 model embedded in the
ENVI/FLAASH module of ENVI 4.7 software, and the input
parameters were set based on the location, sensor type and
ground weather conditions observed on the day each image was
acquired. To improve the accuracy of pixel registration to
within one pixel, coarse geometric corrections were made
based on the 1:10,000 digitized raster map, after which, precise
geometric corrections were made based on the GPS ground
control points.
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2.3. Vegetation indices

Vegetation indices (VIs) are usually used to quantify crop
biomass. This study examined 15 VIs (Table 1) reported in
literature to be well correlated with biomass. These VIs were
calculated based on the four HJ-CCD bands.

3. Models and statistics

Based on the vegetation indices (VIs) in Table 1, RF, SVR and ANN
were respectively used to remotely estimate wheat biomass
during each growth stage. In each model, the vegetation indices
were considered to be independent variables and biomass was
the dependent variable.

3.1. Random forest regression algorithm (RF)

The RF regression algorithm is an ensemble-learning algorithm
that combines a large set of regression trees. A regression tree
represents a set of conditions or restrictions that are hierarchi-
cally organized and successively applied from a root to a leaf of
the tree [34-36]. The RF begins with many bootstrap samples
that are drawn randomly with replacement from the original
training dataset. A regression tree is fitted to each of the
bootstrap samples. For each node per tree, a small set of input
variables selected from the total set is randomly considered for
binary partitioning. The regression tree splitting criterion is
based on choosing the input variable with the lowest Gini Index,

ie Ig(txx)) = 1- § f(tx(xi),j){ where f(txx,,J) is the proportion of
=1

samples with the value x; belonging to leave j as node t [36]. The
predicted value of an observation is calculated by averaging over
all the trees. Two parameters need to be optimized in the RF: the
number of regression trees (ntree; default value is 500 trees) and
the number of input variables per node (mtry; default value is 1/3
of the total number of variables).

To model the relationship between VIs and wheat biomass
in this study, given the set of training input-output (i.e. VIs-
biomass) pairs, the RF regression model was conducted as
follows:

1) ntree bootstrap sample sets, i.e. X; (i = bootstrap iteration, and
its value was limited to the range of [1, ntree]), were randomly
drawn with replacement from the original training dataset.
The elements not included in X; are referred to as out-of-bag
data (OOB) for that bootstrap sample set.

2) At each node per tree, mtry vegetation indices were
randomly selected from all 15 vegetation indices and the
best split from among those indices was chosen according
the lowest Gini Index.

3) For each tree, the data splitting process in each internal
node of a rule was repeated from the root node until a
previously specified stop condition was reached.

For the three stages, the parameter values (ntree and mtry)
were optimized using the training dataset and RMSE to find
the values that could best predict the wheat biomass. For each
stage, ntree values from 1000 to 9000 with intervals of length
1000 were tested [37-41], and mtry was tested from 3 to 10
(Fig. 1). The ntree and mtry values that yielded the lowest RMSE
were selected. According to Fig. 1, the values of ntree and mtry
were 1000 and 3 at jointing and booting, respectively, and 3000
and 9 at anthesis.

3.2. Support vector regression (SVR)

The Support Vector Machine (SVM) was originally used for
classification problems, i.e. support vector classification (SVC)
and was then extended for use with regression problems, i.e.
namely support vector regression (SVR) [42]. The quality of
the SVR models depends on a proper setting of the SVR
meta-parameters, the loss function ¢ and the error penalty factor
C. In addition, selection of the kernel function has an important

Table 1 - Formulas of remote sensing vegetation indices.

Acronym Index Formula Reference
NDVI Normalized Difference Vegetation Index (Rnir—RRr)/(Rwir + RR) [19]
SAVI Soil-Adjusted Vegetation Index (Rnir—RR) / (Ruir + Rr + 0.5) x 1.5 [20]
OSAVI Optimized Soil-Adjusted Vegetation Index (Rnir—RR) / (Rnir + Ry + 1.6) x 1.16 [21]
NRI Nitrogen Reflectance Index (RG-Rr) / (Rg + RR) [22]
GNDVI Green-NDVI (Raiz-Rc) / (Ruir + Ro) [23]
SIPI Structure Insensitive Pigment Index (Rnr—Rs) / (Rnir + Rp) [24]
PSRI Plant Senescence Reflectance Index (Rr—Rs) / Rnir [25]
RVI Ratio Vegetation Index Rnir / Rr [26]
CRI Carotenoid Reflectance Index 1/Rg + 1/Rnir [27]
EVI Enhanced Vegetation Index 2.5 x (Rnir —Rr) / (1 + Rair + 6 x Rg — 7.5 x Rp) [28]
MSR Modified Simple Ratio Index (Rnr / Rr) = 1) / /Rnir/Rr + 1 [29]
NLI Nonlinear Vegetation Index (Rnir % Rnir — Rr) / (Rnir % Ruir + Rg) [30]
RDVI Re-normalized Difference Vegetation Index (Rnr — Rr) / VRar + Rr [31]
TVI Transformational Vegetation Index VNDVI + 0.5 [32]
MTVI2 Modified Triangular Vegetation Index 2 1.5 x [1.2 x (Rnir — Rg) = 2.5 x (RR = Rg)] / [33]

[\/2 X (Raw +1)2-6 x Rui +5 x vRz-05]

R; denotes reflectance at band i (nanometer); Rg represents reflectance of the blue band of HJ-CCD; R represents reflectance of the green band of
HJ-CCD; Ry represents reflectance of the red band of HJ-CCD; Ryr represents reflectance of near infrared band of HJ-CCD.
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Fig. 1 - Optimization of random forest parameters (ntree and mtry) using RMSE.

impact on the final models. The commonly used radial basis
kernel function (RBF), i.e. K(x,x') = exp (|| x—x'2/0%) was applied in
this study. Finally, we employed a cross-validation procedure to
optimize these parameters including C, ¢, and the RBF kernel
parameter o, yielding values of 30, 470 and 2.5 at jointing, 5, 400
and 1.1 at booting, and 5, 850 and 8 at anthesis, respectively.

3.3. Artificial neural network (ANN)
Among various machine-learning algorithms, artificial neural

networks (ANNs) are the most common approaches to
develop nonlinear regression [43]. Training an ANN needs

selections including the network structure (i.e. the number of
hidden layers and nodes per layer), proper initialization of the
weights, learning rate, and training algorithm. In this work,
the input layer was vegetation indices, and the output layer was
wheat biomass. We optimized a two-layer back propagation
neural network (BPNN) with tan-sigmoid (Le. f(x) = 2x-1)
hidden neurons and log-sigmoid (i.e. g(x) = 171=) output neurons
using the Levenberg-Marquardt algorithm. The ANN weights
were initialized randomly according to the Nguyen-Widrow
method [44]. Meanwhile, a cross-validation procedure was
employed to set the number nodes per layer (i.e. 67 at jointing
and booting, and 49 at anthesis, respectively).
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3.4. Statistical analysis

Regarding model performances in this study, we used the
coefficient of determination (R?) to account for goodness-of-fit,
and the root mean square error (RMSE) and relative RMSE
(%) to assess accuracy. The relative RMSE was used to
compare performances across different machine-learning
algorithms [44]. Generally, the performance of the model
was estimated by comparing the differences in R> and RMSE
of the estimated-versus-measured value plots. Higher R* and
lower RMSE values, respectively, corresponded to higher
precision and accuracy of a model for predicting wheat
biomass.
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Fig. 2 - One-to-one relationships between predicted and
observed biomass values.

4. Results

4.1. Evaluating model accuracy

Using the R? and RMSE values as metrics the performances of
all models at each stage were evaluated with the test data
from the corresponding stages and compared to identify the
best model. For each stage, the R? and RMSE values between
estimated (using the RF, SVR or ANN model) and measured
biomass values were compared by means of scatter plots
(Fig. 2). The performance of the RF model shows an overall
improvement compared to that of the SVR and ANN
models. Compared with SVR, the RMSE of the RF model
decreased to 32.3 kg ha™! at jointing, 296.1 kg ha™* at booting,
and 366.0 kg ha™* at anthesis, and the corresponding R? values
increased to 0.067, 0.210 and 0.173; compared with ANN, the
RMSE decreased to 293.6, 1490.9 and 1215.1 kg ha ! at each
stage, and R? increased by 0.233, 0.287 and 0.297, respectively.

4.2. Evaluating model robustness

Relative RMSE results of the three regression methods for
biomass at different growth stages are presented in Fig. 3. The
error bars provide an idea of model robustness with respect to
the input data. Different stages hardly impact the RF and SVR
models performance in training or testing datasets. For each
stage, the relative RMSE for the RF and SVR models respec-
tively stabilize around 8% in the training and 20% in testing
datasets. Regarding ANN, the performance of the training
dataset was also robust at all three stages with the relative
RMSE about 4%, but it performed unstably when applied to
testing dataset. Specifically, the relative RMSE is about 35% at
jointing, about 45% at booting, and about 30% at anthesis. For
each model at each stage, the performance in testingis poorer
than in the training dataset. ANN, in particular, showed a
much better performance in training than in testing. Hence,
in further analysis it will be important to determine how
accurately a trained model performs when tested against
ground reference measurements rather than the training
data [44].

5. Discussion

The objective of this study was to employ accurate and robust
random forest (RF) machine-learning algorithms to accurately
estimate wheat biomass. Previous studies already used machine-
learning algorithms such as SVR or ANN for remote estimations
of biomass [6-10]. It remains however to be questioned whether
these are the most adequate algorithms to fulfill the requirement.
This study compared RF with SVR and ANN for accuracy and
robustness.

By analyzing the estimated-versus-measured values
(Fig. 2) the RF model had higher R? and lower RMSE values
than the SVR and ANN models for biomass estimates at each
growth stage, indicating that RF models can provide accurate
biomass estimations. Each node of the standard regression
tree is created using the best split among all variables. Unlike
this strategy, RF splits each node using the best among a
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Fig. 3 - Relative RMSE (%) results for biomass estimation
using RF, SVR, and ANN at different growth stages.

subset of variables chosen randomly at the node. The specific
size of the subset is the parameter mtry. Although this
method seems to be contradictory, it performs relatively well
compared to SVR and ANN (Fig. 2).

RF rendered similar robustness with SVR at different
growth stages in both the training and testing datasets
(Fig. 3), and shows better robustness than ANN at each stage.
Meanwhile, the RF model for each stage has a little better
generalization capability than the ANN model, which behaves
relatively unpredictable when used with independent input
data that deviate from what was presented during the
training stage [44,45]. Compared with the RF and SVR results
for each stage, ANN shows much poorer performance in
testing than in training. This is due to the fact that ANN is
often applied to large amounts of sampling data, but SVR and
RF are suitable for small amounts of sampling data. Another
reason for this is possibly that the learning ability is too strong

during the ANN process training, and thus the model obtained
cannot reflect the hidden rules of samples that ultimately
weaken prediction ability.

Most of the 15 vegetation indices in this study are correlated.
However, as demonstrated by Cutler et al. [46] RF is not sensitive
to collinearity. This is very valuable in modeling, especially for a
complex, nonlinear system because it is commonly difficult to
decide which variable to remove when two (or more) variables
correlate with each other [47].

For estimation models of vegetation biochemical and bio-
physical variables to be useful in guiding on-farm crop manage-
ment, they must perform well in farmers’ fields. Therefore, data
that fully represents real farm conditions should be included in
model training and testing. Data in many previous studies were
based on designated experimental sites rather than farmers’
fields [48-50]. In the present study, we pooled data from farmers’
fields in 2010, 2011, 2012 and 2014, and then randomly divided it
into a training dataset and an independent testing dataset (75%
and 25%, respectively).

A single vegetation index was usually selected in previous
studies, to remotely estimate biomass in crops [51-52].
However, a single vegetation index is influenced by different
degrees of saturability or soil background, and is consequently
affected by regional specificity and timeliness [53]. This study
shows that use of a combination of 15 vegetation indices
and the RF regression algorithm improved the accuracy of
prediction of wheat biomass. We propose for the first time use
of RF regressions for remote monitoring of biomass, but the
prediction accuracy of the method should be further investi-
gated by optimizing the modeling algorithms.

Previous studies of crop growth monitoring based on
remotely sensed data have often used a single algorithm to
monitor different growing parameters at different growth
stages [54-55]. In this work, we used RF to estimate wheat
biomass on a much larger scale, assuming that it would help
to improve wheat growth monitoring in the study areas. It
would be interesting to apply the method to monitor other
crop growth parameters with different features to verify
reproducibility. This research contributes to the establish-
ment of management strategies for non-destructive monitor-
ing and precise modeling methods.

6. Conclusion

Biomass is an important indicator of crop growth. To estimate
biomass in wheat rapidly and non-destructively, an improved
method that combines vegetation indices based on HJ-CCD
and random forest (RF) regression method is proposed.
Estimation accuracy and robustness of the RF model were
verified for each stage (i.e. jointing, booting, and anthesis).
Furthermore, the RF model results were compared with
support vector regression (SVR) and artificial neural network
(ANN) models. The estimation accuracy of RF outperformed
that of SVR and ANN at each stage. For RF models, the R?
values for the estimated-versus-measured biomass regres-
sion for the three stages were 0.533, 0.721 and 0.79, respec-
tively, and the corresponding RMSE values were 477, 1126.2
and 1808.2 kg ha™*. The RF model was as robust as SVR and
more robust than ANN. The relative RMSE values obtained
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from the RF and SVR models were about 8% in training and
20% in testing for each stage, respectively. The relative RMSE
of ANN was about 4% in training at each stage, whereas
the RMSE values in testing were about 35% at jointing, 45% at
booting, and 30% at anthesis.
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