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a b s t r a c t

In order to study copula families that have tail patterns and tail asymmetry different from
multivariate Gaussian and t copulas, we introduce the concepts of tail order and tail order
functions. These provide an integratedway to study both tail dependence and intermediate
tail dependence. Some fundamental properties of tail order and tail order functions are
obtained. For themultivariateArchimedean copula,we relate the tail heaviness of a positive
random variable to the tail behavior of the Archimedean copula constructed from the
Laplace transform of the random variable, and extend the results of Charpentier and
Segers [7] [A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, Journal of
Multivariate Analysis 100 (7) (2009) 1521–1537] for upper tails of Archimedean copulas. In
addition, a new one-parameter Archimedean copula family based on the Laplace transform
of the inverse Gamma distribution is proposed; it possesses patterns of upper and lower
tails not seen in commonly used copula families. Finally, tail orders are studied for copulas
constructed from mixtures of max-infinitely divisible copulas.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For statistical modeling with copulas, properties such as strengths of upper/lower tail dependence and reflection
symmetry or direction of reflection asymmetry are important in deciding on appropriate copulas. For example, for the
tail asymmetry phenomena of financial markets [33,32], copula families with a variety of tail behavior are useful for
statisticalmodeling. Although, themultivariate Gaussian and t copula families have awide range of dependence, they are not
appropriate, when there is reflection or tail asymmetry. But copulas can be constructed from other methods to get different
patterns of joint tail behavior. Then for the use of copulas, for the inference of joint tail probabilities, sensitivity analysis over
different families can be performed.

The study of tail behavior of randomvectors has received increasing attention, especially in the framework of quantitative
riskmanagement. LetX = (X1, . . . , Xd)

T be a randomvectorwith distribution function F and continuous univariatemarginal
distribution functions Fi, i = 1, . . . , d. Due to Sklar’s theorem [16,30],

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (1)

in which the copula function C : [0, 1]d → [0, 1] is uniquely determined by

C(u1, . . . , ud) = F(F−1
1 (u1), . . . , F−1

d (ud)), (2)

where F−1
i is the inverse function of Fi, i = 1, . . . , d. The corresponding survivor function C is defined as C(u1, . . . , ud) =

1+
∑

I⊂{1,...,d}(−1)|I|CI(ui, i ∈ I), where CI is the I-marginal of the copula C with |I| the cardinality of the set I . In this paper,
we will study tail behavior of the copula C .
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There exist several related methodologies. The lower tail dependence parameter is defined as

λL = lim
u→0+

u−1C(u, . . . , u),

and the upper tail dependence parameter is defined similarly with the survival function C . As extensions, Juri and
Wüthrich [20,21] studied tail dependence from a distributional point of view, Klüppelberg et al. [22] defined the so-called
tail dependence function of X as

λX(x1, . . . , xd) = lim
t→0

t−1P[1 − F1(X1) ≤ tx1, . . . , 1 − Fd(Xd) ≤ txd],

and [31,18,25] further studied theproperties of the tail dependence function and their applications formultivariate t copulas,
vine copulas and heavy-tailed scale mixtures of multivariate distributions, respectively. We refer to the above papers for
details and properties of tail dependence functions.

For the study of tail dependence behavior of random vectors, we not only have interest in the cases where the random
vector is asymptotically dependent, but also where asymptotic independence exhibits. Ledford and Tawn [23] proposed
the following model for a bivariate random vector (X1, X2)

T, where X1 and X2 are unit Fréchet distributed with cumulative
distribution functions (cdf) Fi(x) = e−1/x, x ≥ 0, i = 1, 2, and are non-negatively associated,

P[X1 > r, X2 > r] ∼ ℓ(r)r−1/η, r → ∞, (3)

where the notation ‘‘g(x) ∼ h(x), x → x0’’ means that limx→x0 g(x)/h(x) = 1, and ℓ(r) is a slowly varying function and
1/2 ≤ η ≤ 1. If we let Ui = Fi(Xi), i = 1, 2, where Fi is the cdf of the unit Fréchet and r = (− log(u))−1, then clearly

lim
u→1−

P[U1 > u,U2 > u]
(P[U1 > u])κ

= lim
r→∞

P[X1 > r, X2 > r]
(P[X1 > r])κ

= lim
r→∞

ℓ(r)r−1/η

[1 − exp(−r−1)]κ
= lim

r→∞

ℓ(r)r−1/η

r−κ
.

Thus the ‘‘tail order’’ κ that wewill introduce in Definition 2 corresponds to 1/η of Ledford and Tawn’s representation. If η =

1, i.e., κ = 1 and ℓ(r) 9 0, X1 and X2 are upper tail dependent with upper tail dependence parameter λU = limr→∞ ℓ(r);
if 1/2 < η < 1, they are positively associated; if η = 1/2 and ℓ(r) ≥ 1, they are ‘‘near independence’’. A lot of research has
been done following this direction. We refer to [23,24,10,15,34] for further development of this idea.

The relation (3) tells us that the power term 1/η dominates the speed of decay of the joint tail probability.We believe that
the parameter 1/η plays an important role in the study of tail dependence behavior, and deserves a new name ‘‘tail order’’
that is explained in Section 2.1, based on copula functions. Moreover, analogously to the tail dependence function, we will
propose the tail order function, which includes the information of the convergence along routes other than the diagonal.

In this paper, the emphasis is on the case where the tail order is between 1 and d for a d-dimensional random vector. We
refer to this case as ‘‘intermediate tail dependence’’ under some positive dependence assumptions; this is explained before
Example 1.

Our main contributions in this article span the following aspects: 1. We propose the concepts of tail order and tail order
functions as an integrated way to study tail behavior of multivariate copulas. 2. We relate the tail heaviness of a positive
randomvariable to the tail behavior of the Archimedean copula constructed by the Laplace transformof the randomvariable.
In our opinion, it is an insightful way to better understand the tail behavior of Archimedean copulas. 3. Our theoretical study
of tail behavior of Archimedean copulas leads to a new one-parameter Archimedean copula family, based on the Laplace
transform of the inverse Gamma distribution, which shows patterns of upper and lower tails not seen in commonly used
copula families.

The remainder of this paper is organized as follows. Section 2 introduces the concepts of tail order and tail order functions,
and some properties of them. In particular, some results on relations of tail orders of marginal copulas are given. Sections 3
and 4 contain studies of intermediate tail dependence for Archimedean copulas and copulas constructed bymixture of max-
id distributions, respectively. For multivariate Archimedean copulas, we have a more concrete result than [7] for the lower
tail, and new results for the upper tail. Asymptotic behavior of Laplace transforms of positive random variables is studied
in Section 3.1, and the new Archimedean copula family is presented in Section 3.4. Finally, Section 5 concludes with some
topics of further research. The main proofs are put in the Appendix.

2. Tail orders: definitions and properties

In this section, we define the concepts of tail order and tail order functions, indicate their use for reflection asymmetry
and derive some of their properties. The following notation is used throughout this paper: 1d = (1, . . . , 1)with d elements,
and then u1d = (u, . . . , u); Id = {1, . . . , d}; N+ = {1, 2, . . .}; [x] = max{t integer : t ≤ x};ψ (i)(s) is the ith order
derivative of ψ evaluated at s; A ⊂ Bmeans that A is a subset (not necessary proper) of B.

2.1. Multivariate tail order and tail order functions

To avoid technicalities for tail orders, we assume conditions involving regular variation of tails of copula and other
functions. Standard references on regular variation are [5,35].
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Definition 1. A measurable function g : R+ → R+ is regularly varying at ∞ with index α (written g ∈ Rα) if for any t > 0,

lim
x→∞

g(xt)
g(x)

= tα. (4)

For the lower limit at 0+, if for any t > 0, limx→0+ g(xt)/g(x) = tα , then g is regularly varying at 0+ and denoted by
g ∈ Rα(0+). Note that g(t) ∈ Rα ⇐⇒ g(1/t) ∈ R−α(0+). If Eq. (4) holds with α = 0 for any t > 0, then g is said to
be slowly varying at ∞ and written as g ∈ R0. Similarly, R0(0+) is defined. We will usually use ℓ(x) to represent a slowly
varying function, and a regularly varying function g can be written as g(x) = xαℓ(x).

Definition 2. Suppose C is a d-dimensional copula. If there exists some κL(C) > 0 such that, with some ℓ(u) ∈ R0(0+)

C(u1d) ∼ uκL(C)ℓ(u), u → 0+,

then we refer to κL(C) as the lower tail order of C and refer to λL(C) = limu→0+ ℓ(u) as the lower tail order parameter,
provided the limit exists. Similarly, the upper tail order is defined as κU(C) such that

C((1 − u)1d) ∼ uκU (C)ℓ(u), u → 0+,

with the upper tail order parameter λU(C) = limu→0+ ℓ(u), provided the limit exists.

When no confusion arises, we use the notation κ to represent lower or upper tail orders, and λ for tail order parameters.
κL(C) = 1 [resp. κU(C) = 1] and ℓ(u) 9 0 corresponds to the usual definition of upper [resp. lower] tail dependence. We
will assume that lims→0+ ℓ(s) = h ∈ [0,∞]. But h = 0 or h = ∞ correspond to boundary cases, in which case more
care is needed. In these boundary cases, the ‘‘speed’’ of decrease or increase of ℓ(u) affects the tail dependence behavior. For
example, if ℓ(u) → 0, then a lower speed indicates a stronger tail dependence; if ℓ(u) → +∞, then a higher speed indicates
a stronger tail dependence. Note that with ℓ(u) → h, if κ(C) = 1 then 0 ≤ h ≤ 1; if κ(C) > 1 then 0 ≤ h ≤ ∞. Note also
that κL(C) = κU(C) = d for the d-dimensional independence copula. It is not possible for κ < 1 (refer to Proposition 2), but
it is possible for κL(C) and κU(C) to be greater than d for copulaswith negative dependence. For example, as a boundary case,
for the bivariate counter-monotonic copula, κL(C) and κU(C) can be considered as +∞ because C(u, u) and C(1− u, 1− u)
are zero for 0 < u < 1/2.

The cases of κ = 1 or d have been well studied in the literature, while not much research exists for 1 < κ < d. For the
bivariate case, 1 < κ < 2 represents some level of positive dependence in the tail, but not as strong as tail dependence. For
multivariate cases, without any further conditions, themeaning of 1 < κ < d is complicated.We refer to the case 1 < κ < d
as lower [resp. upper] intermediate tail dependence only when all marginal copulas (ultimately) possess positive lower
[resp. upper] orthant dependence, of which a formal definition will be given in Definition 4. Unless otherwise specified,
when a copula is said to possess intermediate tail dependence, the orthant dependence condition is assumed implicitly. The
following is an example of intermediate tail dependence for Gaussian copulas.

Example 1 (Gaussian Copula). Consider a multivariate Gaussian copula, constructed by

CΦd(u1, . . . , ud) = Φd(Φ
−1(u1), . . . ,Φ

−1(ud);Σ), (5)

whereΦd(·;Σ) is the joint cdf of a standard d-variate Gaussian random vector with positive definite correlation matrixΣ .
The multivariate Gaussian copula defined in (5) has intermediate tail dependence with the tail order κ = 1dΣ

−11T
d, the

sum of all elements of Σ−1. It can be verified by noticing that limu→0+ CΦd(u1d)/uκ = limt→−∞Φd(t1d)/[Φ(t)]κ , and as
t → −∞,Φ(t) ∼ φ(t)/|t| andΦd(t1d) is dominated by the exponent term exp(−t21dΣ

−11T
d/2) (Corollary 4.1 of [14]).

The bivariate Gaussian copula with ρ > 0 has intermediate tail dependence with the tail order κ = 2/(1 + ρ) and the
slowly varying function at 0+ being ℓ(u) = (− log u)−ρ/(1+ρ). A related result without using copula functions has been given
in [23]. For dimension d with constant correlation ρ, the tail order is κ = d/[1 + (d − 1)ρ]. For the trivariate case with
ρ12 = ρ23 = ρ, we have κ = [3 + ρ13 − 4ρ]/[1 + ρ13 − 2ρ2

].

Gaussian copulas are reflection symmetric and have intermediate tail dependence when correlations are positive. They
are a subfamily of the elliptical copulas. Under some regularity conditions, tail orders of elliptical copulaswill be determined
by the tail behavior of corresponding radial random variable R. We refer the reader to a series of Hashorva’s work for tail
behavior of elliptical distributions, say [13].

Definition 3. Suppose C is a d-dimensional copula and C(u1d) ∼ uκℓ(u), u → 0+ for some ℓ(u) ∈ R0(0+). The lower tail
order function b : Rd

+
→ R+ is defined as

b(w; C, κ) = lim
u→0+

C(uwj, 1 ≤ j ≤ d)
uκℓ(u)

,
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provided the limit function exists. In parallel, if C((1 − u)1d) ∼ uκℓ(u), u → 0+ for some ℓ(u) ∈ R0(0+), the upper tail
order function b∗

: Rd
+

→ R+ is defined as

b∗(w; C, κ) = lim
u→0+

C(1 − uwj, 1 ≤ j ≤ d)
uκℓ(u)

,

provided the limit function exists. If ℓ(u) → h ≠ 0, then hb(w; C, 1) and hb∗(w; C, 1) become the tail dependence functions
in [18].

Note that the copula C that satisfies the conditions of the above definition is said to be multivariate regularly varying
with limit function b or b∗ [36]. Although the general theory and definitions must accommodate an arbitrary slowly varying
function ℓ, in specific parametric families of copulas that have tractable forms, we find that either ℓ(u) is a constant or
proportional to a power of (− log u).

Example 2 (Extreme Value Copula). If a copula C satisfies

C(ut
1, . . . , u

t
d) = C t(u1, . . . , ud)

for any (u1, . . . , ud) ∈ [0, 1]d and t > 0, then we refer to C as an extreme value copula, denoted by CEV . For any
multivariate extreme value copula CEV , there exists a function A : [0,∞)d → [0,∞) such that CEV (u1, . . . , ud) =

exp{−A(− log u1, . . . ,− log ud)}, where A is convex, homogeneous of order 1 and satisfies max(x1, . . . , xd) ≤ A(x1,
. . . , xd) ≤ x1 + · · · + xd. We refer to Chapter 6 of [16] for details of multivariate extreme value copulas. Thus,

CEV (u1d) = exp{A(1d) log u} = uA(1d).

That is, for any extreme value copula CEV , the lower tail order is κL(CEV ) = A(1d) and there is intermediate lower tail
dependence except for the boundary cases such as independence copula and comonotonicity copula, where A(1d) = d and
1, respectively.

In order to get the lower tail order function of extreme value copulas, first consider the bivariate case, for which

CEV (uw1, uw2) = exp{−A(− log uw1,− log uw2)} = exp

(log u)A


1 +

logw1

log u
, 1 +

logw2

log u


∼ exp


(log u)

[
A(1, 1)+ A1(1, 1)


logw1

log u


+ A2(1, 1)


logw2

log u

]
, u → 0+

= uA(1,1)w
A1(1,1)
1 w

A2(1,1)
2 ,

where Ai = ∂A/∂xi, i = 1, 2. Therefore, the lower tail order function is b(w1, w2) = w
A1(1,1)
1 w

A2(1,1)
2 . Similarly, for

a d-variate extreme value copula, b(w1, . . . , wd) = w
A1(1d)
1 . . . w

Ad(1d)
d . By Euler’s formula for homogeneous functions,

A(1d) =
∑d

i=1 Ai(1d). Then it can be verified that b is homogeneous of order A(1d).
In the bivariate case, κU = 1, λU = 2 − A(1, 1), and κL = A(1, 1). That is, a larger value of the upper tail dependence

parameter implies stronger lower intermediate tail dependence.

We next mention how the upper and lower tail orders are useful to establish the direction of reflection asymmetry. Let
CR be the copula of (1 − U1, . . . , 1 − Ud) when the copula of (U1, . . . ,Ud) is C , where Ui’s are standard uniform variables.
Reflection symmetry means that CR ≡ C and otherwise we say that there is reflection asymmetry. If C(u1d) ≥ CR(u1d) for
all 0 < u < u0, for some 0 < u0 ≤ 1/2, then the copula has more probability in the lower tail (reflection asymmetry with
skewness to lower tail). If the inequality is reversed leading to C(u1d) ≤ CR(u1d), then the copula hasmore probability in the
upper tail (reflection asymmetry with skewness to upper tail). For most existing parametric families of copulas, it is difficult
to analytically compare C(u1d) and CR(u1d), so the direction of reflection asymmetry is analytically easier via the upper and
lower tail orders. For example, if κL(C) > κU(C), then C has reflection asymmetry skewed to the upper tail (smaller κ means
slower convergence to 0), and if C(u1d) ∼ λLuκ and CR(u1d) ∼ λUuκ as u → 0+ with λL > λU > 0, then C has reflection
asymmetry skewed to the lower tail. For many parametric copula families where we have done numerical computations, u0
can be taken as 1/2.

The following are some elementary properties of the lower and upper tail order functions b and b∗. Obvious properties
of tail order for CR are the following: κL(C) = κU(CR), κU(C) = κL(CR), b(w; C, κ) = b∗(w; CR, κ) and b∗(w; C, κ) =

b(w; CR, κ).

Proposition 1. A lower tail order function b(w) = b(w; C, κ) has following properties:

1. b(1) ≡ 1, and b(w) = 0 if there exists an i ∈ Id withwi = 0;
2. b(w) is increasing inwi, i ∈ Id;
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3. for any fixed t > 0,

b(tw) = lim
u→0+

C(tuwj, 1 ≤ j ≤ d)
uκℓ(u)

= tκ lim
u→0+

C(tuwj, 1 ≤ j ≤ d)
(tu)κℓ(tu)

= tκb(w).

Thus, b(w) is homogeneous of order κ .

If b(w) is partially differentiablewith respect to eachwi on (0,+∞), then by the Euler’s formula on homogeneous functions,
we can write

b(w) =
1
κ

d−
j=1

∂b
∂wj

wj, ∀w ∈ Rd
+
.

Remark 1. Since C(uw) ∼ uκℓ(u)b(w) = b(uw)ℓ(u), u → 0+, the tail order function b captures the tail behavior of the
copula C in different directions.

2.2. Further properties of tail orders

In this subsection, we obtain some general properties of tail orders of multivariate copulas, especially on inequalities on
tail orders of marginal copulas. There is an ‘‘obvious’’ property in terms of concordance. For twomultivariate cdfs F1, F2 with
the same univariate marginals, we say that F1 is less concordant than F2, if F1(x) ≤ F2(x) and F 1(x) ≤ F 2(x) for any x in the
support of F1 and F2. If C1 is less concordant than C2, then κL(C1) ≥ κL(C2) and κU(C1) ≥ κU(C2).

Next we introduce some concepts of positive dependence, under which multivariate copulas may have some particular
properties on tail orders. We refer to [16,9] for details.

Definition 4. Suppose that F(x) is the cdf of a d-variate random vector X = (X1, . . . , Xd)
T, then X or F is said to be

1. positive lower orthant dependent (PLOD) if P[Xi ≤ xi,∀i ∈ Id] ≥
∏d

i=1 P[Xi ≤ xi] for any x ∈ Rd;
2. left tail decreasing in sequence (LTDS) if P[Xi ≤ xi|X1 ≤ x1, . . . , Xi−1 ≤ xi−1] is decreasing in x1, . . . , xi−1 for all

xi, i ∈ {2, . . . , d};
3. multivariate left tail decreasing (MLTD) if (Xi1 , . . . , Xid) is LTDS for all permutation (i1, . . . , id) of (1, . . . , d).

Proposition 2. Suppose a multivariate copula C(u1, . . . , ud) has a lower tail order κL(C), then κL(C) ≥ 1. Moreover,

1. if C is (ultimately) positive lower orthant dependent (PLOD), then κL(C) ≤ d;
2. for any S1 ⊂ S2 ⊆ Id with |S1| ≥ 2, κL(CS2) − κL(CS1) ≥ 0. In particular, if κL(C) = 1, then for any S ⊂ Id with

|S| ≥ 2, κL(CS) = 1; if C is multivariate left tail decreasing (MLTD), then κL(CS2)− κL(CS1) ≤ |S2| − |S1|.

Analogous results hold with κL replaced by κU , and conditions of positive upper orthant dependence and multivariate right tail
increasing.

Remark 2. The above result says that when some regularity condition holds, marginality will keep the order of tail orders in
the sense thatmarginals have smaller tail orders. However,marginality does not inherit the inequality between tail orders of
lower and upper tails. For example, take the trivariate Archimedean copula with theψ function in Example 3 in Section 3.1.
Then 3α > 1 + α for 0 < α < 1 so that κL(C) > κU(C) (see Table 1). But 2α < 1 + α for 0 < α < 1 so that for the bivariate
marginals, κL(CI) < κU(CI)with |I| = 2.

Sometimes partial derivatives and the density have a simpler form than the copula cdf. We hope to know what tail
properties will be inherited if we take partial derivatives of the copula. For example, for the lower tail, if

C(uw1, . . . , uwd) ∼ uκℓ(u)b(w1, . . . , wd), u → 0+,

then we want to differentiate both sides of the above with respect to thewj’s to get:

u
∂C(uw1, . . . , uwd)

∂wj
∼ uκℓ(u)

∂b(w1, . . . , wd)

∂wj
, u → 0+,

and higher order derivatives up to:

ud ∂
dC(uw1, . . . , uwd)

∂w1 · · · ∂wd
∼ uκℓ(u)

∂db(w1, . . . , wd)

∂w1 · · · ∂wd
, u → 0+.

A sufficient condition is ultimate monotonicity of partial derivatives of the copula (eg: ∂C/∂uj is ultimately monotone in uj
at 0+, and similar conditions are sufficient for higher orders). A proof is similar to that in Theorem 1.7.2 (Monotone density
theorem) in [5].
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As an example of using the density to get the tail order, consider a multivariate Gaussian copula with positive definite
correlation matrix Σ which satisfies CΦ(u1d) ∼ uκℓ(u) = uκ(− log u)ζ , u → 0+. Then (as can be shown directly with the
monotone density theorem), this would be equivalent to cΦ(u1d) ∼ huκ−d(− log u)ζ , u → 0+, where h is a constant. Thus,
with φd for the multivariate Gaussian density,

1 = lim
u→0+

cΦ(u1d)

huκ−d(− log u)ζ
= lim

u→0+

φd

Φ−1(u)1d;Σ


φd(Φ−1(u))uκ−d(− log u)ζh

= lim
z→−∞

φd (z1d;Σ)

φd(z)[Φ(z)]κ−d[− log(Φ(z))]ζh
= lim

z→−∞

φd (z1d;Σ)

φκ(z)|z|d−κ [− log(φ(z)/|z|)]ζh
. (6)

Since the exponent terms dominate the numerator and denominator of (6), to cancel the exponent terms, a necessary
condition is that κ = 1dΣ

−11T
d, which turns out to be the tail order of the copula CΦ . Also, to cancel the term of |z| in

(6), we need that d − κ + 2ζ = 0, so ζ = (κ − d)/2.

3. Intermediate tail dependence: Archimedean copulas

Archimedean copulas are reflection asymmetric except for the bivariate Frank copula, and have a variety of tail behavior.
In this section, we will study the upper/lower tail orders and tail order functions for Archimedean copulas. A new family
of one-parameter Archimedean copulas, that interpolates independence and comonotonicity, will be given that possesses
intermediate upper and lower tail dependence, and has patterns of tail orders different from existing parametric families.

In the literature, a d-dimensional Archimedean copula C is often (e.g., [12,30]) defined as a copula of the form
C(u1, . . . , ud) = φ−1(φ(u1)+ · · · + φ(ud)), (u1, . . . , ud) ∈ [0, 1]d. McNeil and Neslehova [29] showed that d-monotone is
a sufficient and necessary condition on the Archimedean generator φ−1 so that the above form is a copula.

To get a better understanding of tail dependence (intermediate or very strong), we use the mixture of power or LT
representation in [26,16]; for mixing distribution functions [resp. survival functions], the power is called resilience [resp.
frailty] in [27]. Let

Cψ (u1, . . . , ud) = ψ(ψ−1(u1)+ · · · + ψ−1(ud)), (u1, . . . , ud) ∈ [0, 1]d, (7)

where ψ is the LT of a positive random variable. Note that as d ≥ 3 increases, Archimedean copulas extend less into the
region of negative dependence (Sections 4.4 and 5.4 of [16]) and hence the restriction to LTs does not lose much generality.
Since a LT is completely monotone, it can be used to construct copulas of any dimension.

Before getting to the main results, we provide some intuition on conditions on ψ for intermediate upper and lower tail
dependence for Cψ .

Let G1, . . . ,Gd be univariate cdfs. For η > 0,Gη1, . . . ,G
η

d are cdfs, and η is called a resilience parameter. As the parameter
η → 0, then random variables with distributions Gη1, . . . ,G

η

d tend toward the lower end-point of support of G1, . . . ,Gd, and
as η → ∞, random variableswith distributions Gη1, . . . ,G

η

d tend toward the upper end-point of support ofG1, . . . ,Gd. There
is also a parallel for survival functions and frailty, where the conclusions are reversed when the frailty parameter goes to 0
or ∞.

In this way, an Archimedean copula Cψ has a mixture representation with LT ψ . That is, Cψ (u1, . . . , ud) =
∞

0

∏d
j=1 G

η

j (uj) dFH(η), where FH is the cdf of the resilience random variable H,Gj(u) = exp{−ψ−1(u)} (0 ≤ u ≤ 1)
for all j, and ψ(s) = ψH(s) =


∞

0 e−sηdFH(η). The mixture means that: there are random variables X1, . . . , Xd such that
given H = η, they are conditionally independent with respective cdfs Gη1, . . . ,G

η

d . If the random variable H has heavy tail at
∞, then there is a ‘‘chance’’ that H = η is large and hence conditionally, X1, . . . , Xd are all close to their upper endpoints of
support (i.e., dependence in the upper tail). Hence conditions on the heaviness of the upper tail of the distribution of H lead
to intermediate upper tail dependence. For the opposite tail, if the random variable H has concentration of density near 0,
then there is a ‘‘chance’’ that H = η is near zero and hence conditionally, X1, . . . , Xd are all close to their lower endpoints of
support (i.e., dependence in the lower tail). Hence conditions on the density of the lower tail of the distribution of H lead to
intermediate lower tail dependence.

3.1. Laplace transform and univariate tail heaviness

In this subsection, we relate the asymptotic behavior of a LT to the maximal moment of the positive random variable
with the given LT.

Definition 5. For a positive random variable Y with LT ψ , the maximal non-negative moment is

MY = Mψ = sup{m ≥ 0 : E(Ym) < ∞}. (8)

MY is 0 if no moments exist andMY is ∞ if all moments exist. A smaller value ofMY means that Y has a heavier tail at ∞.

The next lemma shows thatMψ is related to the behavior ofψ at 0when 0 < Mψ < 1. The result for a general non-integer
Mψ such that k < Mψ < k + 1 will be derived subsequently.
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Lemma 1. Suppose ψ(s) is the LT of a positive random variable Y , with 0 < MY < 1. If 1 − ψ(s) is regularly varying at 0+,
then 1 − ψ(s) ∈ RMY (0

+).

Remark 3. Even if E(Y ) = ∞, we may also haveMY = 1. However, Lemma 1 does not hold in general for this case.

Remark 4. If we write 1 − ψ(s) = sMℓ(s) and ℓ(s) → h1 with 0 < h1 < ∞ as s → 0+, then clearly ψ(s) =

1 − h1sM + o(sM), s → 0+.

Proposition 3. Suppose ψ(s) is the LT of a positive random variable Y , with k < MY < k + 1 where k ∈ {0} ∪ N+.
If
ψ (k)(0)− ψ (k)(s)

 is regularly varying at 0+, then
ψ (k)(0)− ψ (k)(s)

 ∈ RMY −k(0+). In particular, if the slowly varying
component is ℓ(s) and lims→0+ ℓ(s) = h′

k+1 with 0 < h′

k+1 < ∞, then

ψ(s) = 1 − h1s + h2s2 − · · · + (−1)khksk + (−1)k+1hk+1sMY + o(sMY ), s → 0+, (9)

where 0 < hi < ∞ for i = 1, . . . , k + 1.

The above results can be summarized as follows. If Mψ = ∞, the LT ψ(s) has an infinite Taylor expansion about s = 0.
IfMψ is finite and non-integer-valued, then with some regularity conditions,ψ(s) has a Taylor expansion about s = 0 up to
order [Mψ ], and the next term after this has orderMψ .

3.2. Upper tail

Based on the results in Section 3.1, we derive upper tail orders and corresponding tail order functions of multivariate
Archimedean copulas; the results extend those of [7].

Proposition 4. Let ψ be the LT of a positive random variable and assume that ψ satisfies the condition of Proposition 3. Assume
that k < Mψ < k + 1 with some k ∈ {1, . . . , d − 1}, then the Archimedean copula Cψ in (7) has upper intermediate tail
dependence. The corresponding tail order is κU = Mψ . If ψ (i)(0) is finite for all i ∈ Id, then the upper tail order κU = d. If ψ ′(0)
is infinite and 0 < Mψ < 1, then the upper tail order is κU = 1, and particularly for the bivariate case, λU = 2 − 2Mψ .

Remark 5. If we know the value of a in (21) in the proof of Proposition 4, then the tail order parameter is

lim
u→1−

Cψ (u, u)/(1 − u)Mψ = 2a[−ψ ′(0)]−1−M(2M
− 1)/(1 + M) = a[−ψ ′(0)]−Mψ (2Mψ − 2)/Mψ .

Example 3. Consider the LT of Example 4.2 in [19] with parameter 0 < α < 1 (see Joe–Ma in Table 1). We refer to this
as the normalized integral of the positive stable LT. Note that m = ψ ′(0) = −1/Γ (1 + α−1) is finite, ψ ′′(0) = ∞ and
ψ(s) ∼ 1 − s/Γ (1 + α−1) as s → 0+. We can write ψ(s) = 1 + ψ ′(0)s + o(s), s → 0+. Let g(s) = ψ ′(s) − ψ ′(0) =

(1 − exp{−sα})/Γ (1 + α−1) ∼ sα/Γ (1 + α−1), s → 0+. Then clearly, g(s) ∈ Rα(0+) and can be written as g(s) = sαℓ(s)
with ℓ(s) → 1/Γ (1 + α−1) as s → 0+. So g(s) = asα + o(sα), s → 0+, with a = 1/Γ (1 + α−1) > 0. By Proposition 4, the
copula Cψ has intermediate upper tail dependence when 0 < α < 1. Also, κU = 1 + α and

lim
u→0+

Cψ (1 − u, 1 − u)
u1+α

=
2[Γ (1 + α−1)]α(2α − 1)

1 + α
.

It can be shown numerically that the d-variate Archimedean copula with this one-parameter LT family is decreasing in
concordance as α increases. As α → 1−, numerically, the limit is close to the independence copula; as α → 0+, the limit is
close to the comonotonic copula.

In the next proposition, we state a result for the upper tail order function of Archimedean copulas.

Proposition 5. Let Cψ be a multivariate Archimedean copula with κU = Mψ being a non-integer in the interval (1, d), and
supposeψ satisfies the condition of Proposition 3. With notation M = Mψ −[Mψ ] and k = [Mψ ], the upper tail order parameter
is

λU(Cψ ) =
Mh

[−ψ ′(0)]Mψ
k∏

j=0
(Mψ − j)

−
∅≠I⊂Id

(−1)|I|+k+1
|I|Mψ ,

and the upper tail order function is

b∗(w) =

∑
∅≠I⊂Id

(−1)|I|
∑

i∈I
wi

Mψ

∑
∅≠I⊂Id

(−1)|I| |I|Mψ
,

where h = lims→0+ ℓ(s) with |ψ (k)(s)− ψ (k)(0)| = sMℓ(s) as s → 0+.
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Remark 6. For a d-variate Archimedean copula, the pattern of the upper tail order function also depends on the upper tail
order κ . For example, in d = 3, the homogeneous function b∗ is positively proportional to

−wκ1 − wκ2 − wκ3 + (w1 + w2)
κ

+ (w1 + w3)
κ

+ (w2 + w3)
κ

− (w1 + w2 + w3)
κ , 1 < κ < 2;

wκ1 + wκ2 + wκ3 − (w1 + w2)
κ

− (w1 + w3)
κ

− (w2 + w3)
κ

+ (w1 + w2 + w3)
κ , 2 < κ < 3.

The signs of all terms depend on whether 1 < κ < 2 or 2 < κ < 3. The pattern of alternating signs extends to d > 3.
This pattern, together with Lemma 2, also shows why we do not have a general form of the tail order function when Mψ is
a positive integer.

3.3. Lower tail

Next, we consider the lower tail. For intermediate lower tail dependence of Archimedean copulas, a general result has
been obtained in Theorem 3.3 of [7]. We will derive a more concrete and usable result that involves the slowly varying
function ℓ, and give an interpretation in terms of the (resilience) random variable H which has LT ψ .

The condition below on the LT ψ(s) as s → ∞ covers almost all of the LT families in the Appendix of [16], as well as
other LT families that can be obtained by integration or differentiation. Suppose

ψ(s) ∼ T (s) = a1sq exp{−a2sr} and ψ ′(s) ∼ T ′(s), s → ∞, with a1 > 0, a2 ≥ 0, (10)

where r = 0 implies a2 = 0 and q < 0, and r > 0 implies r ≤ 1 and q can be 0, negative or positive. Note that r > 1 is not
possible because of the complete monotonicity property of a LT.

The condition can be interpreted as follows. As ψ(s) decreases to 0 more slowly as s → ∞, then the random variable
H with LT ψ has a heavier ‘‘tail’’ at 0. Let z = limη→0 fH(η) ∈ [0,∞), where fH is the density of H and is assumed well
behaved near 0. As z increases, then the ‘‘tail’’ at 0 is heavier. If z = 0, then the tail is lighter as the rate of decrease to 0 is
faster. If z = ∞, then the tail is heavier as the rate of increase to ∞ is faster. In terms of the LT and the condition in (10), as
r increases (with fixed q), the tail of H at 0 gets lighter, and as q increases (with fixed r), the tail of H at 0 gets heavier.

The next proposition shows that lower tail dependence behavior is influenced by r .

Proposition 6. Suppose a LT ψ satisfies the condition in (10) with 0 ≤ r ≤ 1. If r = 0, then Cψ has lower tail dependence
or lower tail order is 1. If r = 1, then κL(Cψ ) = d. If 0 < r < 1, then Cψ has intermediate lower tail dependence with
1 < κL(Cψ ) = dr < d, ℓ(u) = dqa1−κ1 a−ζ

2 (− log u)ζ with ζ = (q/r)(1− dr), and the tail order function is b(w) =
∏d

i=1w
dr−1

i .

Remark 7. Condition (10) does not cover all possibilities. It is possible that as s → ∞, ψ(s) goes to 0 slower than
anything of form (10). Examples are given by LT families LTF and LTG in [16], leading to Archimedean families such that
limu→0+ Cψ (u1d)/u = 1 (for the bivariate case, see families BB2 and BB3 in [17,16]). Note that, for LTF, ψ(s) = [1 +

δ−1 log(1+ s)]−1/θ with δ > 0 and θ > 0 and as s → ∞, ψ(s) ∼ δ1/θ (log s)−1/θ ; for LTG,ψ(s) = exp{−[δ−1 log(1+ s)]1/θ }
with δ > 0, θ > 1 and as s → ∞, ψ(s) ∼ exp{−δ−1/θ (log s)1/θ }.

Remark 8. Consider the pair (φ, ψ) of LTs where (a) φ′(0) is finite and ψ(s) = φ′(s)/φ′(0) or (b)


∞

0 ψ(v)dv is finite and
φ(s) =


∞

s ψ(v)dv/


∞

0 ψ(v)dv. For the upper tail, we getMψ = Mφ −1 so that LTψ has heavier tail and κU(Cψ ) is smaller
(stronger intermediate tail dependence) if κU(Cφ) < d. Proposition 6 implies that κL(Cψ ) = κL(Cφ). But the second level
of tail dependence strength comes from the slowly varying function ℓ(u) = dqa1−κ1 a−ζ

2 (− log u)ζ . Since Cψ (u1d) ∼ uκℓ(u),
u → 0+, a smaller κ means stronger intermediate lower tail dependence at the first level, and a faster ℓ(u) → +∞ or a
slower ℓ(u) → 0+ means stronger intermediate lower tail dependence at the second level. For the LT tail, a1sq exp(−a2sr),
a smaller r means slower decrease to 0 as s → +∞ and the resilience random variable has more probability near 0 and Cψ
has more dependence in the lower tail. This can be shown by a smaller tail order dr . A larger q means slower decrease to 0
as s → +∞, which also implies more lower tail dependence. This is seen from a faster increase of ℓ(u) → +∞ as u → 0+

when q < 0 and increases, or a slower decrease of ℓ(u) → 0+ as u → 0+ when q > 0 and increases. Note that when u is
small enough, (− log u)ζ dominates ℓ(u).

3.4. A new parametric Archimedean copula

By applying the LT of the inverseGammadistribution,we present a newone-parameter Archimedean copula that exhibits
intermediate upper and lower tail dependence, and have essentially a full range of positive dependence from independence
to comonotonicity.

Example 4 (Archimedean Family Based on Inverse Gamma LT). Let Y = X−1 have the inverse Gamma (IΓ ) distribution, where
X ∼ Gamma(α, 1) for α > 0. Then it is straightforward to derive thatMY = α. The LT of the inverse Gamma distribution:

ψ(s;α) =
2

Γ (α)
sα/2Kα(2

√
s), s ≥ 0, α > 0, (11)
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Table 1
Tail order of some Archimedean copulas that interpolate independence and comonotonicity.

Copula/LT family κL κU

Frank; log-series LT −θ−1 log[1 − (1 − e−θ )e−s
] (θ > 0) d d

MTCJa; gamma LT (1 + s)−1/θ (θ > 0) 1 d
Joe; Sibuya LT 1 − (1 − e−s)1/θ (θ > 1) d 1
Gumbel; positive stable LT exp{−s1/θ } (θ > 1) d1/θ 1
Joe–Hu; BB1 extension; (1 + s1/δ)−1/θ (θ > 0, δ > 1) 1 1
Joe–Hu; BB7 extension; 1−[1− (1+ s)−1/δ

]
1/θ (θ > 1, δ > 0) 1 1

Crowder; BB9 extension; exp{−(αθ + s)1/θ + α} (θ > 1) d1/θ d
Joe–Ma;


∞

s e−vα dv/Γ (1 + α−1) (0 < α < 1) dα 1 + α

new; LT of inverse gamma 2Γ −1(α)sα/2Kα(2
√
s ) (α > 0) d1/2 (d∧α)∨1

a Mardia–Takahasi–Cook–Johnson, see [11].

where Kα is the modified Bessel function of the second kind. (Please see the Appendix for the derivation of (11).) It can be
shown numerically that the d-variate Archimedean copula with this one-parameter LT family is decreasing in concordance
as α increases, with limits of the independence copula as α → ∞ and the comonotonic copula as α → 0.

Proposition 7. Let Cψ be an Archimedean copula constructed by (11). If α ∈ (0,+∞) is not an integer, then the upper tail order
ismax{1,min{α, d}}. The lower tail order is

√
d.

Remark 9. For the bivariate case, κU = max{1,min{α, 2}} and κL =
√
2 . Hence there is reflection asymmetry with

skewness to the upper tail for 0 < α <
√
2 and skewness to the lower tail for α >

√
2 .

To conclude this subsection,we list in Table 1 the tail orders for someArchimedean copulas that interpolate independence
and comonotonicity. A variety of tail behavior obtains from known parametric Archimedean families and the new
Archimedean family. Note that the bivariate Frank copula is reflection symmetric. But for d-dimensional Frank copula with
d ≥ 3, it can be shown numerically that Cψ ( 121d) > Cψ ( 121d) for parameters θ > 0, although the lower tail order and upper
tail order are the same. Some of the results in this table can be found in [7,15]. For all of the examples in Table 1, the upper and
lower tail orders decrease or remain constant as the dependence parameter(s) leads to increased dependence/concordance.

4. Intermediate tail dependence: mixture of max-id copulas

As an extension of Archimedean copulas, we study in this section the tail orders for copulas that are constructed with
mixtures of max-id copulas. Some results studied in [16] are extended to intermediate tail dependence. Let F be a d-variate
cdf. If F t is also a cdf function for all t > 0, then F ismax-id [17]. The class of copulas based onmixture ofmax-id distributions
has led to interesting classes of bivariate two-parameter copula families with both upper and lower tail dependence (e.g.,
labeled as BB1, BB4, BB7 in [16]). As well, other forms of intermediate tail dependence behavior are possible. These types of
copulas will give us more flexibility in choices of bivariate linking copulas in vines [1,18].

Here we generalize Theorems 4.13 and 4.16 in [16] to multivariate versions and intermediate tail dependence. In the
earlier research on copulas, the analyses determined when tail dependence (tail order κ = 1) can occur for different copula
families; in that setting, the tail order occurredwithin the sufficient condition in Theorem4.16 of [16]. LetK be amultivariate
max-id copula and ψ be a LT of a positive random variable, and consider the copulas that are of the following form

C(u1, . . . , ud) = ψ

− log K


e−ψ−1(u1), . . . , e−ψ−1(ud)


. (12)

Proposition 8. Suppose that a copula C be constructed by (12).
1. If ψ satisfies the condition of Proposition 3 with some k ∈ {1, . . . , d − 1} and κU(KI) > 1 for any marginal copula KI , then

C has upper intermediate tail dependence and κU(C) = κU(Cψ ).
2. If 1 − ψ(s) ∈ Rβ(0+), κU(K) = 1 with marginal copula KI(u1|I|) ∼ uℓI(u), u → 0+ such that limu→0+ ℓI(u) =

hI ∈ (0, 1], 0 < h∗

I =
∑

∅≠J⊂I(−1)|J|−1hJ ≤ 1 and 0 <
∑

∅≠I⊂Id
(−1)|I|−1(h∗

I )
β

≤ 1, then κU(C) = 1 with
λU(C) =

∑
∅≠I⊂Id

(−1)|I|−1(h∗

I )
β .

Proposition 9. Suppose that a copula C be constructed by (12) with 1 ≤ α = κL(K) ≤ d. If −ψ(s)/ψ ′(s) ∈ Rβ

with 0 < β ≤ 1, and 1 < α1−β < d, then the copula C has lower intermediate tail dependence κL(C) = α1−β , and
κL(C) = ξ(α, β) · κL(Cψ ) with ξ(α, β) = (α/d)1−β ∈ (0, 1]. Also, κL(K) = 1 implies that κL(C) = 1.

Remark 10. Note that κL(C) is less than or equal to both κL(K) and κL(Cψ ). K can be the independence copula or have
intermediate lower tail dependence. The lower tail order of the copula C is increasing in κL(K). One consequence of
Propositions 8 and 9 is that if κU(K) = d and κL(K) = d then κU(C) = κU(Cψ ) and κL(C) = κL(Cψ ). Hence if K is chosen
as the parametric Frank copula family with parameter θ ≥ 0, then C(u1, . . . , ud; θ) as given in (12) will be increasing in
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concordance as θ increases. The parameter θ affects dependence only, while the LT ψ controls the upper and lower tail
orders.

When we take K as the independence copula or the Frank copula with positive dependence, and the LT has tail of the
form ψ(s) ∼ a1sq exp{−a2sr}, s → ∞, 0 ≤ r < 1, where a1, a2 are some positive constants, then we can construct a new
family of Archimedean copulas that satisfies the condition of Proposition 9.

In dimensions d ≥ 3, Archimedean and mixture of max-id copula families cannot achieve the range of dependence
available from vine copulas [3,1,18]. But for d = 2, the mixture of max-id approach can lead to more candidates, with a
variety of upper and lower tail behavior, to be used as bivariate linking copulas in vines. For instance, from Table 1, the
preceding subsections and propositions, the Joe–Ma ψ function, which is the normalized integral of the positive stable LT,
combined with the bivariate Gaussian copula with ρ ≥ 0 can lead to a two-parameter family with more flexible upper and
lower tail orders. Note that, from Theorem 2.6 of [16], the bivariate Gaussian density is TP2 if ρ ≥ 0, and hence max-id.

5. Discussion

We have shown how the concept of tail order is useful to quantify the strength of upper and lower tail dependence, as
well as the direction of reflection asymmetry. One- and two-parameter families that are Archimedean copulas and mixture
of max-id copulas together can cover a wide range of tail orders. The interpretation through the latent resilience variable
shows why Archimedean copulas can obtain a full range of tail orders by varying the density of the resilience at 0 and ∞. In
order to get our results for Archimedean copulas, we needed Proposition 3 which, on its own, contributes knowledge about
LTs.

Archimedean copulas only have exchangeable dependence but their bivariate versions can be used within vines. Vine
copulas [3,1,18] in dimension d, which includemultivariate Gaussian and t copulas as special cases, are built from d(d−1)/2
bivariate linking copulas, of which d− 1 are bivariate marginal copulas and the remainder are conditional bivariate copulas
with the number of conditioning variables between 1 to d−2. By choosing bivariate linking copulas with flexible tail orders
and reflecting symmetry/asymmetry, we can get vine copulas to cover a wide range of tail behavior, as well as dependence
structures. Tail orders of vine copulas in terms of the tail orders of the bivariate linking copulas will be studied in future
research. For vine copulas, we are also interested in conditions that retain consistent relation of upper and lower tail orders
for all margins.
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Appendix. Proofs

Derivation of LT of the inverse Gamma distribution:With Y = X−1 and X ∼ Gamma(α, 1), the LT is derived as

ψ(s) = ψ(s;α) = E(e−sY ) = E(e−s/X ) = [Γ (α)]−1
∫

∞

0
e−s/xxα−1e−xdx.

From the GIG(ν, χ, ϕ) density [28],∫
∞

0
wν−1 exp


−

1
2
(χw−1

+ ϕw)


dw = 2(χ/ϕ)ν/2 Kν(

√
χϕ ).

Note that Kν = K−ν . Hence with χ = 2s, ϕ = 2, ν = α

ψ(s;α) = 2Γ −1(α)(2s/2)α/2Kα(
√
2s · 2 ) = 2Γ −1(α)sα/2Kα(2

√
s ). �

Proof of Proposition 2. Assuming C(u1d) ∼ uκL(C)ℓ(u), u → 0+, with ℓ(u) ∈ R0(0+), for any copula C and 0 ≤ u ≤ 1,
C(u1d) ≤ u. Therefore, κL(C) ≥ 1. To prove the first statement, by the condition of PLOD, we have C(u1d) ≥ ud for any
0 ≤ u ≤ 1 and thus, κL(C) ≤ d.

To prove the second statement, choosing S1 ⊂ S2 with |S2| − |S1| = j ∈ N+. Let us consider the case where j = 1 first,
for some l ∈ {1, . . . , |S2|} and any 0 ≤ u ≤ 1,

CS2(u1|S2|) = P[Ul ≤ u|U1 ≤ u, . . . ,Ul−1 ≤ u,Ul+1 ≤ u, . . . ,U|S2| ≤ u]
× P[U1 ≤ u, . . . ,Ul−1 ≤ u,Ul+1 ≤ u, . . . ,U|S2| ≤ u]

≥ P[Ul ≤ u] × P[U1 ≤ u, . . . ,Ul−1 ≤ u,Ul+1 ≤ u, . . . ,U|S2| ≤ u]
= uCS1(u1|S1|).
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The inequality is due to the MLTD of C . Clearly, κL(CS2) − κL(CS1) ≤ 1. Since P[Ul ≤ u|U1 ≤ u, . . . ,Ul−1 ≤ u,Ul+1 ≤

u, . . . ,U|S2| ≤ u] ≤ 1, CS2(u1|S2|) ≤ CS1(u1|S1|) and thus, κL(CS2)− κL(CS1) ≥ 0. An iterated argument will prove the case for
a general j: 0 ≤ κL(CS2)−κL(CS1) ≤ |S2|−|S1|. IfκL(C) = 1, then for any S ⊂ Id with |S| ≥ 2,wehave 1 ≤ κL(CS) ≤ κL(C) = 1,
which completes the proof. For κL(C) = 1, note that the MLTD condition is not needed. �

Proof of Lemma 1. Let Z be an exponential random variable, independent of Y , with mean 1. Choose any fixed m with
0 < m < 1. Then E(Z−m) = Γ (1 − m), and if we defineWm = (Y/Z)m, then for anyw > 0,

P [Wm ≥ w] = P[Z ≤ Yw−1/m
] =

∫
∞

0


1 − exp{−yw−1/m

}

FY (dy) = 1 − ψ(w−1/m),

where FY is the cdf of Y . Therefore, E(Ym) < ∞ implies E(Wm) < ∞ and limw→∞w[1 − ψ(w−1/m)] = 0, i.e.,

lim
s→0+

[1 − ψ(s)]/sm = 0. (13)

If 1 − ψ(s) is regularly varying at 0+, then we can write 1 − ψ(s) = sαℓ(s) with α ≠ 0, where ℓ(s) ∈ R0(0+). Then, (13)
implies that lims→0+ sα−mℓ(s) = 0. Let ϵ > 0 be arbitrarily small. If m = MY − ϵ, then we have E(YMY −ϵ) < ∞ and thus
lims→0+ sα−MY +ϵℓ(s) = 0. Therefore, α ≥ MY − ϵ.

Also by a result on page 49 of [8], (13) implies that for any 0 < δ < 1, E

Ym(1−δ)


< ∞. If we assume that there exists

an ϵ > 0 with m = MY + ϵ such that, lims→0+ sα−MY −ϵℓ(s) = 0, then for any small δ > 0, E

Y (MY +ϵ)(1−δ)


< ∞. Then

we may choose some δϵ < ϵ/(ϵ + MY ), and get E

Y (MY +ϵ)(1−δϵ )


< ∞ with (MY + ϵ)(1 − δϵ) > MY , which gives rise to a

contradiction. Thus, for any ϵ > 0, we must have lims→0+ sα−MY −ϵℓ(s) ≠ 0, and hence, α − MY − ϵ ≤ 0. So,

MY − ϵ ≤ α ≤ MY + ϵ,

which completes the proof. �

Proof of Proposition 3. This proof extends that in Lemma 1, which corresponds to the case where k = 0. For a positive
integer j, let Zj ∼ Gamma(j+ 1, 1) so that E(Z−m

j ) = Γ (j+ 1−m)/Γ (j+ 1) if 0 < m < j+ 1. LetWm,j = (Y/Zj)m where Y
is independent of Zj. Then for 0 < m < j+1, E(Wm,j) < ∞ if and only if E(Ym) < ∞. Next, similar to the proof of Lemma 1,
if Y has LT ψ and moments up to order k, for j ∈ {0, 1, . . . , k} and 0 < m < j + 1,

Pr

Wm,j = (Y/Zj)m ≥ w


= Pr(Zj ≤ Yw−1/m) =

∫
∞

0
FZj(yw

−1/m) dFY (y)

=

∫
∞

0


1 −

j−
i=0

yiw−i/m

i!
exp{−yw−1/m

}


dFY (y) = 1 −

j−
i=0

w−i/m

i!
(−1)iψ (i)(w−1/m).

Suppose 0 < m < min{j + 1,MY }. Then E(Ym) < ∞ implies that

w


1 −

j−
i=0

w−i/m

i!
(−1)iψ (i)(w−1/m)


→ 0, w → ∞,

i.e.,

s−m


1 −

j−
i=0

si

i!
(−1)iψ (i)(s)


→ 0, s → 0+. (14)

Assuming ψ has derivatives at zero up to kth order, then for positive integer j ≤ k, the main term in (14) is

1 −

j−
i=0

si

i!
(−1)iψ (i)(s) = 1 −

j−1−
i=0

si

i!
(−1)i


j−i−
l=0

slψ (i+l)(0)/l! + o(sj−i)


−

sj

j!
(−1)jψ (j)(s)

= 1 −

j−1−
i=0

si

i!
(−1)i

j−
l=i

sl−iψ (l)(0)/(l − i)! −
sj

j!
(−1)jψ (j)(s)+ o(sj)

= 1 −

j−
l=0

ψ (l)(0)
sl

l!


l∧(j−1)−
i=0

(−1)i
l!

i!(l − i)!


−

sj

j!
(−1)jψ (j)(s)+ o(sj)

= 1 − ψ(0)− ψ (j)(0)
sj

j!


−(−1)j


−

sj

j!
(−1)jψ (j)(s)+ o(sj)

= (−1)j−1 s
j

j!


ψ (j)(s)− ψ (j)(0)


+ o(sj). (15)
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Hence (14) implies that

sj−m ψ (j)(s)− ψ (j)(0)


→ 0, s → 0+,

if j is a non-negative integer less thanMY andm < MY . In particular, if k is a non-negative integer such that k < m < MY <
k + 1, then

sk−m ψ (k)(s)− ψ (k)(0)


→ 0, s → 0+.

If
ψ (k)(0)− ψ (k)(s)

 is regularly varying at 0+, we write
ψ (k)(0)− ψ (k)(s)

 = sαℓ(s). For any ϵ > 0, a similar argument in
the proof of Lemma 1 will prove that α ≥ MY − k − ϵ. Now we prove the other direction. We assume that there exists an
ϵ > 0 withm = MY + ϵ such that,

lim
s→0+

sα+k−MY −ϵℓ(s) = 0, (16)

that is, sk−MY −ϵ

ψ (k)(s)− ψ (k)(0)


→ 0 as s → 0. Sinceψ is completely monotonic,ψ (k)(0)−ψ (k)(s) is either negative or

positive as s → 0+. That is, (−1)k[ψ (k)(0) − ψ (k)(s)] > 0. The following argument is for an even k, and similar when k is
odd. Then by the Karamata’s theorem (refer to [36]), regular variation of

ψ (k)(0)− ψ (k)(s)
 implies that

− ψ (k−1)(x)+ ψ (k−1)(0)+ xψ (k)(0) =

∫ x

0


ψ (k)(0)− ψ (k)(s)


ds ∼ (α + 1)−1xα+1ℓ(x), x → 0+. (17)

Since
 x
0 [ψ (k)(0)−ψ (k)(s)]ds is again regularly varying, we can take the integration on both sides repeatedly and obtain for

j = 0, 1, . . . , k,

− ψ (k−j)(x)+

j−
i=0

xj−i

(j − i)!
ψ (k−i)(0) ∼


α

j∏
i=0

1
α + i


xα+jℓ(x), x → 0+. (18)

Multiplying both sides of (18) by xk−j

(k−j)! (−1)k−j leads to

LHSj =: −
xk−j

(k − j)!
(−1)k−jψ (k−j)(x)+

j−
i=0

(−1)k−j

(k − j)!(j − i)!
xk−iψ (k−i)(0)

∼
(−1)k−j

(k − j)!


α

j∏
i=0

1
α + i


xk+αℓ(x), x → 0+. (19)

Then we add the left-hand side of (19) for j = 0, . . . , k, and after rearranging the summand, we have

k−
j=0

LHSj = −

k−
i=0

xi

i!
(−1)iψ (i)(x)+ 1 +

k−1−
i=0

k−
j=i

(−1)k−j

(k − j)!(j − i)!
xk−iψ (k−i)(0). (20)

By the binomial theorem, for each given i ∈ (0, . . . , k − 1),
∑k

j=i
(−1)k−j

(k−j)!(j−i)! ≡ 0. Then, from (19) and (20) we can conclude
that

k−
j=0

LHSj = 1 −

k−
i=0

xi

i!
(−1)iψ (i)(x) = O


xk+αℓ(x)


.

Therefore, multiplying both sides of the above by s−MY −ϵ and using (16),

s−MY −ϵ


1 −

k−
i=0

si

i!
(−1)iψ (i)(s)


→ 0, s → 0+.

Then for any small δ > 0,E

Y (MY +ϵ)(1−δ)


< ∞. Thenwemay choose some δϵ < ϵ/(ϵ+MY ), and getE


Y (MY +ϵ)(1−δϵ )


< ∞

with (MY + ϵ)(1 − δϵ) > MY , which gives rise to a contradiction to the fact that MY is the maximal moment. Thus, for any
ϵ > 0, we must have lims→0+ sα+k−MY −ϵℓ(s) ≠ 0, and hence, α ≤ MY − k + ϵ. Thus, α = MY − k.

To prove the last statement of the proposition, since 1 − φ(s) = 1 − ψ (k)(s)/ψ (k)(0) =

ψ (k)(0)− ψ (k)(s)


/ψ (k)(0) ∈

RMY −k(0+), by Remark 4, we have

φ(s) = ψ (k)(s)/ψ (k)(0) = 1 − h′

k+1s
MY −k

+ o(sMY −k).
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Then, by integration, we will have

ψ(s) = 1 + ψ (1)(0)s +
1
2
ψ (2)(0)s2 + · · · + (−1)k+1hk+1sk+MY −k

+ o(sk+MY −k)

= 1 − h1s + h2s2 − · · · + (−1)k+1hk+1sMY + o(sMY ) s → 0+,

where 0 < hi < ∞. The integration is due to Lemma 31 of [6]. �

Proof of Proposition 4. Weprovide the proof only for the bivariate case. For d ≥ 3, the intermediate upper tail dependence
can be studied analogously, and the (omitted) proof is similar but with more complicated notation.

Let ψ ′(0) = m with −∞ < m < 0, then by Proposition 3, as s → 0+, lettingM = Mψ − 1,

g(s) = ψ ′(s)− m = asM + o(sM), (0 < a < ∞; 0 < M < 1).

Since g ′(s) = ψ ′′(s) is increasing as s → 0+, if we write g(s) ∼ asMℓ(s), s → 0+, where ℓ(s) ∈ R0(0+) and ℓ(s) → 1 as
s → 0+. Note that

g(s) = ψ ′(s)− m =

∫ s

0
ψ ′′(x)dx =

∫ s

0
g ′(x)dx.

By the Monotone Density Theorem (Theorem 1.7.2 of [5]),

ψ ′′(s) = g ′(s) ∼ aMsM−1ℓ(s), s → 0+. (21)

Thus, lims→0+ ψ ′′(2s)/ψ ′′(s) = 2M−1. Observe that for 0 < ζ < 1,

lim
u→1−

Cψ (u, u)
(1 − u)1+ζ

= lim
u→1−

1 − 2u + ψ(2ψ−1(u))
(1 − u)1+ζ

= lim
u→1−

−2 + 2ψ ′(2ψ−1(u))/ψ ′(ψ−1(u))
−(1 + ζ )(1 − u)ζ

= lim
u→1−

4ψ ′′(2ψ−1(u))/[ψ ′(ψ−1(u))]2 − 2ψ ′′(ψ−1(u))ψ ′(2ψ−1(u))/[ψ ′(ψ−1(u))]3

ζ (1 + ζ )(1 − u)ζ−1

= lim
s→0+

4ψ ′′(2s)/[ψ ′(s)]2 − 2ψ ′′(s)ψ ′(2s)/[ψ ′(s)]3

ζ (1 + ζ )(1 − ψ(s))ζ−1
(letting s = ψ−1(u))

= lim
s→0+

4m−2ψ ′′(2s)− 2m−2ψ ′′(s)
ζ (1 + ζ )(1 − ψ(s))ζ−1

= lim
s→0+

4m−2 ψ ′′(2s)
ψ ′′(s) − 2m−2

ζ (1 + ζ )
(1−ψ(s))ζ−1

ψ ′′(s)

= lim
s→0+

2m−2(2M
− 1)

ζ (1 + ζ )
(1−ψ(s))ζ−1

ψ ′′(s)

.

By Proposition 3, there is a constant h > 0 such that

1 − ψ(s) = −ms − hsM+1
+ o(sM+1), s → 0+.

Then, as s → 0+,

[1 − ψ(s)]ζ−1
∼ (−m)ζ−1sζ−1.

In addition, it has been shown thatψ ′′(s) ∼ aMsM−1ℓ(s) as s → 0+ and 2m−2(2M
− 1) is finite. Hence, the intermediate tail

dependence exists if and only if ζ = M and κU = 1 + M = Mψ .
The proof for the case of k = 0 is similar, by applying Proposition 3. �

Lemma 2. Let d ≥ 2 be a positive integer and let j be a positive integer that is less than d. Let

Sdj(w1, . . . , wd) =

−
∅≠I⊂Id

(−1)|I|−1

−
i∈I

wi

j

. (22)

Then Sdj ≡ 0.

Proof of Lemma 2. When j = 1, by the binomial theorem, for any n ∈ N+,
∑n

i=0(−1)i
 n

i


= 0, so that Sd1 ≡ 0 for d ≥ 2.

For 1 < j < d, Sdj is a symmetric homogeneous function of order j, and its first order partial derivatives are homogeneous
of order j − 1. By recursion with Euler’s formula for homogeneous functions to the jth order partial derivatives

Sdj(w) =
1
j

d−
i=1

∂Sdj(w)
∂wi

wi =
1

j(j − 1)

d−
i1=1

d−
i2=1

∂2Sdj(w)
∂wi1∂wi2

wi1wi2
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=
1
j!

d−
i1=1

· · ·

d−
ij=1

∂ jSdj(w)
∂wi1 · · · ∂wij

wi1 · · ·wij . (23)

We will show that all the jth order partial derivatives are 0. Because of symmetry, we consider only terms for which
wi1 . . . wij = w

n1
1 · · ·w

np
p where 1 ≤ p ≤ j < d, n1 > 0, . . . , np > 0 and n1 + · · · + np = j. Then

∂ jSdj(w)
∂n1w1 · · · ∂npwp

= j!(−1)p−1
+

−
∅≠J⊂{p+1,...,d}

(−1)p+|J|−1j! = j!(−1)p−1


1 +

−
∅≠J⊂{p+1,...,d}

(−1)|J|


= j!(−1)p−1
d−p−
i=0

(−1)i

d − p

i


= 0,

which completes the proof. �

Note that (22) is not zero for j = d because (23) would include a non-zero term such as ∂dSdj/∂w1 · · · ∂wd = (−1)d−1d!.
In fact, there are d! non-zero terms in (23) when (i1, . . . , id) is a permutation of (1, . . . , d), and Sdd(w1, . . . , wd) =

(−1)d−1d!
∏d

i=1wi.

Proof of Proposition 5. Consider

lim
u→0+

P


i∈Id

{Ui ≥ 1 − uwi}


uk+M

=

−
∅≠I⊂Id

(−1)|I|−1 lim
u→0+

P
[
i∈I

{Ui ≥ 1 − uwi}

]
uk+M

.

By Proposition 3, since the functionw → 1 − ψ(w) ∈ R1(0+), then we havew → ψ−1(1 − w) ∈ R1(0+). Thus,

lim
u→0+

P
[
i∈I

{Ui ≥ 1 − uwi}

]
uk+M

= lim
u→0+

1 − ψ[ψ−1(1 − uw1)+ · · · + ψ−1(1 − uwd)]

uk+M

= lim
u→0+

1 − ψ[ψ−1(1 − uw1)+ · · · + ψ−1(1 − uwd)]

{1 − ψ[ψ−1(1 − u)]}k+M

= lim
u→0+

1 − ψ

ψ−1(1 − u)


ψ−1(1−uw1)
ψ−1(1−u)

+ · · · +
ψ−1(1−uwd)
ψ−1(1−u)


{1 − ψ[ψ−1(1 − u)]}k+M

= lim
u→0+

1 − ψ

[
ψ−1(1 − u)

∑
i∈I
wi

]
{1 − ψ[ψ−1(1 − u)]}k+M

.

Let s = ψ−1(1 − u) and

Q (w) =

−
∅≠I⊂Id

(−1)|I|−1 lim
s→0+

1 − ψ

[
s
∑

i∈I
wi

]
{1 − ψ(s)}k+M

. (24)

To obtain the limit in (24), wemay use the l’Hopital’s rule. For the first k derivatives of the numerator, for fixedw andψ (j)(0)
finite for j = 1, . . . , k,

lim
s→0

−
∅≠I⊂Id

(−1)|I|−1ψ (j)


s

−
i∈I

wi

−
i∈I

wi

j

= 0, j ∈ {1, . . . , k},

because by Lemma 2,

−
∅≠I⊂Id

(−1)|I|−1

−
i∈I

wi

j

= 0, j ∈ {1, . . . , k}, 1 ≤ k < d.
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Then by the l’Hopital’s rule (k + 1 applications)

Q (w) =

−
∅≠I⊂Id

(−1)|I|−1 lim
s→0+

−ψ (k+1)
[
s
∑

i∈I
wi

]∑
i∈I
wi

k+1
ψ (k+1)(s)

[−ψ (1)(s)]k+1


k∏

j=0
(k + M − j)


(1 − ψ(s))M−1


ψ (k+1)(s)

.

Since g(s) = |ψ (k)(s) − ψ (k)(0)| = hsM + o(sM) with h > 0, we can write g(s) ∼ sMℓ(s), s → 0+ with a slowly varying
function ℓ(s) → h as s → 0+. Note that, g(s) =

 s
0 |ψ (k+1)(x)|dx =

 s
0 g ′(x)dx, and g ′(s) is monotonic as s → 0+, then by

the Monotone density theorem, |ψ (k+1)(s)| = g ′(s) ∼ MsM−1ℓ(s) and ψ (k+1)(s) ∼ (−1)k+1MsM−1ℓ(s). Therefore,

Q (w) =
Mh

[−ψ (1)(0)]k+M
k∏

j=0
(k + M − j)

−
∅≠I⊂Id

(−1)|I|+k+1

−
i∈I

wi

k+M

.

Then, the upper tail order function is

b∗(w) =
Q (w)
Q (1d)

=

∑
∅≠I⊂Id

(−1)|I|
∑

i∈I
wi

k+M

∑
∅≠I⊂Id

(−1)|I| |I|k+M .

Note that this is a homogeneous function inw of order κU = Mψ = k + M . This completes the proof. �

Proof of Proposition 6. If r = 0, thenψ−1(t) ∼ (t/a1)1/q as t → 0+ (where q < 0). If r > 0, then for large s and small t , in

logψ(s) = log t ∼ log a1 + q log s − a2sr , s → ∞,

the third term dominates, so that

ψ−1(t) ∼ [(− log t)/a2]1/r , t → 0+.

Next, consider Cψ (u1d) = ψ(dψ−1(u)).
For r = 0, one gets ψ(dψ−1(u)) ∼ ψ(da−1/q

1 u1/q) ∼ dqu, as u → 0+, with dq ∈ (0, 1), so that κL = 1.
For 0 < r < 1, suppose

∆L,κ = lim
u→0+

ψ

dψ−1(u)


uκ(− log u)ζ

> 0.

Then by l’Hopital’s rule,

∆L,κ = lim
u→0+

dψ ′

dψ−1(u)


/ψ ′


ψ−1(u)


κuκ−1(− log u)ζ

= lim
s→∞

dψ ′(ds)/ψ ′(s)
κ[ψ(s)]κ−1[− logψ(s)]ζ

. (25)

By condition (10), the dominating term of ψ ′(s) or T ′(s) is

ψ ′(s) ∼ −a1a2rsq+r−1 exp{−a2sr}, s → ∞.

Consider the limit of the right-hand side of (25) without the factor d/κ:

ψ ′(ds)/ψ ′(s) ∼ dq+r−1 exp{−a2(dr − 1)sr}, s → ∞;

[ψ(s)]κ−1
[− logψ(s)]ζ ∼ [a1sq]κ−1 exp{−a2(κ − 1)sr} · [a2sr − q log s − log a1]ζ

∼ aκ−1
1 aζ2s

q(κ−1)+rζ exp{−a2(κ − 1)sr}, s → ∞.

Hence κ = dr , q(κ − 1)+ rζ = 0 or ζ = (q/r)(1 − κ) = (q/r)(1 − dr) and

∆L,κ =
ddq+r−1

κaκ−1
1 aζ2

=
dq

aκ−1
1 aζ2

.

So ℓ(u) = ∆L,κ · (− log u)ζ = dqa1−κ1 a−ζ

2 (− log u)ζ .
Under the condition in (10), it can be verified that −ψ(s)/ψ ′(s) ∈ R1−r , which satisfies the condition in Theorem 3.3

of [7]. So the tail order function is obtained. �
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Proof of Proposition 7. When 0 < ν < 1,

Kν(s) ∼
1
2


Γ (ν) (s/2)−ν + Γ (−ν) (s/2)ν


. (26)

We refer to the website ofWolfram Research [4] for asymptotic behavior of modified Bessel function of the second kind. For
0 < α < 1,

ψ(s;α) ∼ 1 +
Γ (−α)

Γ (α)
sα, s → 0+,

and 1 − ψ(s;α) ∼ −sαΓ (−α)/Γ (α) ∈ Rα(0+). This is consistent with Lemma 1.
Now, let us consider the case where α is non-integer with α > 1. For an integer jwith 0 < j < α,

ψ (j)(s;α) = [Γ (α)]−1(−1)j
∫

∞

0
e−s/xxα−j−1e−x dx = (−1)j

Γ (α − j)
Γ (α)

E(e−s/X ′

), X ′
∼ Gamma(α − j, 1)

= (−1)j2Γ −1(α)s(α−j)/2Kα−j(2
√
s ).

So, φ(s;α, j) = ψ (j)(s;α)/ψ (j)(0;α) is the LT of Z = 1/X ′
∼ IΓ (α − j, 1) with MZ = α − j. When ν is non-integer with

|ν| > 1, the behavior near 0 of Kν is

Kν(x) ∼ x−|ν|2|ν|−1Γ (|ν|)

[
1 +

x2

4(1 − |ν|)

]
.

So, for integer j < α − 1

(−1)jψ (j)(s;α) = 2Γ −1(α)s(α−j)/2Kα−j(2
√
s ) ∼

Γ (α − j)
Γ (α)


1 +

s
1 − α + j


, s → 0;

for k < α < k + 1, where k ∈ N+, then by (26)

(−1)kψ (k)(s;α) = 2Γ −1(α)s(α−k)/2Kα−k(2
√
s ) ∼

Γ (α − k)
Γ (α)

+
Γ (−α + k)
Γ (α)

sα−k, s → 0.

Therefore, |ψ (k)(s)−ψ (k)(0)| ∈ Rα−k(0+), which is consistent with Proposition 3. Then, by Proposition 3, there is a positive
constant hk+1 such that

ψ(s) = 1 + ψ (1)(0)s +
1
2
ψ (2)(0)s2 + · · · + (−1)kψ (k)(0)sk/k! + (−1)k+1hk+1sα + o(sα).

The upper tail order of the d-variate Archimedean copula Cψ follows from Propositions 4 and 5. Therefore, if α ∈ (0,+∞)
is not an integer, the upper tail order is max{1,min{α, d}}.

Next we investigate the lower tail. From [2], p. 378: for large z,

Kν(z) ∼


π

2z
e−z


1 +

4ν2 − 1
8z

+ O(z−2)


.

Hence,

ψ(s;α) = 2Γ −1(α)sα/2Kα(2
√
s ) ∼ 2Γ −1(α)sα/2


π

4s1/2
e−2s1/2

= π1/2Γ −1(α)sα/2−1/4e−2s1/2 , s → ∞.

Also,

ψ (1)(s;α) = −2Γ −1(α)s(α−1)/2Kα−1(2
√
s ) ∼ −π1/2Γ −1(α)sα/2−3/4e−2s1/2 , s → ∞.

For the d-dimensional Archimedean copula, then by Proposition 6 with a1 = π1/2Γ −1(α), q = α/2 − 1/4, a2 = 2 and
r = 1/2 in (10), as u → 0,

ψ

dψ−1(u)


∼

dα/2−1/4

aκ−1
1 2ζ

(− log u)ζu
√
d , a1 = π1/2Γ −1(α), ζ = (α − 1/2)(1 −

√
d ).

Thus κL(Cψ ) =
√
d. �

Proof of Proposition 8. Suppose that K is a multivariate max-id copula such that, for any index set ∅ ≠ I ⊂ Id,
K I((1 − s)1|I|) ∼ saI ℓI(s), s → 0+, with 1 < aI and ℓI(s) ∈ R0(0+). Note that

K((1 − s)1d) = 1 +

−
∅≠I⊂Id

(−1)|I|K I

(1 − s)1|I|


, (27)
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where K I is the survivor function of the I-marginal copula KI and let K {i}(1 − s) = s for any i ∈ Id. Letting s =

1 − exp{−ψ−1(u)}, as u → 1−, i.e., s → 0+, since aI > 1 for any ∅ ≠ I ⊂ Id, 1 − ds dominates the right-hand side
of (27), and thus,

− log K

e−ψ−1(u)1d


= − log K((1 − s)1d) ∼ − log (1 − ds)

∼ ds = d(1 − exp{−ψ−1(u)}) ∼ dψ−1(u).

Therefore,

C(u1d) ∼ ψ

dψ−1(u)


= Cψ (u1d), u → 1−.

By Proposition 4, we know that C has intermediate upper tail dependence, and moreover, κU(C) = κU(Cψ ). This proves (a).
To prove (b), note from Proposition 2 that κU(KI) = 1 for any marginal copula KI . Assuming ℓI(s) → hI ∈ (0, 1] as

s → 0+ and h{i} = 1 for all i,

− log KI


e−ψ−1(u)1|I|


= − log KI((1 − s)1|I|) ∼ − log


1 − h∗

I s


∼ h∗

I ψ
−1(u),

where h∗

I =
∑

∅≠J⊂I(−1)|J|−1hJ . By the construction of (12), for any I-marginal copula of C ,

CI(u1|I|) = ψ

− log KI(e−ψ−1(u)1|I|)


∼ ψ


h∗

I ψ
−1(u)


.

Thus, as s → 0+, i.e., u → 1−,

C(u1d) = 1 +

−
∅≠I⊂Id

(−1)|I|CI(u1|I|)

∼ 1 +

−
∅≠I⊂Id

(−1)|I|ψ

h∗

I ψ
−1(u)


=

−
∅≠I⊂Id

(−1)|I|−1 1 − ψ

h∗

I ψ
−1(u)


.

If 1 − ψ(x) ∈ Rβ(0+), then clearly,

C((1 − u)1d) ∼ u
−

∅≠I⊂Id

(−1)|I|−1(h∗

I )
β , u → 0+.

So, κU(C) = 1 and λU(C) =
∑

∅≠I⊂Id
(−1)|I|−1(h∗

I )
β . �

Proof of Proposition 9. Suppose that a d-variate max-id copula K(s1d) ∼ sαℓ(s) as s → 0+ and let s = exp{−ψ−1(u)}. As
u → 0+, thus s → 0+,

− log K

e−ψ−1(u)1d


= − log K(s1d) ∼ − log(sαℓ(s)) ∼ −α log s = αψ−1(u).

Therefore,

C(u1d) = ψ

− log K


e−ψ−1(u)1d


∼ ψ


αψ−1(u)


, u → 0+.

With some modification of the proof of Theorem 3.3 of [7], we can prove the rest. For purpose of notational convenience,
we include the modification in the following. LettingΛ = (α + dν)/(1 + ν) and ω(s) = −ψ(s)/ψ ′(s), then we know that

lim
s→0+

ψ−1(sx)− ψ−1(s)
ω(ψ−1(s))

= − log(x),

and if y(t) → y ∈ R as t → ∞, then

lim
t→∞

ψ(t + y(t)ω(t))
ψ(t)

= exp(−y).

For any t > 0, write ψ(αψ−1(ut)) = ψ

αψ−1(u)+ y(u, t)ω(αψ−1(u))


, where

y(u, t) =


α[ψ−1(ut)− ψ−1(u)]

ω(ψ−1(u))


ω(ψ−1(u))
ω(αψ−1(u))

.

As u → 0+, y(u, t) → −α log(t)α−β
= −α1−β log(t). Therefore,

lim
u→0+

ψ−1(αψ−1(ut))
ψ−1(αψ−1(u))

= exp(α1−β log(t)) = tα
1−β
,

and thus C(u1d) ∈ Rα1−β (0
+). We have also known from Theorem 3.3 of [7] that κL(Cψ ) = d1−β . This completes the

proof. �
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