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A B S T R A C T

Ubiquitous sensing and actuating devices are now everywhere in our living environment

as part of the global cyber–physical ecosystem. Sensing and actuating capabilities can

be modeled as services to compose intelligent Internet of Things (IoT) applications. An

issue for perpetually running and managing these IoT devices is the energy cost. One

energy saving strategy is to co-locate several services on one device in order to reduce

the computing and communication energy. In this paper, we propose a service merging

strategy for mapping and co-locating multiple services on devices. In a multi-hop network,

the service co-location problem is formulated as a quadratic programming problem. We

show a reduction method that reduces it to the integer programming problem. In a single

hop network, the service co-location problem can be modeled as the Maximum Weighted

Independent Set (MWIS) problem. We show the algorithm to transform a service flow to a

co-location graph, then use known heuristic algorithms to find the maximum independent

set which is the basis for making service co-location decisions. The performance of

different co-location algorithms are evaluated by simulation in this paper.
c⃝ 2015 Qassim University. Production and Hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The vision of Internet of Things (IoT) has recently broughtmany
new and game-changing products to the market. Sensors
and communication capabilities have been added into many
traditional devices, controllers, and infrastructures so that
systems can make informed and smart decisions. Market re-
search has predicted that by 2020, more than 50 billion smart
devices will be deployed and connected to Internet, serving
people more timely and properly. New applications have been
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developed using various IoT platforms, for sensing and col-
lecting information to identify our needs, then composing
and deploying smart services to make our lives simple and
safe.

The WuKong project [1,2] is building the support for self-
configuring and self-evolving physical and digital ecosystems.
The WuKong middleware is designed to automatically
discover physically connected IoT devices and use them to
compose high level IoT applications. Flow-based programs
(FBP) (Fig. 1) are defined to specify abstract sensors to be
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Fig. 1 – Flow based program for a smart home.
utilized and the workflow among them. WuKong then uses a
polling protocol to discover and identify physical devices, and
finds the optimal mapping from the FBP definition to services
on devices for execution. As shown in Fig. 1, an FBP can be
deployed in the living room for automatically controlling light
and room temperature according to the needs of the people
there. To adapt to specific user needs under various context,
WuKong accepts policies specified by users for making
personalized mapping decisions. It also tries to continuously
improve the system performance by monitoring executions
and making reconfigurations. In this way, WuKong provides
the support for intelligent IoT ecosystems with the goals of
agile deployment and optimized performance.

One issue for perpetually running IoT services on dis-
tributedly located devices is the energy cost. Running 50 bil-
lion devices and communicating among them will use a lot
of energy. Researchers have proposed various device sleep
scheduling algorithms [3] to keep some devices power off or
running at a low-power mode. Another approach is to reduce
network communication traffic to conserve energy. In this re-
search, we investigate how to minimize the communication
among devices. We use a service mapping scheme [4] to co-
locate as many FBP services on the same device as possible to
reduce distributed communication, in order to minimize the
total energy cost for an application.

In our previous study [4], we use a simple greedy algorithm
that co-locates two neighboring services with the largest
communication cost first. In this paper, we present a com-
prehensive study on the service co-location problem for both
multi-hop and single-hop networks. For devices in a multi-
hop network, the service co-location problem is formulated
as quadratic programming problem. We show a reduction
method that reduces it to an integer programming problem.
For single-hop networks, we present methods to find better
solutions by transforming the service co-location problem to
the Maximum Weighted Independent Set (MWIS) problem [5],
which is a well-known data clustering problem. Using the
MWIS model, we can find solutions that reduce about 10%
communication energy from our previous solution in [4]. This
paper is an extension of [6] by including theoretical complex-
ity analysis as well as the study on multi-hop networks.

Our contribution in this paper includes:

1. We define the general service co-location problem on
multi-hop networks. We model it as a quadratic program-
ming problem, and show how to reduce it to integer pro-
gramming.
2. We also model the single-hop co-location problem as an
optimization problem, and show its NP-completeness.

3. To reduce the computation complexity, we transform the
optimization problem to the MWIS problem by defining
the co-location graph, and design the transformation al-
gorithm to construct the co-location graph from an FBP.

4. We use efficient algorithms to find service co-locations
from co-location graphs, and then select the devices to ef-
ficiently run the new co-located services.

5. We show simulation results to compare the performance
and effectiveness of different heuristic algorithms.

The rest of this paper is organized as follows. Section 2
presents related work on service selection in service com-
puting and energy saving in sensor networks. Section 3 in-
troduces the concept of flow based program, the system
architecture of WuKong systems, and the communication
energy model. Section 4 investigates the co-location prob-
lem on multi-hop networks. Section 5 proves the NP-
completeness of the optimization problem in single hop
network. Section 6 shows how we transform a general flow
based program to its corresponding co-location graph. We
also present a greedy selection framework, which can be used
to adopt various greedy algorithms for the MWIS problem, to
select the best co-location decision to save energy for an FBP.
A simulation study on the performance using different algo-
rithms for single-hop networks is shown in Section 7. The pa-
per is concluded in Section 8.

2. Related work

In service-oriented computing (SOA) research, QoS aware ser-
vice composition [7,8] and service selection [9] are two im-
portant topics. However, most SOA research concentrates on
performance and QoS issues, rather than energy cost. More-
over, the communication overhead usually is not considered.
Our research adopts the composition ideas from SOA to build
IoT applications, but also takes energy consumption into con-
sideration since IoT systems must be energy efficient in order
to run constantly.

In wireless sensor network research, energy efficiency has
been well studied. Earlier projects have focused on minimiz-
ing energy consumption on individual sensor nodes, whereas
more recent studies have suggested that the energy effi-
ciency for the whole system is actually more important to
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extend network lifetime [10]. A common technique [11–13]
to achieve energy efficiency is to put as many sensors in the
sleep mode as possible, and keep only enough sensors in
the active mode for sensing, communicating and processing.
Wang et al. [3] propose a cross-layer sleep scheduling design
in a service-oriented WSN while meeting the system require-
ment on the number of active service nodes for each ser-
vice at any time interval. Another approach to prolong the
network lifetime is energy consumption balancing. [14] stud-
ies the uneven energy depletion phenomenon in sink-based
wireless sensor networks. [15] considers an energy efficient
layout with a good coverage by using a multi-objective parti-
cle swarm optimization algorithm. [16,17] propose two node
deployment schemes, namely, distance-based and density-
based, to balance each sensor node’s energy consumption
and to prolong network lifetime. In [18], we show how to use
quadratic programming model to balance the energy usage.
Nevertheless, since the quality of sensor data is an important
factor on how intelligent a system can be, we also use the QoS
oriented mapping [19].

To build energy efficient IoT systems, our earlier work [4]
has proposed a simple greedy algorithm that iteratively co-
locates, if possible, two connected components with the
largest communication cost on the same device to reduce en-
ergy consumption. In this work, we model the problem as the
Maximum Weighted Independent Set (MWIS) problem [20,5].
MWIS has been used to solvemany large data clustering prob-
lems. The Maximum Independent Set (MIS) problem, which
is a special case of MWIS in that the weight of each ver-
tex is 1, has been studied in [20] using the GMAX and GMIN
greedy algorithms. Extending the result, [5] proposes several
greedy algorithms, including GWMAX, GWMIN, and GWMIN2,
for MWIS. We use these algorithms to solve the service co-
location problem in this paper.

3. System model

3.1. IoT service and application

An IoT application is defined by a network of service
components, each of which belongs to a service class, called
WuClass in the WuKong paradigm. Similar to the class
definition in object-oriented programming, aWuClass defines
the abstraction of sensing and actuating functionalities. For
execution, a WuObject residing on a device can be used
to provide the capability. WuKong supports the flow based
structure so that application developers only need to design
the flow structure between virtual service components. Each
FBP is defined by a directed acyclic graph (DAG) G(C, L) where
C is a set of components Ci and L is the set of links Lij = (Ci,Cj)
between components Ci and Cj.

Each component has a set of properties defined, such as
sensor reading and sensor refresh rate. An FBP user can define
the initial property value for each component. After an FBP
is deployed, WuKong allows system developers to plug in
progression modules in order to learn what property values
work best for the application and to automatically refine the
component settings. In this paper, however, we consider only
how to deploy these components initially and leave the self-
evolving reconfiguration study to future work.
3.2. Devices and system

In our study, IoT systems are modeled as distributed systems
consisting of a set of sensing, actuating and computing de-
vices deployed in different locations of a target environment,
connected by wireless or fixed line communication networks.
An IoT system M has a set of physical devices D. On each
device Dk, there may be several services available for sens-
ing, actuating, and/or computing.WuObjects Sik is an instance
of WuClass Ci and is hosted on device Dk. Device Dk may
host multiple sensing or computingWuObjects to execute the
components in an FBP. For example, in Fig. 2, S11 and S21 on
device D1 can be used for C1 and C2 respectively.

The WuKong middleware is responsible for mapping FBP
components to different devices capable of providing corre-
sponding services. Fig. 2 shows an FBP defined with 7 compo-
nents (Ci) in a system of 5 devices (Dk). In the FBP, the weight
on each link shows the units of energy communication cost.
The data volume of each communication link could be in-
ferred fromWuClass definition and refined by real-time mon-
itoring and prediction. Later in Section 5, we will define the
overall energy cost of an FBP. Sometimes, due to the environ-
mental and context changes, the data volume on each link
may fluctuate during FBP executions. In this paper, however,
we assume the data size on each FBP link is fixed.

3.3. Communication energy

In [21], energy costs for transmitting and receiving t bits of
data over a communication distance of d meters have been
formulated as follows:

ET(t,d) = Eelec × t + ϵamp × t × d2 (1)

ER(t,d) = Eelec × t (2)

where radio electronics parameter Eelec is about 50 nJ/bit and
transmit amplifier parameter ϵamp is about 10 pJ/bit/m2.

For each FBP link between service components (Ci,Cj), if it
is mapped to the communication between devices (Dn,Dm),
the energy consumption E(tij,dnm) of the link will be decided
by the transmission energy ET(tij,dnm) on Dn, the receiving
energy ER(tij,dnm) on Dm, and, for multi-hop routings, the to-
tal communication energy used by all devices on the route
from Dn to Dm. But if we use a device that can host both end
components of a link, then the energy cost Uij becomes zero.
This is the motivation for our energy sentient co-location
strategy.

4. General sensor selection problem in multi-
hop network

In large IoT application scenarios like smart factory or smart
building, an FBP will be mapped to devices whose communi-
cation to other devices may go through multiple hops. In this
section, we present the energymodel for multi-hop networks.
We show how to formulate the problem as a quadratic pro-
gramming problem, and how to solve it by integer program-
ming.

4.1. Energy model

In this paper, we consider themulti-hop network with a static
routing table, in that each device always routes messages to
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Fig. 2 – Co-location mapping example.
the same destination using the same path. Usually, devices
use a static path Anm between any two devices Dn and Dm by
the shortest path between them.

Based on the energy formula Eqs. (1) and (2), we define the
cost of transmitting t bits from Dn to Dm along the path Anm

with H hops as follows:

ET(t,Dn,Dm) = H × Eelec × t + ϵamp ×


h

d2h (3)

ER(t,Dn,Dm) = H × Eelec × t. (4)

In Eq. (3), dh is the distance between two devices in the hth
hop along the path Anm from Dn to Dm. Since sparse and
diverse network density is a common attribute of multi-hop
networks, we take distances into consideration in Eq. (3).

4.2. Quadratic programming formulation

Given an FBP and an IoT system, we denote the data volume
of an FBP link Lij to be tij bits, the routing path between two
devices Dn and Dm to beAnm in the static routing table. During
the mapping stage, the FBP link Lij is mapped to a device pair
(Dn, Dm), which are the start and end devices of the physical
routing path Anm. We define H(Lij) to be the set of paths
between all devices Dn and Dm where Dn can host Ci and Dm

can host Cj. Let xik = 1 denote Ci has selected to use service
Sik on device Dk. Then, we can formulate the energy cost of
µ(Lij) of link Lij as:

µ(Lij) = µT(Lij) + µR(Lij) (5)

µT(Lij) =


Anm∈H(Lij)

xin ∗ xjm ∗ ET(tij,Dn,Dm) (6)

µR(Lij) =


Anm∈H(Lij)

xin ∗ xjm ∗ ER(tij,Dn,Dm) (7)

i.e. the energy cost of Lij is the cost to transmit and receive tij
bits between devices Dn and Dm.

The energy cost µ(Ci) of a component Ci can be defined by:

µ(Ci) =


p

µT(Lip) +


q

µR(Lqi) (8)

i.e. the energy cost of Ci is the sum of transmitting energy cost
µT(Lip) of all its remote out-links Lip in the FBP and receiving
energy cost µR(Lqi) of all its remote in-links Lqi in the FBP. The
total energy consumption on device Dk can be defined by:

µ(Dk) =


i

xik ∗ µ(Ci) (9)
i.e. the summation parameter i represents the ith WuClasses
on the device Dk.

The optimization objective function is to minimize the
overall energy consumption among all nodes:

min


k

µ(Dk)


(10)

subject to:
k

xik = 1, ∀1 ≤ i ≤ N,1 ≤ k ≤ M (11)

where N is the number of components in an FBP, and M is the
number of devices in an IoT system.

To show the problem is a quadratic programming problem,
let us define the energy cost of component Ci on device Dk as
µk(Ci) = xik ∗ µ(Ci). From Eq. (8), we have:

µk(Ci) = xik ∗


p

µT(Lip) +


q

µR(Lqi)


. (12)

Let us first expand the transmission unit using Eq. (6):

µk
T(Ci) = xik ∗


p


Anm∈H(Lip)

xinxpmET(tip,Dn,Dm). (13)

Since the constraints in Eq. (11) ensure that two devices
Dk and Dn cannot be selected for deploying a particular
component Ci at the same time, we can see that:

xik ∗ xin = 0, k ≠ n. (14)

Therefore, we can further simplify Eq. (13) as:

µk
T(Ci) =


p

x2ik


Akm∈H(Lip)

xpmET(tip,Dk,Dm) (15)

=


p


Akm∈H(Lip)

xikxpmET(tip,Dk,Dm). (16)

In Eq. (15), since xik is a 0–1 integer variable, xik and x2ik
have the same value. Similarly, the receiving unit of Eq. (12)
is:

µk
R(Ci) =


q


Ank∈H(Lqi)

xqnxikER(tqi,Dn,Dk). (17)

Given the data volume of links and distances between
devices are fixed in a problem instance, we can also calculate
ET(tip,Dk,Dm) and ER(tqi,Dn,Dk) as constants. In this way, we
can define the energy consumption equation for each device.
Thus, the final optimization problem is indeed a quadratic
programming problem.
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4.3. Integer programming reduction

Optimizing the quadratic programming problem is an NP-
hard problem for which no polynomial algorithm is known.
However, we can transform the problem to integer linear pro-
gramming by rewriting the problem using new variable yikpm
and constraints to take the value xik ∗ xpm for every combi-
nation of xik and xpm, and yqnik for value xqn ∗ xik also. The
equivalence of two formulations has been proved in [22]. We
thus obtain the following equivalent 0–1 linear programming
definition:

min


k


i

(µk
T(Ci) + µk

R(Ci))


. (18)

In Eq. (18), the transmission unit µk
T(Ci) and receiving unit

µk
R(Ci) are thus transformed as follows:

µk
T(Ci) =


p


Akm∈H(Lip)

yikpmET(tip,Dk,Dm) (19)

µk
R(Ci) =


q


Ank∈H(Lqi)

yqnikER(tqi,Dn,Dk). (20)

In addition to the formal constraints defined, we need
constraints for every yikpm and yqnik:

yikpm ≥ 0 (21)

xik − yikpm ≥ 0 (22)

xpm − yikpm ≥ 0 (23)

1 − xik − xpm + yikpm ≥ 0 (24)

yqnik ≥ 0 (25)

xqn − yqnik ≥ 0 (26)

xik − yqnik ≥ 0 (27)

1 − xqn − xik + yqnik ≥ 0. (28)

These eight equations ensure the value of yikpm to be
exactly the same as xik * xpm, and value of yqnik to be the same
as xqn * xik in all cases. Therefore we can replace xik * xpm with
yikpm, and replace xqn * xik with yqnik. After we replace each
xik * xpm and xqn * xik by its corresponding yikpm and yqnik, the
objective function is guaranteed to be optimal under the same
setting of xik in the original objective function.

5. Communication minimization problem for
single-hop network

In smaller scale IoT systems, devices are installed close to
each other and communicate with each other in a single hop
network. In this section, we study the energy parameters for
such systems. We present the problem definition and the
analysis on the computation complexity of the problem.

5.1. Problem definition

To study the problem complexity, we first formulate the
mapping problem in a general problem PA. We then study a
special class PK of PA.
Given an FBP of n components to be deployed in a physical
system of m sensing devices, the data communication of link
Lij between components Ci and Cj is known to be tij bits. The
problem PA is to find a mapping decision that maps each
component in FBP to run on one device, while minimizing the
total communication energy cost on these devices. In home
environments, sensor devices may have a relatively uniform
layout so that the distances between them are similar and
do not make much difference on energy consumption. If so,
we can simplify the second term of ET(t,d) in Eq. (1) to be
independent of the distance between devices, and instead use
a layout parameter, δ, i.e.

ET(t, δ) = Eelec × t × (1 + δ). (29)

With this approximated transmission energy model, we
can define the transmission energy and receiving energy cost
of link Lij as below:

µT(Lij) =


Anm∈H(Lij)

xin ∗ xjm ∗ ET(tij, δ) (30)

µR(Lij) =


Anm∈H(Lij)

xin ∗ xjm ∗ ER(tij). (31)

Then, we can define the energy cost µ(Ci) of a component
Ci by:

µ(Ci) =


p

µT(Lip) +


q

µR(Lqi) (32)

i.e. the energy cost of Ci is the sum of transmitting cost µT(Lip)

of all its out-links Lip in FBP and receiving cost µR(Lqi) of all its
in-links Lqi in FBP. Again we use variable xik = 1 to denote Ci
has selected to run on device Dk. Then, we can find the energy
consumption on a device as:

µ(Dk) =


i

xik ∗ µ(Ci). (33)

The objective function to minimize the total energy
consumption on all devices is defined by:

min


k

µ(Dk)


(34)

subject to:
k

xik = 1, ∀1 ≤ i ≤ N,1 ≤ k ≤ M. (35)

5.2. Co-location graph

We define problem PK to be the K-sized co-location selection
problem, if the total number of components that can be co-
located on a device is no more than K in PA. The parameter K
is determined by howmany components exist on each device.

If we use the exhaustive search algorithm to solve the PK
problem, the time complexity is O(mK ∗ Kn), where n is the
number of components in an FBP, m is the number of devices.
However, some of them cannot be selected at the same time.
For example, in Fig. 2, service component C4 has 4 co-location
options: {C2, C4} on device D2, {C3, C4} on D2, {C4, C5} on device
D3, and {C2, C3, C4} together on D2. These options are mutual
exclusive since we can select only one device to deploy C4.

We define a co-location graph as a vertex-weighted
undirected graph G(V,E,W), where V is a set of vertices that
give all co-location options, E is a set of edges that represents
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the mutual exclusive relationship among co-location options,
andW is a set of weighted labels that represent the gain when
selecting a co-location option. Each vertex vi ∈ V represents a
valid co-location option and contains a set of mergeable links.
s(vi) is the set of WuClasses that may be co-located, and the
weight w(vi) is the energy saving. The edge eij ∈ G represents
a conflict between vi and vj. For example, in Fig. 2, co-location
option v4 = {C4,C5} and v5 = {C5,C6} are in conflict because
they both have service C5 which can reside on only one
device, i.e. D3 or D4. The co-location node v7 is for the option
of placing C2, C3, C4 together. In fact, a co-location graph may
include vertices with many components co-located.

5.3. Problem complexity

We study the complexity of PK by a reduction from the Max-
imum Weighted Independent Set (MWIS) problem to the co-
location graph. MWIS is a well-studied graph problem [20,5].
Let G = (V,E,W) be a vertex-weighted undirected graph with-
out loops and multiple edges, where V is the set of vertices,
E is the set of edges, and W is the vertex weighting function.
For any nonempty set S ⊆ V,W(S) is defined by


u∈V W(u). A

subset I ⊆ V is an independent subset of G if for any two vertices
u,v ∈ I, (u,v) ∉ E. An independent subset I of G is themaximum
if there is no other independent subset I′ of G such thatW(I) <

W(I′). MWIS is to find the independent subset from G that has
the maximum total weight among all independent subsets.

If we find a MWIS solution for a co-location graph, the co-
locations selected in those vertices will have no conflict with
each other since they are not connected in the co-location
graph. Moreover, the total weight is the maximum so that the
energy saving is the largest.

Hastad [23] has shown that MWIS for a general graph is
NP-hard in the strong sense. It is hard to approximate within
n1−ϵ, for any ϵ > 0. We now show the problem PK is NP-hard
even for K = 2 by reducing it from the MWIS problem.

Theorem 5.1. Problem PK is NP-hard in the strong sense for K = 2.

Proof. Given an instance of MWIS, we assume each vertex vi
contains two numbers p, q that represent component Cp and
Cq, and no vertices has the same two numbers. Then, we can
construct an instance of problem PK with K = 2 as follows. We
create a node v′ for each pair of p and q, an edge e′pq for node
vi, and put the weightw(vi) on e′pq as the communication cost
between v′

p and v′
q. After that, we create a device Dpq with two

components Cp and Cq for edge e′pq. Then, we use the con-
structed graph G′(V′,E′,W) as an FBP of |V′

| components and
a system with |E′

| devices. Essentially, if we do not consider
the weight, G(V,E) is the line graph of G′(V′,E′). Since every
device only has 2 components, the problem constructed is a
2-colocatable problem.

Next, we show the two problem’s optimal solutions are
equivalent. Suppose that there is a maximum weighted inde-
pendent set for the MWIS problem. We can use it to find the
optimal co-location solution with K = 2. Using the optimal
set for MWIS, if vi is chosen, we co-locate two components
Cp and Cq and place them on device Dpq. This decision saves
the most communication energy consumption, implying the
optimal solution for the objective function Eq. (34).
Similarly, if we have the optimal solution for a 2-
colocatable problem, for the corresponding MWIS problemwe
can choose node v′ of number p,q, if Cp and Cq of the FBP
are co-located on device Dpq in the optimal solution for the
2-colocatable problem. The optimality of the solution for the
2-colocatable problem also ensures the optimality of the so-
lution in the MWIS problem. �

For PK where k ≥ 2, it can be transformed to an MWIS
problem where some node contains more than 2 numbers.
The above reasoning between an MWIS instance and the
optimal solution for a K-colocatable problem still applies.
Therefore PK is NP-Hard for any K.

For each instance of PA, we can find its upper bound on K
by the maximum number of components in FBP that can be
co-located together. In this way, we can conclude that the PA
problem is NP-Hard.

6. Co-location graph and selection

We are interested in finding efficient algorithms to solve the
co-location problem. From the previous section, we can see
that every mapping problem instance has a corresponding
graph from which a MWIS could be used to solve the original
co-location problem.

In this section, we first show how to construct a co-
location graph Gc = (Vc,Ec,Wc) from an FBP to be deployed
in a system of IoT devices to depict all co-location options. In
Gc, each vc ∈ Vc represents a co-location decision for a set of
service components. An edge (uc,vc) ∈ Ec represents a conflict
between two neighboring co-location decisions.

After the co-location graph construction, we can solve the
selection problem by using the MWIS algorithm on the co-
location graph. We show three different greedy strategies of
MWIS, define a greedy selection framework that could adopt
these MWIS algorithms, and then show howwe select devices
for the remaining service components that have not been
mapped yet.

6.1. Layer based graph construction

We propose a general construction algorithm to include
all co-locations in Algorithm 1. Since not all components
connected by links in FBP are co-locatable, we first remove
those non-candidate links and keep the list of co-locatable
links in L. We also need the devices in the system as input
M. M will be used by the algorithm to determine if there is a
feasible co-location option by finding a device that can host
those service components.

The algorithm checks the feasibility to deploy all service
components of the union of s(vi) and s(vj) on a single IoT
device. If it is feasible to select two co-location vertices at the
same time, it creates vertex vk as a new option to select all
co-location options in its generator set at the same time. vi
and vj are added to the generator set of vk in order to keep
track of how vk is being created. The newly created vertex vk
is pushed to G and its corresponding layer according to its
size of service components. Before the nested loop starts, for
each vertex in each layer, it will create edges between it and
all neighboring vertices of each generator vertex. In this way,
the algorithm builds up a complex relationship of vertices
between different layers. Finally, the algorithm finishes the
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transformation when all layers are settled, leaving the graph
G as the co-location graph.

Algorithm 1 Co-Location Graph Construction

Input: A list of co-locatable links L as a connected graph and
a system M
Output: Co-location graph G(V,E,W)

1: Xk = ∅, 1 ≤ k ≤ |FBP|.
2: Set layer k = 1
3: Generate a vertex for each Lij in L and add it to G and X1.
4: while Xk ≠ ∅ do
5: for all co-location vertex vi ∈ Xk do
6: for all vi’s generator vj ∈ g(vi) do
7: add edge eik = (vi,vk) to G, for every vk that is vj’s

neighbor
8: end for
9: end for
10: for all pairs of co-location vertices (vi,vj) in Xk do
11: if s(vi) ∩ s(vj) ≠ ∅ then
12: add distinct edge eij = (vi,vj) to G
13: if s(vi) ∪ s(vj) can run on the same device inM then
14: create new vertex vk from vi and vj
15: if vk exists in G then
16: retrieve existing vertex vk from G
17: else
18: add vk to set X|s(vk)|−1 and G
19: end if
20: add vi and vj to generator set g(vk)
21: end if
22: end if
23: end for
24: find the smallest i > k where Xi ≠ ∅

25: if no such i exists, stop, else set k = i
26: end while

6.2. Selection strategies

In our earlier study [4], we use a simple algorithm that treats
every problem as a 2 co-locatable problem, which means
every time the algorithm only selects an edge to co-locate. In
this work, we take all possible co-location combinations into
consideration, and use the solution strategies for the MWIS
problem in our selection framework. In [5], researchers have
studied three type of strategies and given their corresponding
lower bounds. We briefly review them below.

1. GWMAX: the strategy selects each vi that minimizes
the function W(vi)/dGi

(vi)(dGi
(vi) + 1). Once a node vi is

selected, it and its corresponding edges will be eliminated.
When there is no edge left in G, the remaining nodes will
form a maximum independent set.

2. GWMIN: this strategy selects each vi that maximizes the
function W(vi)/(dGi

(vi) + 1). A node vi will be selected in
every iteration, and it will then be eliminated with its
neighbors. The selected nodes during this process will
return an independent set.

3. GWMIN2 is an extension of GWMIN by using different
vertex-selecting rule. It selects each vi that maximizes the
function W(vi)/


w∈N+

Gi
(vi)

W(w).
In all strategies described above, vi represents the ith node
chosen from G. Gi is the G after i − 1 round of node selection
and update. The function dGi

(vi) determine the degree of vi in
Gi. In GWMIN2, NGi

(vi) denotes the neighborhood of vi, and

N+

Gi
(vi), vi ∪ NGi

(vi).

6.3. Co-location selection framework

We now present the general selection algorithms. It takes an
FBP as input, splits the FBP into several subgraphs, in which
every edge is co-locatable, and then builds corresponding co-
location graphs. After that, for each graph, it uses the co-
location selection strategy to select the maximum weighted
independent co-location node set. Then, it selects a device to
host all WuClasses in every co-location node in themaximum
weighted independent set.

Algorithm 2 Selection Framework

Input: FBP G(C, L) and device system M
Output: A pairing list P of Ci and its deployed device Dk

1: P = ∅
2: split G into a list of sub-graphs H
3: add all devices D of S to queue Qd in descending order of

current energy cost
4: generate co-location graph G’ for every sub-graphs in H

and add them to list L(G)

5: for all co-location graph Gi ∈ L(G) do
6: select MWIS Ii from Gi with a specific strategy
7: for all vertex v ∈ Ii do
8: if D = {Dk|Dk can host every Ci ∈ s(v)} ≠ ∅ then
9: select Dk ∈ D that has the smallest energy
10: for all Cj ∈ s(v) do
11: add pair (Cj, Dk) to P
12: end for
13: update the current energy cost on Dk
14: end if
15: end for
16: end for
17: for all component Cj without a deployment target do
18: if D = {Dk|Dk can host Cj} then
19: select Dk ∈ D that has the smallest energy
20: add pair (Cj, Dk) to P
21: end if
22: end for

Since the graph construction algorithm has checked the
feasibility of creating a vertex v for a co-location graph and
the order of selecting co-location nodes to deploy will not im-
pact the total energy saving, we just randomly pick a node to
deploy at each round. (However, the order of selecting nodes
would affect the maximum energy consumption among all
devices; the problem will be investigated in our future work.)
On Line 6 of Algorithm 2, we could use any selection strategy
that is good for a particular FBP structure or system setting.
The flexibility provided by the framework allows a system to
dynamically replace selection strategy at run time, which is
desirable during the reconfiguration of an intelligent IoT sys-
tem.
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Fig. 3 – Co-location solution comparison.
Fig. 3 shows two mapping decisions P1 and P2. P1 is se-
lected by the MWL algorithm [4]. It merges links L67, L45 and
L12 in order, and totally saves 30+20+10 = 60 units of energy
cost. P2 is selected by GWMIN2. To reproduce the selection
scenarios of GWMIN2, we use the function fk(vi) to represent
the current value of W(vi)/


w∈N+

Gi
(vi)

W(w) for node vi in the

updated co-location graph after selecting k − 1 nodes. For the
co-location graph in Fig. 3, it is easy to see that v6 has max-
imum value f1(v6) = 30/(30 + 20) = 0.6. After that, the node
v5 is removed due to the independence constraints. Then, the
function value of v4 is updated. After comparing the value all
five nodes f2(v1) = 10/(10 + 15 + 33) = 0.172, f2(v2) = 15/(10 +

15+33+18+20) = 0.156, f2(v3) = 18/(15+18+33+20) = 0.209,
f2(v3) = 20/(20+33+15+18) = 0.232, and f2(v7) = 33/(33+10+

15+18+20) = 0.343, GWMIN2 strategy will find the optimal co-
location decisionwhich saves 30+33 = 63 units of energy cost.

6.4. Mapping remaining services

Since not all components in a FBP may be selected for co-
location, we need to select a device for those components that
have not been mapped in the co-location decisions. On lines
17–22, the algorithm selects a device with the lowest current
energy load for each single component Ci by using the same
selection strategy for co-location nodes. In this way, we could
achieve a better energy balance on all devices.

For the example of Fig. 2, the mapping decision is to co-
locate (C2,C3,C4) on devices D2 and (C6,C7) on device D5.
After that, we still need to select devices for mapping com-
ponents C1 and C5. In this case, since D1 and D4 do not have
any load, we simply select them for C1 and C5 respectively.

7. Performance study

We have implemented the sensor selection framework in Al-
gorithm 2, and used selection strategies including MWL, GW-
MAX, GWMIN and GWMIN2. As an extended study of our pre-
vious work [6], we compare six mapping algorithms shown
in Fig. 4. The maximum weight scoring function algorithm
(MAXIMUM) is to select the maximum weighted link from
the co-location graph, and the one layer maximum weight
scoring (ONE LAYER) is to select the maximum weighted link
from the one layer co-location graph that only co-locates two
neighboring nodes. In this section, we show how we set up
the simulation environment, the consideration for determin-
ing system parameters and performancemetrics, and present
the performance comparison for all six algorithms.

7.1. Simulation setup

We generate a simulation system with n components and m
devices as follows. On each device Dj, we randomly select K
different WuObjects as available services on it. K is the upper
bound of co-locating size and is viewed as memory constraint
for each device. We then use JGraphT to generate different
types of flow graphs, including 1000 instances of linear, star or
random structures as FBPs with the size half of the total Wu-
Classes in the system. Linear FBPs are common for data trans-
mission applications. Star FBPs are often used for system and
environment monitoring application. We also use random
FBPs as the topology for general intelligent applications.

In a WuKong system supporting Z-wave communication,
a normal information exchange message is about 10 bytes.
Including the header of Z-wave protocol, the total size of Z-
wave packet is about 40 bytes. For system management mes-
sages, the payload is bigger but cannot exceed the maximum
size of Z-wave payload which is 64 bytes. Therefore, the size
of a WuKong message is about 40–100 bytes in normal cases.
Before deployment, we assume application developers are re-
sponsible for finding the data rate of each component. In the
simulation, we assume data rate of each component is one
message per second. Based on these considerations, we use
uniform distribution d1 = U(40,100) to generate the data vol-
ume of each link Lij in an FBP. Even though there are only
about 6 – 7 types of messages with different sizes, the normal
distribution would randomize the filter rate for components
with a threshold. After that, we calculate the corresponding
transmitting cost tij and receiving cost rij using Eqs. (1) and (2).

WuKong ecosystem aims to provide flexible application
deployment and runtime management for large scale IoTs
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Fig. 4 – Mapping algorithms.
which involves hundreds or even thousands of devices con-
nected. In this paper, the data for 50 components in FBP and
systems scales from 100 to 1000 physical devices is reported.
On each device, there are a set of K WuClasses with K from 4
to 6.

7.2. Performance metrics

In this paper, we compare the total saved energy cost ratio
(T-Ratio) and the largest energy cost ratio (L-Ratio) defined as
follows:

1. Total Saved Energy Cost Ratio (T-Ratio): is the percentage
of saved energy cost of the whole FBP with service co-
location compared to the FBP original cost without any co-
location.

2. Largest Energy Cost Ratio (L-Ratio): is the percentage of
energy cost in the device with the highest energy cost by
applying different algorithms.

Using T-ratios and L-ratios, the higher a ratio value is,
the more energy is saved. The energy saving reduces as the
probability of service co-location reduces.

7.3. Performance comparison

Fig. 5 shows T-ratios in random structure of FBP. It can be seen
that the three methods GWMIN, GWMIN2 and GWMAX per-
form better than the MWL algorithm and its variants MAX-
IMUM and ONE LAYER. When K is small, the difference of
performance between the three methods and MWL algorithm
is not so obvious. As K grows to 6, we find that the overall
energy saving performance is growing since the likelihood of
co-locating multiple WuClasses on a device increases. More-
over, as K grows, the difference of performance between the
three methods and MWL algorithms becomes more obvious.
The reason is that the MWL greedy algorithm considers the
selection as a 2-co-locating problem. It is natural to expect
that energy saving depends on the likelihood of service co-
location in a system. If an application is a small FBP, or the
system has a large number of unique sensors, the chance for
sensor co-location, and thus energy saving, is small.

If we compare the result of using the same selection
strategy of maximumweight link on two different co-location
graphs (fully built co-location graph and one layer co-location
graph), we may discover that a fully built co-location graph
helps us find better solutions. It is because such a fully built
graph includes co-location decision that co-locates multiple
Table 1 – Scalability with K = 4 and different (n, m).

(n,m) GWMIN GWMIN2 GWMAX MWL

(50, 100) 3.182 ms 3.223 ms 3.085 ms 0.07 ms
(50, 200) 9.126 ms 9.172 ms 8.852 ms 0.104 ms
(50, 300) 17.454 ms 18.554 ms 15.855 ms 0.154 ms
(50, 400) 32.254 ms 27.347 ms 22.643 ms 0.136 ms
(50, 500) 49.856 ms 34.809 ms 31.794 ms 0.185 ms
(50, 1000) 192.554 ms 127.458 ms 123.264 ms 0.346 ms

Table 2 – Scalability with (n, m) = (50,100) and different
K.

K GWMIN GWMIN2 GWMAX MWL

4 21.73 ms 18.525 ms 13.923 ms 0.303 ms
5 31.631 ms 24.571 ms 18.776 ms 0.213 ms
6 44.669 ms 32.212 ms 28.955 ms 0.196 ms

services. From Fig. 5, we can see that GWMIN, GWMIN2 and
GWMAX algorithms always surpass MAXIMUM, MWL, and
ONE LAYER. Therefore, we focus our performance study on
GWMIN, GWMIN2, GWMAX and MWL in Fig. 6, which shows
the T-ratio and L-ratios on linear structure of FBP’s. A similar
performance pattern for T-ratio can be seen.

We have also studied how the FBP structure affects T-
Ratios. We compare linear, star and random FBP structures in
Fig. 7. We see that the three new algorithms and MWL greedy
algorithm perform worse in the star structure FBPs when the
number of device grows from 100 to 500. The intuition for
this fact is that there can be only one choice for the central
component in star FBP to co-locate with. That means there
only exists one co-location in star shape FBP. Moreover, MWL
has a relatively bad performance in all shapes of FBP structure
for all numbers of devices. This is because the MWL algorithm
can only consider a single edge of FBP in each round.

Beside the metrics for energy saving, we have also stud-
ied the execution times for different algorithms. It is an im-
portant factor if we want to deploy an application with many
services. In Table 1, we show the performance of algorithms
in six size settings. Each row of (n,m) shows the system with
n components and m devices. For each case, we show the av-
erage execution time for each algorithm. We can see that the
execution time grows linearly for the first three cases. But it
grows to more than 192 ms in the last case, which is because
the combination of selections grows exponentially. In Table 2,
we study how K affects the execution time. The greedy algo-
rithms take longer to consider more co-location decisions as
K increases while the MWL uses about the same time.



56 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S 1 ( 2 0 1 4 ) 4 7 – 5 7
(a) T Ratio Comparison for random FBP
(n,m) = (50,100).

(b) T Ratio Comparison for random FBP K = 4.

Fig. 5 – T-Ratios for different selection algorithms.
(a) T-Ratio. (b) L-Ratio.

Fig. 6 – Performance of different K sizes for linear FBP’s.
(a) GWMIN algorithm. (b) GWMIN2 algorithm.

(c) GMAX algorithm. (d) MWL greedy algorithm.

Fig. 7 – T-Ratios for different FBP structures.
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In summary, from the performance of energy saving
and reasonably short computation time, we believe the co-
location consideration is good for many IoT systems that
need to support runtime application mapping, deployment
and reconfiguration in a smart IoT environment.

8. Conclusion

This paper presents an energy sentient methodology for
selecting and deploying flow-based IoT applications on sensor
devices. Since energy is one of the most important resources
for running IoT devices, we propose a mapping strategy that
tries to minimize the total energy cost for communication by
co-locating neighboring services on the same node. We have
modeled the co-location problem on multi-hop networks
as a quadratic programming problem, so that it can be
solved by integer programming. For single-hop networks, we
identify co-locatable components of an FBP to construct a co-
location graph, and develop the selection framework using
efficient MWIS algorithms to decide service co-locations. Our
simulation study shows that the MWIS algorithms can save
10%more communication energy than our previous solution.

Acknowledgments

This work was partially supported by Taiwan Ministry of
Science and Technology, National Taiwan University and
Intel Corporation under Grants MOST102-2911-1-002-001 and
NTU103R7501.

R E F E R E N C E S

[1] K.-J. Lin, N. Reijers, Y.-C. Wang, C.-S. Shih, J.Y. Hsu,
Building smart M2M applications using the WuKong profile
framework, in: 2013 IEEE International Conference on Green
Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, 2013,
pp. 1175–1180.

[2] N. Reijers, K.-J. Lin, Y.-C. Wang, C.-S. Shih, J.Y. Hsu, Design of
an intelligent middleware for flexible sensor configuration in
M2M systems, in: SENSORNETS, 2013, pp. 41–46.

[3] J. Wang, D. Li, G. Xing, H. Du, Cross-layer sleep schedul-
ing design in service-oriented wireless sensor net-
works, IEEE Trans. Mob. Comput. 9 (11) (2010) 1622–1633,
http://doi.ieeecomputersociety.org/10.1109/TMC.2010.124.

[4] Z. Huang, K.-J. Lin, A. Han, An energy sentient methodology
for sensor mapping and selection in IoT systems, IEEE
International Symposium on Industrial Eletronics, 2014.

[5] S. Sakai, M. Togasaki, K. Yamazaki, A note on greedy
algorithms for the maximum weighted independent set
problem, Discrete Appl. Math. 126 (2–3) (2003) 313–322.

[6] Z. Huang, K.-J. Lin, S.-Y. Yu, J.Y.-j. Hsu, Building energy ef-
ficient internet of things by co-locating services to min-
imize communication, in: Proceedings of the 6th Inter-
national Conference on Management of Emergent Digital
EcoSystems, MEDES’14, ACM, New York, NY, USA, 2014,
pp. 18:101–18:108, http://dx.doi.org/10.1145/2668260.2668270.
URL: http://doi.acm.org/10.1145/2668260.2668270.

[7] Z. Huang, W. Jiang, S. Hu, Z. Liu, Effective pruning algorithm
for QoS-aware service composition, in: Commerce and
Enterprise Computing, 2009. CEC’09. IEEE Conference on,
2009, pp. 519–522, http://dx.doi.org/10.1109/CEC.2009.41.
[8] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, Z. Liu, QSynth:
A tool for QoS-aware automatic service composition, in: IEEE
International Conference on Web Services (ICWS), 2010,
pp. 42–49, http://dx.doi.org/10.1109/ICWS.2010.38.

[9] T. Yu, Y. Zhang, K.-J. Lin, Efficient algorithms for web services
selection with end-to-end QoS constraints, ACM Trans. Web,
1 (1), http://dx.doi.org/10.1145/1232722.1232728.

[10] Q.Wang, M. Hempstead,W. Yang, A realistic power consump-
tion model for wireless sensor network devices, in: 3rd IEEE
Conference on Sensor and Ad Hoc Communications and Net-
works, SECON’06, vol. 1, 2006, pp. 286–295, http://dx.doi.org/
10.1109/SAHCN.2006.288433.

[11] W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac
protocol for wireless sensor networks, in: Proceedings of IEEE
INFOCOM, vol. 3, 2002, pp. 1567–1576, http://dx.doi.org/10.
1109/INFCOM.2002.1019408.

[12] G. Lu, N. Sadagopan, B. Krishnamachari, A. Goel, Delay
efficient sleep scheduling in wireless sensor networks, in:
INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE,
vol. 4, 2005, pp. 2470–2481, http://dx.doi.org/10.1109/INFCOM.
2005.1498532.

[13] W. Ye, J. Heidemann, D. Estrin, Medium access control with
coordinated adaptive sleeping for wireless sensor networks,
IEEE/ACM Trans. Netw. 12 (3) (2004) 493–506, http://dx.doi.org/
10.1109/TNET.2004.828953.

[14] S. Olariu, I. Stojmenovic, Design guidelines for maximizing
lifetime and avoiding energy holes in sensor networks with
uniform distribution and uniform reporting, in: INFOCOM
2006. 25th IEEE International Conference on Computer
Communications. Proceedings, 2006, pp. 1–12, http://dx.doi.
org/10.1109/INFOCOM.2006.296.

[15] P. Pradhan, V. Baghel, G. Panda, M. Bernard, Energy
efficient layout for a wireless sensor network using
multi-objective particle swarm optimization, in: Advance
Computing Conference, 2009. IACC 2009. IEEE International,
2009, pp. 65–70.

[16] Y.-C. Wang, W.-C. Peng, Y.-C. Tseng, Energy-balanced
dispatch of mobile sensors in a hybrid wireless sensor
network, IEEE Trans. Parallel Distrib. Syst. 21 (12) (2010)
1836–1850, http://dx.doi.org/10.1109/TPDS.2010.56.

[17] C.-Y. Chang, H.-R. Chang, Energy-aware node placement,
topology control and mac scheduling for wireless sensor
networks, Comput. Netw. 52 (11) (2008) 2189–2204, http://dx.
doi.org/10.1016/j.comnet.2008.02.028.

[18] Z. Huang, K.-J. Lin, C. Li, S. Zhou, Communication energy
aware sensor selection in iot systems, in: 2014 IEEE and
Internet of Things (iThings/CPSCom), 2014.

[19] S.-Y. Yu, Z. Huang, C.-S. Shih, K.-J. Lin, J. Hsu, Qos oriented
sensor selection in iot system, in: 2014 IEEE and Internet of
Things (iThings/CPSCom), 2014.

[20] M. Halldórsson, J. Radhakrishnan, Greed is good: Approx-
imating independent sets in sparse and bounded-degree
graphs, in: Proceedings of the Twenty-sixth Annual ACM
Symposium on Theory of Computing, STOC’94, ACM, New
York, NY, USA, 1994, pp. 439–448.

[21] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, An
application-specific protocol architecture for wireless mi-
crosensor networks, IEEE Trans. Wirel. Commun. 1 (4) (2002)
660–670, http://dx.doi.org/10.1109/TWC.2002.804190.

[22] A. Billionnet, A. Faye, A lower bound for a constrained
quadratic 01 minimization problem, Discrete Appl. Math. 74
(2) (1997) 135–146, http://dx.doi.org/10.1016/S0166-218X(96)
00026-1. URL: http://www.sciencedirect.com/science/article/
pii/S0166218X96000261.

[23] J. Hastad, Clique is hard to approximate within n1-epsiv, in:
Foundations of Computer Science, 1996. Proceedings, 37th
Annual Symposium on, 1996, pp. 627–636, http://dx.doi.org/
10.1109/SFCS.1996.548522.

http://refhub.elsevier.com/S2352-6645(15)00006-1/sbref1
http://refhub.elsevier.com/S2352-6645(15)00006-1/sbref2
http://doi.ieeecomputersociety.org/10.1109/TMC.2010.124
http://refhub.elsevier.com/S2352-6645(15)00006-1/sbref5
http://dx.doi.org/10.1145/2668260.2668270
http://doi.acm.org/10.1145/2668260.2668270
http://dx.doi.org/10.1109/CEC.2009.41
http://dx.doi.org/10.1109/ICWS.2010.38
http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/INFCOM.2005.1498532
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1109/TPDS.2010.56
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://dx.doi.org/10.1016/j.comnet.2008.02.028
http://refhub.elsevier.com/S2352-6645(15)00006-1/sbref20
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://dx.doi.org/10.1016/S0166-218X(96)00026-1
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://www.sciencedirect.com/science/article/pii/S0166218X96000261
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522
http://dx.doi.org/10.1109/SFCS.1996.548522

	Co-locating services in IoT systems to minimize the communication energy cost
	Introduction
	Related work
	System model
	IoT service and application
	Devices and system
	Communication energy

	General sensor selection problem in multi-hop network
	Energy model
	Quadratic programming formulation
	Integer programming reduction

	Communication minimization problem for single-hop network
	Problem definition
	Co-location graph
	Problem complexity

	Co-location graph and selection
	Layer based graph construction
	Selection strategies
	Co-location selection framework
	Mapping remaining services

	Performance study
	Simulation setup
	Performance metrics
	Performance comparison

	Conclusion
	Acknowledgments
	References


