

Theoretical Computer Science 175 (1997) 3-13

Theoretical Computer **Science**

The bounded-complete hull of an α -space

Yu.L. Ershov*,1

Research Institute jbr Informatics and Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia

1. Introduction

In the paper [3], the author suggested a general topological approach to domain theory as highly convenient and more general than the established more traditional approach using *dcpos* (directed-complete partial orders) starting from D. Scott's work. This approach was realized by the author in the papers $[2,3]$ for the cases of f-spaces and A-spaces (complete f_0 -space = algebraic bounded-complete domain, complete A_0 space = bounded-complete domain; in the sequel, the term bc-domain will be used to denote bounded-complete domains). In the introduction to [3], the properties of the relation \prec of a *recognizable* approximation was discussed.

I would like to quote from [3]: "It is natural to require that all *recognizable* approximations of a fixed element x should form a directed set and this can be satisfied in the strong (but sufficiently reasonable) form:

(5) if $x_0 \prec x$ and $x_1 \prec x$ then there exists an element $x_2 \in X_0$ [basis] which is the exact upper bound $(x_2 = x_0 \vee x_1)$ of these elements in $\langle X, \leq \rangle$ and $x_2 \prec x$." (Compare with the definition of an abstract basis in [1]).

One of the arguments for the reasonability of the condition (5) is the following (naive) consideration: "If I know that x_0 and x_1 are approximations of an element x, then the pair (x_0, x_1) can be considered as an *approximation* of x, which contains only that information about x which is carried by the approximations x_0 and x_1 . So from the point of view of information about x a couple (x_0, x_1) is the exact upper bound for x_0 and x_1 ." The problem is that the pair (x_0, x_1) does not belong to the space of approximations X .

It is the aim of the present paper to present a mathematically correct realization of the idea described above and to show that for any α -space (= a basis for a domain, see Proposition 4 below) there exists a *uniquely dejined* bc-domain *B* and a homeomorphic embedding $\lambda : X \longrightarrow B$ with the properties of universality and minimality (the exact

^{*} E-mail: root@ershov.nsu.nsk.su.

¹ The work was done while the author visited Technische Hochschule Darmstadt. Thanks to Professor K. Keimel and Deutsche Forschungsgemeinschaft.

definitions see below). This pair (λ, B) will be called the bounded-complete hull (bchull) of X .

The survey paper [l] contains all the needed definitions and properties of the domains, which will be used in the proofs.

2. **a-spaces and their d-hulls**

With any topological space X connect two binary relations $\leq (\leq_X)$ and $\prec (\prec_X)$ defined as follows:

$$
x \le y \Leftrightarrow \text{ for every open } V, \text{ if } x \in V \text{ then } y \in V;
$$

$$
(\downarrow x \Leftrightarrow \{z \mid z \le x\}, \uparrow x \Leftrightarrow \{y \mid x \le y\})
$$

$$
x \prec y \Leftrightarrow y \in \text{Int } \uparrow x.
$$

(Int V is the interior of a set $V =$ the largest open set contained in V.)

The relation $\leq x$ on a topological space X is a partial order (in general it is a preorder) iff X is a T_0 -space. Below all topological spaces are supposed to be the T_0 T_0 -spaces.

If X is a subspace of Y so call X a *smooth* subspace of Y iff the relation \prec_X is the restriction of the relation \prec_Y on $X(\prec_X = \prec_Y \cap X^2)$. Note that if X is a subspace of Y then $\prec_Y \cap X^2 \subseteq \prec_X$ (and $\leq_X \equiv \leq_Y \cap Y^2$).

A space X will be called an x-space (see [3, 4]), if for any open V and any $x \in V$ there is $y \in V$ such that $y \prec x$.

Corollary 1. *If X is an* α *-space, x, y* \in *X, and x* \prec *y then there exists an z* \in *X such that* $x \prec z \prec y$.

Indeed, the set $U_x \in \{z \mid x \prec z\}$ is open, $y \in U_x$, and for $z \in U_x$ such that $z \prec y$ we also have $x \prec z$.

Now we establish one of the most specific properties.

Proposition 2. Let X be an α -space and Y and Z be arbitrary topological spaces. *The mapping* $f: X \times Y \rightarrow Z$ *is continuous if and only if f is continuous in each argument.*

Proof. We only need to check that if f is continuous in each argument then for any open $U \subseteq Z$ and $\langle x_0, y_0 \rangle \in f^{-1}(U)$ there exist neighborhoods V and W of x_0 and y_0 such that $V \times W \subseteq f^{-1}(U)$.

Since $\lambda x f(x, y_0)$ is continuous, it follows that there exists an open $V_0 \subseteq X$ such that $x_0 \in V_0$ and $V_0 \times \{y_0\} \subseteq f^{-1}(U)$. Let $x_1 \in V_0$ be such that $x_1 \prec x_0$ (X is an α -space!), and let $W \subseteq Y$ be an open set such that $y_0 \in W$, $\{x_1\} \times W \subseteq f^{-1}(U)$ $(\lambda y f(x_1, y))$:

 $Y \to Z$ is continuous!). If $V \rightleftharpoons \{x' | x' \in X, x_1 \prec x'\}$ then *V* is open, $x_0 \in V$. We show that $V \times W \subseteq f^{-1}(U)$. If $\langle x', y' \rangle \in V \times W$ then $f(x_1, y') \in U$ by the choice of W. We have $f(x_1, y') \leq z f(x', y')$ because $x_1 \leq x^x$ and $\lambda x f(x, y')$ is a continuous mapping. But then $f(x', y') \in U$ and $V \times W \subseteq f^{-1}(U)$. \square

We now give a characterization of α -spaces in terms of the lattices of all open subsets.²

Recall (cf. e.g., [1]) that a complete lattice L is called completely distributive if for any index set I and any families $W_i \subseteq L$, $i \in I$, the following equality holds:

$$
\bigwedge_{i \in I} (\bigvee W_i) = \bigvee_{f \in \Pi_{i \in I} W_i} \left(\bigwedge_{i \in I} f(i) \right) \tag{*}
$$

Theorem 3. *A topological* (T_0) -space *X* is an α -space if and only if its lattice $\Omega(X)$ *qf all open sets is completely distributive.*

Proof. Let $\Omega(X)$ be completely distributive, $U \subseteq X$ be open, and $x \in U$. For any $y \in U \setminus (\downarrow x)$ there exists an open $U_v \subseteq U$ such that $y \in U_v$ and $x \notin U_v$.

Let $W_0 \rightleftharpoons \{U_v | y \in U \setminus (\downarrow x)\}\$. For any open cover S (by open subsets of U) of the set $(1x) \cap U$ we denote $W_S \rightleftharpoons W_0 \cup S$. Since W_0 covers $U \setminus (1x)$ and S covers $\downarrow x \setminus \cap U$ then W_S covers *U* and $\bigvee W_S = U$ (in the lattice $\Omega(X)$ the union has the same set-theoretic sense). Thus, if $I \rightleftharpoons \{S \mid S \text{ is an open cover of } (\downarrow x) \setminus U\}$ then $\Lambda_{S\in I}(\bigvee W_S) = U$. Since in this case $\Omega(X)$ is completely distributive, there exists $f \in \prod_{S \in I} W_S$ such that $x \in U_x \implies \bigwedge_{S \in I} f(S)$. For any $S \in I$ we have $x \in f(S) \in W_S$ but $x \notin \bigvee W_0 = \bigcup_{y \in U \setminus \{ \perp x\}} (U_y)$ by the choice of U_y . Consequently, $f(S) \in S$.

Thus, for any cover $S \in I$ an open set U_x containing x is contained in some $V \in S$. We show that there exists $z_0 \in (\downarrow x) \cap U$ such that $U_x \subseteq \uparrow z_0$ (and hence $z_0 \prec x$).

Assume that there is no such z_0 . Then, for any $z \in (\downarrow x) \cap U$, there exists $u_z \in U_x \setminus$ (\uparrow z). Since $u_z \notin \uparrow$ z and $u_z \notin z$, there exists an open set $V_z \subseteq U$) such that $z \in V_z$ and $u_z \notin V_z$. Let $S_0 \rightleftharpoons \{V_z \mid z \in (\downarrow x) \cap U\}$. Then $S_0 \in I$, $f(S_0) \in S_0$, and $U_x \subseteq V_z$ for some $z \in (\downarrow x) \cap U$. This contradicts $u_z \in U_x \backslash V_z$. Thus, there exists a $z_0 \in (\downarrow x) \cap U$ such that $U_x \subseteq \uparrow z_0$, $z_0 \in U$, and $z_0 \prec x$. Therefore X is an α -space.

Let X be an x-space. Establish the relation $(*)$ in the lattice $\Omega(X)$. It suffices to prove the inclusion \subseteq

Let $x \in U \rightleftharpoons \bigwedge_{i \in I} (\bigvee W_i)$, then U is open; let $x_0 \in U$ and $x_0 \prec x$. For any $i \in I$,

$$
U \subseteq \bigvee W_i = \bigcup \{ V \mid V \in W_i \}.
$$

Hence, there exists $V_i \in W_i$ such that $x_0 \in V_i$. We assume that $f \in \prod_{i \in I} W_i$ is such that $f(i) = V_i$ (i.e., $x_0 \in f(i)$ for all $i \in I$); if $U_{x_0} \rightleftharpoons \{x' \in X, x_0 \prec x'\}$ then U_{x_0} is open, $x \in U_{x_0}$, and $U_{x_0} \subseteq V_i = f(i)$ for all $i \in I$. But in this case $U_{x_0} \subseteq \bigwedge_{i \in I} f(i)$

 2 I am grateful to E. Griffor who asked me a question which had led to this characterization.

because $\bigwedge_{i \in I} f(i)$ is the largest open subset of the set $\bigcap_{i \in I} f(i)$. Thus, we have

$$
x \in U_{x_0} \subseteq \bigwedge_{i \in I} f(i) \subseteq \bigvee_{f \in \Pi_{i \in I} W_i} \left(\bigwedge_{i \in I} f(i) \right).
$$

The inclusion \subseteq , and hence the theorem, is proved. \square

Remark. One can prove this theorem making use of the following proposition and the well-known corresponding result for domains [1]. However, the direct proof demonstrates that it is very easy to work with the notion of an "a-space" directly.

Note that every domain, considered as a topological space, is an α -space.

Proposition 4. A space X is an α -space if and only if X is homeomorphic to a basis *.for some domain.*

Proof. Let X be an α -space, then (it is not hard to see) the system $\langle X, \prec \rangle$ is an (abstract) basis [1]; let $X^* \rightleftharpoons \text{Idl}(X, \prec)$ be the ideal completion of $\langle X, \prec \rangle$, then by Proposition 2.2.22 in [1], X^* is a domain and $i: X \to X^*$ is a homeomorphism from X onto the basis $i(X)$ of the domain $X^*(i(x) \rightleftharpoons x = \{y \mid y \prec x\})$.

Vice versa, let *D* be a domain (considered as a topological space) and $X \subseteq D$ be a basis of *D* (i.e., for every $d \in D$ the family $X_d \rightleftharpoons \{x \mid x \in X, x \prec_D d\}$ is directed and $d = \sup X_d$).

Show that for every open V_0 in X, every element $x_0 \in V_0$ there exists $x \in V_0$ such that $x \prec_D x_0$: X is a basis of *D*, so $x_0 = \sup X_{x_0}$ and if *V* is open in *D* such that $V_0 = V \cap X$ then *(D* is a domain!) $V \cap X_{x_0} \neq \emptyset$; but $V \cap X_{x_0} \subseteq V_0$ and if $x \in V \cap X_{x_0} \subseteq V_0$ then $x \prec_D x_0$. Because $x \prec_D x_0$ implies $x \prec_X x_0$, we have that X is an α -space.

Note in addition that X is also a smooth subspace of D: if $x_0 \prec_X x_1$ and if V_0 is an open subset of X such that $x_1 \in V_0 \subseteq \{x \mid x_0 \leq x \leq x_0, x \in X\}$, then, as it was proved above, there is $x \in V_0$ such that $x \prec_D x_1$; but $x_0 \le x$, $x \prec_D x_1$ implies $x_0 \prec_D x_1$; so X is a smooth subspace of D . \square

The following proposition, expressing known properties of bases of domains (for A-spaces see [3]), is formulated in a form which is convenient for the later considerations here.

Proposition 5. For any α -space X there are a domain D and a homeomorphic em*bedding* $\lambda : X \to D$ of the space X onto a basis of D. The pair (λ, D) enjoys the *following two conditions:*

(1) For every continuous map $f: X \to D'$ from X into a domain D' there is a *continuous map* f^* : $D \rightarrow D'$ *such that* $f = f^* \lambda$.

(2) If $f: D \to D$ is a continuous map from D into itself such that $f \restriction \lambda(X) = id_{\lambda(X)}$ $(i.e., f\lambda = \lambda)$, then $f = id_D$.

The pair (λ, D) with the properties (1) and (2) is uniquely defined up to a homeo*morphism over λ.*

Proof. (1) For simplicity suppose that $X \subseteq D$ (and $\lambda = id_X$). Let f be a continuous map from X into a domain D'; for every element $d \in D$ the set $X_d \rightleftharpoons \{x \mid x \in X, x \prec d\}$ is directed and $d = \sup X_d$; let $f^*(d) \rightleftharpoons \sup \{f(x) | x \in X_d\}$; f is continuous, hence monotonic (relative to the orders $\leq x$ and $\leq_{D'}$) and consequently the set $\{f(x) | x \in$ X_d is directed and the map f^* is well defined. Check that f^* $X = f$: from the definition of f^* one can see that $f^*(x) \leq p f(x)$ for all $x \in X$. Suppose that there is $x_0 \in X$ such that $f(x_0) \notin D'$ $f^*(x_0)$; then there is an open V in D' such that $f(x_0) \in V$, but $f^*(x_0) \notin V$. The set $f^{-1}(V)$ is open in X and contains x_0 ; then there is $x_1 \in$ $f^{-1}(V)$ such that $x_1 \prec_D x_0$, then $x_1 \in X_{x_0}$ and $f(x_1) \leq f^*(x_0) = \sup\{f(x) | x \in X_{x_0}\}.$ But $x_1 \in f^{-1}(V)$, so $f(x_1) \in V$ and $f^*(x_0) \in f(x_1) \in V$; a contradiction. Check that f^* is continuous: let *V'* be open in *D'*, $V \rightleftharpoons f^{*-1}(V')$ and $d \in V$. Then $f^*(d) \in V'$; $f^*(d) = \sup \uparrow \{f(x) \in X_d\}$ and $\{f(x) | x \in X_d\} \cap V' \neq \emptyset$; let $x_0 \in X_d$ be such that $f(x_0)$ (= $f^*(x_0)$) $\in V'$; then $x_0 \in V$ and $x_0 \prec d$. From the obvious equality $\uparrow V = V$ it follows that the open set $\{d' | x_0 \prec d'\}$ is contained in *V* and contains *d*. So, *V* is open and f^* is continuous. Note in addition that f^* is the unique extension of f on D . Really, if $g: D \to D'$ is a continuous map such that $g \upharpoonright X = f$, then for every $d \in D$, $d = \sup \{ X_d \text{ we have } g(d) = \sup \{ g(x) \mid x \in X_d \} = \sup \{ f(x) \mid x \in X_d \} = f^*(d).$

(2) From this uniqueness, property (2) follows, because id_D extends id_X . \Box

A pair (λ, D) which satisfied the conditions (1) and (2) of the Proposition 5 will be called a *d-hull* of X and we will use the notation $H_d(X)$ for *D* and δ_X for λ .

There is a description of the bases of algebraic domains analogous to Proposition 4. An element x of a topological space X is called *compact* if the set $\uparrow x = \{y \mid y \in X,$ $x \leq y$ is open in X.

A (topological) space X is called a φ -space if for any open V in X and any $x \in V$, there exists a compact element $y \in V$ such that $y \leq x$ (note that for a compact y the relations $y \leq x$ and $y \prec x$ are equivalent).

The following proposition practically has the same proof as Proposition 4.

Proposition 6. *A space X is a* φ *-space if and only if X is homeomorphic to a basis of some algebraic domain.*

Corollary 7. *The d-hull* $H_d(X)$ *of an* α *-space X is an algebraic domain iff X is a cp-space.*

3. The bounded-complete hull: The case of φ -spaces

Consider now the question of embedding an α -space into a bc-domain. Define the notion of a bc-hull of an α -space X in analogy with the d-hull as follows:

Let X be an α -space, let B be a bc-domain, and let $\lambda : X \to B$ be a homeomorphic embedding of X into B. The pair (λ, B) is called a bc-hull of X if the following two conditions hold:

(1) *Universality:* For every continuous map $f : X \to B'$ from the α -space X into a bc-domain *B'* there exists a continuous map $f^* : B \to B'$ such that $f^* \lambda = f$.

(2) *Minimality:* If $f : B \to B$ is a continuous map of *B* into itself such that $f\lambda = \lambda$ then $f = id_R$.

Remark that the uniqueness of a bc-hull of X follows from the conditions (1) and (2) in the following exact sense:

Proposition 8. *If* (λ, B) and (λ', B') are bc-hulls of X, then there exists a unique *homeomorphism* $\varphi : B \to B'$ *of the spaces B and B' such that* $\varphi \lambda = \lambda'$.

Proof. Due to universality of the bc-hulls of X, there are continuous maps $\varphi : B \to B'$ and $\varphi' : B' \to B$ such that $\lambda' = \varphi \lambda$ and $\lambda = \varphi' \lambda'$. But then $\varphi' \varphi$ is a continuous map of *B* into itself such that $\varphi' \varphi \lambda = \varphi' \lambda' = \lambda$ and by minimality for (λ, B) we have $\varphi' \varphi = id_B$. In the same way it is possible to deduce that $\varphi \varphi' = id_{B'}$. So, φ (φ') is a homeomorphism from *B* onto *B'* (from *B'* onto *B*). \Box

Note. The example below shows that it is impossible to require uniqueness in the condition (1) of the definition of a bc-hull, though for a d-hull the uniqueness of f^* in condition (1) holds, as it was noticed in the proof of Proposition 4.

For the bc-hull of X (if it exists) we will use the notation $(\beta_X, H_{bc}(X))$.

Now let us turn to the question of the existence of bc-hulls. Start from the case of φ -spaces.

Let X be a φ -space, $K = K(X)$ the set of all compact elements of X.

Let K^* be the family of all nonempty subsets of K representable in the form $k_F \rightleftharpoons$ $\bigcap_{d \in F} (\dagger d \cap K)$, where *F* is a finite subset of *K* (notice that $K = k_{\emptyset} \in K^*$). Let \leq^* be the partial order on K^* opposite to the inclusion relation $k \leq k' \rightleftarrows k' \leq k$; (then *K* is the least element of $\langle K^*, \leq^* \rangle$).

Remark that $\langle K^*, \leq^* \rangle$ is a partial upper semilattice: if $k_{F_0}, k_{F_1} \in K^*$ and if there is a $k \in K^*$ such that $k_{F_0} \leq k k$ and $k_{F_1} \leq k k \leq k_{F_0}$, $k \subseteq k_{F_1}$, then $k_{F_0} \cap k_{F_1} =$ $k_{F_0 \cup F_1} \in K^*(k_{F_0 \cup F_1} \supseteq k \neq \emptyset)$ and is obviously the least upper bound for k_{F_0} and k_{F_1} in $\langle K^*,\leqslant^* \rangle$.

Let $B \rightleftharpoons Idl(K^*, \leq^*)$ be the ideal completion of $\langle K^*, \leq^* \rangle$; then *B* is an algebraic bc-domain. Define a continuous map $\lambda : X \to B$ as the (unique) continuous extension of the monotonic (= continuous) map $\lambda_0 : K \to K^* \subseteq \text{Idl}(K^*, \leq^*)$ defined by $\lambda_0(d) \rightleftharpoons$ $(\uparrow d \cap K)(\in K^*)$.

Theorem 9. *The pair* (λ, B) *is a bc-hull of X.*

Proof. Let us check universality (property (1)): Let $f : X \rightarrow B'$ be any continuous map from X into a bc-domain B'. Define a monotone (= continuous) map $f_0: K^* \to B'$ as follows:

$$
f_0^*(k) \rightleftharpoons \inf_{R'} \{ f(x) \, | \, x \in k \} \quad \text{for any } k \in K^* \, .
$$

 B' is a bc-domain, so inf exists in B' for any nonempty subset of B' . From the definition of f_0^* clear that f_0^* is monotonic: $k_0 \leq k_1 \Leftrightarrow k_1 \subseteq k_0 \Rightarrow \{f(x) | x \in k_1\} \subseteq \{f(x) | x \in k_1\}$ $\{E_k\} \Rightarrow f_0^*(k_0) = \inf\{f(x) \mid x \in k_0\} \leq B_f f_0^*(k_1) = \inf\{f(x) \mid x \in k_1\}.$ If $k = (\uparrow x_0 \cap K)$ for $x_0 \in K$ then $f_0^*(k) = \inf\{f(x) | x \in K, x_0 \le x\} = f(x_0)$. The continuous map f_0^* of the basis K^* of the algebraic bc-domain *B* has a unique continuous extension f^* : *B* \rightarrow *B'* and for this map we have for $f^*\lambda(x_0) = f_0^*(x_0 \cap K) = f(x_0)$ for $x_0 \in K$; so $f^*\lambda$ is a continuous extension of the continuous map $f\upharpoonright K$ of the basis K of the space X into B'. But f is also an extension of $f|K$; by the uniqueness of an extension from a basis we have $f^*\lambda = f$. So the property of universality for the pair (λ, B) is proved.

Note an additional property of the function f^* which will be used later:

If $f' : B \to B'$ is a continuous map such that $f = f' \lambda$, then $f' \leq f^*$. Check that $f'(k) \leq B f^*(k) = f_0^*(k)$ for every $k \in K$; from that the property just mentioned will follow: Let $k \in K^*$, $x \in k$; then $k \supseteq(\lceil x \cap K \rceil) = \lambda(x)$, $k \leq^* \lambda(x)$ and $f'(k) \leq B(f')\lambda(x) =$ $f(x)$, because f' is monotonic; so $f'(k)$ is a lower boundary for the set $\{f(x) | x \in k\}$ and $f'(k) \leq B$ inf{ $f(x) | x \in k$ } = $f_0^*(k) = f^*(k)$. \Box

Let us turn to proving the minimality (property (2)):

To start let us prove a lemma needed for later use also.

A subspace $X \subseteq B$ of a bc-domain *B* is called \vee -dense if any element *b* from *B* has a presentation in the form $b = \sup D$ for a set *D* such that every element of *D* has the form $x_0 \vee_B \cdots \vee_B x_n$ for a finite subset $\{x_0, \ldots, x_n\}$ of X.

Lemma 10. If X is a \vee -dense subspace of a bc-domain B, and if f is a continuous *map of B into itself such that* $f|X = id_X$, then $f \ge id_B$.

Any element *b* from B has the form $b = \sup D_b$, $D_b = \{ \bigvee_{x \in F} x \mid F \in \mathcal{F}_b \}$ for some family \mathcal{F}_b of finite subsets of X bounded in X. Then $f(b) = f(\sup D_b) =$ $\sup f(D_b); f(D_b) = \{f(\bigvee_{x \in F} x) | F \in \mathcal{F}_b\};$ but $f(\bigvee_{x \in F} x) \geq \bigvee_{x \in F} f(x) = \bigvee_{x \in F} x$; so $f(b) = \sup f(D_b) \geq \sup D_b = b. \quad \Box$

Proof of Theorem 9 *(Continued).* It is not hard to see that the condition of the lemma is satisfied for $\lambda(X) \subseteq B$.

Let $f: B \to B$ be a continuous map of *B* into itself such that $f\lambda = \lambda(f \mid \lambda(X)) =$ *id_{i(X)}*. Then $f \ge id_B$ by the lemma. For proving $f = id_X$ check that $k = \inf_B \{ \in X \cap K \}$ $|x \in k$ for every $k \in K^*$.

If $x \in k$, then $\lceil x \cap K \rceil \leq k$, $k \leq k$ $\lceil x \cap K \rceil$ and *K* and so *k* is a lower bound for the set $\{\uparrow x \cap K \mid x \in k\}$ and $k \leq 2^*$ inf $\{\uparrow x \cap K \mid x \in k\}$. Suppose that $k \neq \inf\{\uparrow x \cap K \mid x \in k\}$; then there is $k' \in K^*$ such that $k' \leq \min\{\lceil x \cap K \rceil : 1 \leq k\}$, but $k' \neq k$, $k \not\subseteq k'$. Let $x_0 \in k \backslash k'$, then $x_0 \cap K \nsubseteq k'$, $k' * x_0 \cap K$. But this is impossible because k' must be a lower bound for $\{\uparrow x \cap K \mid x \in k\} \ni \uparrow x_0 \cap K$.

Let λ^* : $B \to B$ be the continuous map constructed as in the proof of the theorem (proving the universality). On elements from K^* we have $\lambda^*(k) = \lambda_0^*(k) =$ $\inf \{ \lambda(x) \mid x \in k \} = \inf \{ \int x \cap K \mid x \in k \} = k$. Then $\lambda^* = id_B$ and by the property of the construction * we have $f \le \lambda^* = id_B$; so $f = id_B$ and the theorem is proved. \Box

Notice two corollaries of the (proof of the) theorem.

Corollary A. For a φ -space X, the embedding $\beta_X : X \to H_{bc}(X)$ is a homeomorphism *onto a smooth subspace of* $H_{bc}(X)$ *.*

Proof. This follows from the construction of $H_{bc}(X)$ and from the following remark that is not hard to verify: If a φ -space X is a subspace of an α -space Y, then X is smooth iff every compact element of X is a compact element of Y. \Box

Corollary B. *If X is a coherent algebraic domain then* $H_{bc}(X)$ *is a natural subspace of the Smith powerdomain* $P^{S}(X)$ *of* X.

Proof. This easily follows from the construction of $H_{bc}(X)$, the definition of coherence, and from Theorem 6.2.14 [1]. \Box

We prove one more property of the construction which is not a direct corollary of the (proof of the) theorem.

Proposition 11. Let X be a φ -space, $f : X \to B'$ a homeomorphic embedding of X *onto a smooth subspace of B'. Then the largest continuous extensions* $f^* : H_{bc}(X) \rightarrow$ *B' of f such that* $f = f^* \beta_X$ *is injective.*

In the proof we shall use the concrete bc-hull of X constructed in the proof of the theorem; so we keep the same notations $(H_{bc}(X) = B, \beta_X = \lambda, \ldots).$

Proof. Suppose that f^* is not injective, then $f^*(b_0) = f^*(b_1)$ for some $b_0 \neq b_1 \in B$. Find an element $k \in K^*$ such that $k_0 \leq_B b_0$, $k_0 \not b_1$ (if $k_0 \leq_B b_1$, $k_0 \not b_0$, then exchange 0 and 1 in the indices). The elements b_0 and b_1 have a presentation b_i = $\sup\{k_F \mid k_F \in K^*, F \in \mathcal{F}_i\}, i = 0, 1$, for some families \mathcal{F}_0 and \mathcal{F}_1 of finite subsets of *K* bounded in *K* closed under finite unions. We can suppose also that $k_0 = k_{F_0}$ for some $F_0 \in \mathcal{F}_0$. For every $F_1 \in \mathcal{F}_1$ we have $k_{F_0} * k_{F_1}$, $k_{F_1} \notin k_{F_0} = \bigcap_{x \in F_0} (\uparrow x \cap K)$. *So for every* $F_1 \in \mathcal{F}_1$ there is an $x \in F_0$ such that $k_{F_1} \nsubseteq \uparrow x \cap K$. The set F_0 is finite, the family \mathscr{F}_1 is directed (under inclusion); so there is $x_0 \in F_0$ such that $k_F \not\subseteq$ $\lceil x_0 \cap K \rceil$ for every $F_1 \in \mathcal{F}_1$. Now, $f^*(x_0 \cap K) \leq B/f^*(b_0)$, because $\lceil x_0 \cap K \leq k F_0 \leq B b_0$ and $f^*(b_0) = f^*(b_1) = f^*(\sup\{k_F | F \in \mathcal{F}_1\}) = \sup\{f^*(k_F) | F \in \mathcal{F}_1\}$. We have $f^*(Tx_0 \cap K) = f^* \lambda(x_0) = f(x_0)$. Now x_0 is a compact element of X, so $f(x_0)$ is a compact element of *B'* because *f* is a homeomorphism onto a smooth subspace of *B!* Then $f(x_0) \leq B' f^*(k_{F_1})$ for some $F_1 \in \mathcal{F}_1$; $f^*(k_{F_1}) = f_0^*(k_{F_1}) = \inf_{B'} \{f(x) | x \in k_{F_1}\}\$ and $f(x_0) \leq B' f(x)$ for every $x \in k_F$. Because f is a homeomorphism we have $x_0 \leq x$ for every $x \in K_F$, $\uparrow x_0 \supseteq K_F$, but this contradicts to the choice of x_0 . \Box

Example 12. We use the simple diagrams instead of many words:

If $f: X \to B'$ is defined by $f(a) = f(b) = 1$, $f(c) = f(d) = 0$, then $f^*(c \vee d) = 1$, $f^*(\perp) = 0$. But for the monotonic (= continuous) map $f' : B \to B'$ extending f and such that $f'(c \vee d) = 0$, $f'(\perp) = 0$, we have $f' \lambda = f$ and $f' \neq f^*$.

In concluding this section where we considered the case of φ -spaces let us formulate a proposition concerning the b_0 -spaces with a constructivizable basis (see [4]).

If X is a b-space with a constructivizable basis then $H_{bc}(X)$ is a bc-domain with *u constructivizuble basis.*

4. **The bounded-complete hull: The general case of a-spaces**

In this section the general case of an arbitrary α -space X will be considered. Note one well-known fact for domains.

Proposition 13. *Any* α *-space is a projection of some* φ *-space.*

Proof. Let X be an α -space we can suppose (Proposition 4) that X is a basis of some domain X_0 . If $Y_0 \rightleftarrows Idl(X, \leq_X)$ is the ideal completion of the partial ordered set $\langle X, \leq \chi \rangle$ then the pair of the maps

 $e_0: x_0 \mapsto X_{x_0} \Longleftrightarrow \{x \mid x \in X, x \prec x_0\}, x_0 \in X_0,$ $p_0: I \mapsto \sup I$, $I \in Idl(X, \leq \chi)$

is an embedding-projection pair [1]. If $Y \Rightarrow p_0^{-1}(X)$, $e \Rightarrow e_0 \upharpoonright X$, $p \Rightarrow p_0 \upharpoonright Y$ then (e, p) is an embedding-projection pair, and Y is a φ -space because Y has the same compact elements ($\downarrow x, x \in X$) as Y_0 . \Box

Let us establish one more general fact needed for the construction.

Proposition 14. *Ij'an a-space X is u smooth subspace of a bc-domain B then there exists a subspace B'* \subseteq *B such that B' is a bc-domain,* $X \subseteq$ *B' and X is* \vee *-dense in B'.*

Proof. Let

$$
X_0 \rightleftharpoons \left\{ x_F \rightleftharpoons \bigvee_{x \in F} x \middle| F \subseteq X \text{ is a finite bounded subset in } X \right\}.
$$

Note that $\perp_B = x_0 \in X_0$. Check that X_0 is an α -space (as a subspace of B). Let *W* be open in X_0 and $x_0 \vee_B \cdots \vee_B x_n \in W$, $x_i \in X$, $i \leq n$; let *V* be open in *B* such that $V \cap X_0 = W$. There are open sets V_0, \ldots, V_n of B such that $x_i \in V_i$, $i \leq n$, and if $y_i \in V_i$, $y_i \leq_B x_i$, $i \leq n$, then $y_0 \vee_B \cdots \vee_B y_n \in V$ (because $x_0 \vee_B \cdots \vee_B x_n \in V$ and because the operation \vee_B restricted to $\downarrow_B (x_0 \vee_B \cdots \vee_B x_n)$ is continuous). Let $W_i \rightleftharpoons V_i \cap X$, $i \leq n$, $x_i \in W_i$, $i \leq n$. Because X is an *x*-space there are $y_i \in W_i$, $i \in n$, such that $y_i \prec x_i$, $i \leq n$; but then $y_0 \vee_B \cdots \vee_B y_n \prec_B x_0 \vee_B \cdots \vee_B x_n$ and $y_0 \vee_B \cdots \vee_B y_n \in W = V \cap X_0$. $\langle X_0, \leq \chi_0 \rangle$ is a partial upper semilattice; then $H_d(X_0)$ is a bc-domain and the embedding of X_0 into *B* can be extended to a homeomorphic embedding of $H_d(X_0)$ into *B* ([3, Theorem 1, Section 3.1). The image of this embedding B' obviously satisfies the conclusion of the proposition. \square

Combining these two propositions we will have the following:

Proposition 15. For every a-space X there exists a homeomorphic embedding λ' : $X \rightarrow B'$ of X into a bc-domain B' such that $\lambda'(X)$ is \vee -dense in B' and the pair (λ', B') is universal for X.

Proof. Let $e: X \to Y$, $p: Y \to X$ be an embedding-projection pair for some φ -space Y. By Theorem 9, there exists a bc-hull $(\beta_Y, H_{bc}(Y))$ for Y. The embedding $\beta_Y e : X \rightarrow$ $H_{bc}(Y)$ is a homeomorphism onto a smooth subspace. Really, it is not hard to check that e embeds X into Y homeomorphically onto a smooth subspace of Y, because (e, p) is an embedding-projection pair (see, e.g., [1, Proposition 3.1.17]). The map β_Y embeds Y homeomorphically into $H_{bc}(Y)$ onto a smooth subspace (property (1) after the proof of the Theorem 9). From that it follows that $\beta_Y e$ is a homeomorphism from X onto a smooth subspace of $H_{bc}(Y)$. By Proposition 14 there is a subspace $B' \subseteq H_{bc}(Y)$ such that *B'* is a bc-domain and $\beta_Y e(X)$ is \vee -dense in *B'*. Let us show that $(\beta_Y e, H_{bc}(Y))$ is universal relative to X. Let $f: X \to \overline{B}$ be a continuous map from X into a bc-domain \overline{B} ; then $fp: Y \to \overline{B}$ is a continuous map and by the universality of $(\beta_Y, H_{bc}(Y))$ for Y there is a continuous map $(fp)^* : H_{bc}(Y) \to \overline{B}$ such that $fp = (fp)^* \beta_Y$, then $f = f \rho e = (fp)^* \beta \gamma e$ and the universality of the pair $(\beta \gamma e, H_{bc}(Y))$ for X holds. Now one needs only to notice that for every subspace $Z \subseteq H_{bc}(Y)$ such that $\beta_Y e(X) \subseteq Z$ the pair ($\beta_Y e, Z$) is universal for X; in particular, the pair ($\beta_Y e, B'$) is universal for X. \Box

Theorem 16. *For any m-space X there exists a* bc-hull.

Proof. By Proposition 15, there is a pair (λ', B') such that $\lambda' : X \to B'$ is a homeomorphic embedding from X into a bc-domain B' , $\lambda'(X)$ is \vee -dense in B' and the pair (λ', B') is universal for X. Consider the family $\mathcal{F} \subseteq C(B', B')$ of the all continuous maps *f* from the bc-domain *B'* into itself such that $f \frac{\lambda'(X)}{\lambda'} = id_{\lambda'(X)}$ (or $f \lambda' = \lambda'$).

Because the space $C(B', B')$ of all continuous maps of B' into itself is a *dcpo* (directedcomplete partial order) as a partial ordered set $\langle C(B', B'), \leq C(B', B')\rangle$, then by Zorn's lemma in $\langle \mathcal{F}, \leq \rangle$ there is a maximal element f_0 . By Lemma 10, $f \geq id_{B'}$ for any $f \in \mathscr{F}$; so $f_0 \geq id_{B'}$, $f_0^2 \geq f_0$ and $f_0^2 \lambda' = f_0(f_0 \lambda') = f_0 \lambda' = \lambda'$, so $f_0^2 \in \mathscr{F}$. From the maximality of f_0 , we have $f_0^2 = f_0$; f_0 is a retraction (closure operator) on *B'*. Let $B \rightleftharpoons f_0(B') \subseteq B'$; *B* is a bc-domain (by [3, Proposition 3, Section 2]), *B* is an A-space and as a continuous image of the complete A_0 -space (= bc-domain) *B'*, *B* is a complete A_0 -space (= bc-domain)). From $f_0\lambda' = \lambda'$ it follows that $\lambda'(X) \subset B$. Because (λ', B') is universal for X, then (λ', B) is universal for X. Let us check that (λ', B) is minimal. Let $g : B \to B$ be such a continuous map that $g\lambda' = \lambda'$. By Lemma 10 (it is easy to check that $\lambda'(X)$ is \vee -dense in *B*) we have $g \geq id_B$. If $g > id_B$, then $f \Leftrightarrow gf_0 > f_0$ and $f\lambda' = gf_0\lambda' = g\lambda' = \lambda'$, $g \in \mathscr{F}$ and $g > f_0$. This is impossible because f_0 is a maximal element of \mathscr{F} . \Box

The construction of a bc-hull in the general case is highly nonconstructive (using a Zom's lemma); so two natural questions are open:

- 1. Is Proposition 11 true for arbitrary α -spaces X?
- 2. Is $\beta_X : X \to H_{bc}(X)$ embedding X onto a smooth subspace of $H_{bc}(X)$?

Remark. Proposition 10 in [4] (more exactly, the second part of the proposition) is not proved, because the intended proof of it contains a gap. I am grateful to Dr. A. Jung for the indication of this gap.

Noted added in proof. After I submitted this paper Prof. K. Keimel pointed out to me that M. Erné introduced in his paper "Scott convergence and Scott topology in partially ordered sets, 11" (in: B. Banaschewski and R.-E. Hoffman, eds., *Continuous lattices,* Lecture Notes Mathmatics, Vol. 871 (Springer, Berlin, 1981) 61-96) the notion of C-space which is equivalent to the notion of α -space and so Theorem 2.11a of Erné's paper is equivalent to Theorem 3 of this paper. (See also: M. Erné, The ABC of Order and Topology, in: H. Herrlich and H.-E. Porst eds., Cutegory *Theory at Work* (Heldermann Verlag, Berlin, 1991) 57-83).

References

- [I] S. Abramsky and A. Jung, Domam theory, in: S. Abramsky, D. Gabbay, T. Maibaum, eds., *Handbook q/ Logic in Computer Science.* Vol. 3 (Oxford Science Publications, New York, 1995).
- [2] Yu.L. Ershov, Computable functionals of finite types, *Algebra and Logic* **11 (4) (1972) 203-242.**
- **[3]** Yu.L. Ershov. The theory of A-spaces, *Algebru and Logic 12 (4) (1973) 209-232.*
- *[4]* Yu.L. Ershov. Theory of domams and nearby, in: D. Bjerner, M. Broy and 1. Pottosin, eds., *Forma/ Methods in Programming and Their Applications*, Lecture Notes in Computer Science, Vol. 735 (Springer. Berlin, 1993) l-7.