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1. Introduction

In the paper [3], the author suggested a general topological approach to domain
theory as highly convenient and more general than the established more traditional
approach using dcpos (directed-complete partial orders) starting from D. Scott’s work.
This approach was realized by the author in the papers [2, 3] for the cases of f-spaces
and A4-spaces (complete fy-space = algebraic bounded-complete domain, complete 4o-
space = bounded-complete domain; in the sequel, the term bc-domain will be used to
denote bounded-complete domains). In the introduction to [3], the properties of the
relation < of a recognizable approximation was discussed.

I would like to quote from [3]: “It is natural to require that all recognizable approx-
imations of a fixed element x should form a directed set and this can be satisfied in
the strong (but sufficiently reasonable) form:

(5) if xp < x and x; < x then there exists an element x; € Xy [basis] which is the
exact upper bound (x; = xo V x1) of these elements in (X, <) and x; < x.” (Compare
with the definition of an abstract basis in [1]).

One of the arguments for the reasonability of the condition (5) is the following
(naive) consideration: “If I know that xy and x; are approximations of an element x,
then the pair (xo,x;) can be considered as an approximation of x, which contains only
that information about x which is carried by the approximations xy and x,. So from
the point of view of information about x a couple (xp,x;) is the exact upper bound
for xo and x,.” The problem is that the pair (xo,x;) does not belong to the space of
approximations X.

It is the aim of the present paper to present a mathematically correct realization of
the idea described above and to show that for any x-space (=a basis for a domain, see
Proposition 4 below) there exists a uniguely defined bc-domain B and a homeomorphic
embedding 4:X — B with the properties of universality and minimality (the exact
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definitions see below). This pair (4,B) will be called the bounded-complete hull (bec-
hull) of X.

The survey paper [1] contains all the needed definitions and properties of the do-
mains, which will be used in the proofs.

2. a-spaces and their d-hulls

With any topological space X connect two binary relations < (<x) and < (<x)
defined as follows:

x<y="for every open V, if x € V" then y € V;
(Ix={z]z<xh Tx={y|x<y})
x<y=y¢€ IntTx

(Int V' is the interior of a set V' = the largest open set contained in V.)

The relation <x on a topological space X is a partial order (in general it is
a preorder) iff X is a Tp-space. Below all topological spaces are supposed to be the
To-spaces. ‘

If X is a subspace of ¥ so call X a smooth subspace of Y iff the relation <y is the
restriction of the relation <y on X(<y==<y NX?). Note that if X is a subspace of ¥
then <y NX2C <y (and <y = <y NY?).

A space X will be called an a-space (see [3,4]), if for any open V and any x € V
there is y € V such that y < x.

Corollary 1. If X is an a-space, x,y € X, and x < y then there exists an z € X such
that x <z < y.

Indeed, the set Uy € {z|x <z} is open, y € U,, and for z € U, such that z < y we
also have x < z.
Now we establish one of the most specific properties.

Proposition 2. Let X be an a-space and Y and Z be arbitrary topological spaces.
The mapping f:X x Y — Z is continuous if and only if f is continuous in each
argument.

Proof. We only need to check that if f is continuous in each argument then for any
open U CZ and (xo, vo) € f~'(U) there exist neighborhoods ¥ and W of xq and y
such that ¥ x W C f~1(U).

Since Ax f(x, yo) is continuous, it follows that there exists an open ¥y C X such that
xg € Vo and Vo x {0} C f~1(U). Let x; € ¥, be such that x; < xp (X is an a-space!),
and let W CY be an open set such that yo € W, {x;} x W C f~Y(U) (Ayf(x1,¥):
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Y — Z is continuous!). If ¥ = {x'|x’ € X, x; < x'} then V is open, xo € V. We
show that ¥ x W C f=Y(U). If (x',y’) € ¥ x W then f(x;,y) € U by the choice
of W. We have f(x1, V' )<zf(x,)") because x) <yx’' and ixf(x,y') is a continuous
mapping. But then f(x,y)e U and ¥ x WC f~Y(U). O

We now give a characterization of a-spaces in terms of the lattices of all open
subsets. 2

Recall (cf. e.g., [1]) that a complete lattice L is called completely distributive if for
any index set / and any families W; C L, i € I, the following equality holds:

A= v (Af0) ()

iel fellig, W, \iel

Theorem 3. A ropological (Ty)-space X is an a-space if and only if its lattice Q(X)
of all open sets is completely distributive.

Proof. Let Q(X) be completely distributive, U CX be open, and x € U. For any
v € U\(]x) there exists an open U,(C U) such that y € U, and x ¢ U,.

Let Wy = {U,|y € U\(lx)}. For any open cover S (by open subsets of U)
of the set (Jx) N U we denote Ws = Wy US. Since Wy covers U\ (|lx) and S
covers |x\NU then Ws covers U and \/Ws=U (in the lattice 2(X) the union has
the same set-theoretic sense). Thus, if 7 == {S|S is an open cover of (|x)\U} then
Ase/(VWs) = U. Since in this case Q(X) is completely distributive, there exists
J € [lse;Ws such that x € Uy = A, f(S). For any S € I we have x € f(S) € Wy
but x & \/W, = UyEU\(lx)(Uy) by the choice of U,. Consequently, f(S) € S.

Thus, for any cover S € / an open set U, containing x is contained in some V € §.
We show that there exists zop € (|x) N U such that U, C7zy (and hence zy < x).

Assume that there is no such zo. Then, for any z € ({x) N U, there exists u, € U, \
(Tz). Since u; ¢ Tz and u, « z, there exists an open set V,(C U) such that z € V. and
u, ¢ V. Let So = {V.|z € (Ix)NU}. Then Sy € 1, f(So) € Sp, and U, C ¥, for some
z € (Jx)NU. This contradicts u, € U,\V;. Thus, there exists a zg € (|x)N U such that
Uy, C 12z, z0 € U, and zy < x. Therefore X is an a-space.

Let X be an x-space. Establish the relation (%) in the lattice Q(X). Tt suffices to
prove the inclusion C.

Let x € U = A, (\VW)), then U is open; let xo € U and xo < x. For any i € /,

U\ = J(rivew}.

Hence, there exists V; € W; such that xo € V;. We assume that f € H[E /Wi is such
that f(i) = Vi (ie, xo € f(i) for all i € I); if U, = {xX' € X, xo < x'} then U,
is open, x € Uy, and U, , CV; = f(i) for all i € /. But in this case U,, g/\,.e,f(i)

21 am grateful to E. Griffor who asked me a question which had led to this characterization.
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because A\, f(i) is the largest open subset of the set (), /(). Thus, we have

xeU,CAJHE (/\f(f)).

iel FeM e, W; \ i€l

The inclusion C, and hence the theorem, is proved. [J

Remark. One can prove this theorem making use of the following proposition and the
well-known corresponding result for domains [1]. However, the direct proof demon-
strates that it is very easy to work with the notion of an “a-space” directly.

Note that every domain, considered as a topological space, is an x-space.

Proposition 4. A4 space X is an a-space if and only if X is homeomorphic to a basis
Sfor some domain.

Proof. Let X be an a-space, then (it is not hard to see) the system (X, <) is an
(abstract) basis [1]; let X™ = IdI(X, <) be the ideal completion of (X, <), then by
Proposition 2.2.22 in [1], X* is a domain and i: X — X™* is a homeomorphism from
X onto the basis i(X) of the domain X*(i(x) = ¥x = {y ]y < x}).

Vice versa, let D be a domain (considered as a topological space) and X CD be
a basis of D (i.e., for every d €D the family Xy = {x|x € X,x <pd} is directed and
d = sup Xy).

Show that for every open Fy in X, every element xo € Vj there exists x € V)
such that x <pxp: X is a basis of D, so xg = supX,, and if ¥ is open in D such that
Vo = VNX then (D is a domain!) V'NX,, # 0; but ¥NX,, CVpandifx € VNX,, CVy
then x <p xg. Because x <pxp implies x <x xq, we have that X is an a-space.

Note in addition that X is also a smooth subspace of D: if xo <y x; and if Vj is
an open subset of X such that x; € ¥y C{x|xo <xxo, x € X}, then, as it was proved
above, there is x € Vj such that x <px;; but xp <x, x <px; implies xo <px;; so X is
a smooth subspace of D. []

The following proposition, expressing known properties of bases of domains (for
A-spaces see [3]), is formulated in a form which is convenient for the later consider-
ations here.

Proposition 5. For any a-space X there are a domain D and a homeomorphic em-
bedding 1. :X — D of the space X onto a basis of D. The pair (4,D) enjoys the
Jfollowing two conditions:

(1) For every continuous map f:X — D’ from X into a domain D' there is a
continuous map f*:D — D' such that f = f*A

2) If f:D — D is a continuous map from D into itself such that f | A(X) = idyx,
(ie., fA= 1), then f = idp.
The pair (4,D) with the properties (1) and (2) is uniquely defined up to a homeo-
morphism over A.
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Proof. (1) For simplicity suppose that X C D (and A = idy). Let f be a continuous
map from X into a domain D'; for every element d € D the set Xy = {x|x € X, x < d}
is directed and d = sup Xy; let f*(d) = sup{f(x)|x € X4}; f is continuous, hence
monotonic (relative to the orders <y and <p/) and consequently the set {f(x)|x €
X;} is directed and the map f* is well defined. Check that f* X = f: from the
definition of f* one can see that f*(x)<p f(x) for all x € X. Suppose that there is
xo € X such that f(xq) p f*(xp); then there is an open ¥ in D’ such that f(xy) € V,
but f*(xq) € V. The set £~ (V) is open in X and contains xo; then there is x| €
£~X(V) such that x; <pxo, then x; € Xy, and f(x;)< f*(x0) = sup{f(x)|x € X, }.
But x; € f~'(V), so f(x)) € V and f*(xy) (= f(x1)) € V; a contradiction. Check that
f* is continuous: let ¥’ be open in D, ¥V = f*~Y (V') and d € V. Then f*(d) € V’;
f¥d) =sup T{f(x) € Xy} and {f(x)|x € Xy} NV’ # &, let xo € Xy be such that
f(x0) (= f*(x0)) € V'; then xq € V and x¢ < d. From the obvious equality TV = V it
follows that the open set {d’ |xg < d’} is contained in ¥ and contains d. So, ¥ is open
and f™ is continuous. Note in addition that f* is the unique extension of f on D.
Really, if g:D — D’ is a continuous map such that g [ X = f, then for every d € D,
d = sup1X; we have g(d) = sup{g(x) |x € X;} = sup{f(x)|x € Xz} = f*(d).

(2) From this uniqueness, property (2} follows, because idp extends idy. O

A pair (4,D) which satisfied the conditions (1} and (2) of the Proposition 5 will be
called a d-hull of X and we will use the notation Hy(X) for D and 6y for .

There is a description of the bases of algebraic domains analogous to Proposition 4.

An element x of a topological space X is called compact if the set Tx = {y|y € X,
x<y} is open in X.

A (topological) space X is called a ¢-space if for any open ¥ in X and any x € V,
there exists a compact element y € ¥ such that y <x (note that for a compact y the
relations y<x and y < x are equivalent).

The following proposition practically has the same proof as Proposition 4.

Proposition 6. A space X is a @-space if and only if X is homeomorphic to a basis
of some algebraic domain.

Corollary 7. The d-hull Hy(X) of an a-space X is an algebraic domain iff X is a
@-space.

3. The bounded-complete hull: The case of ¢-spaces

Consider now the question of embedding an a-space into a bc-domain. Define the
notion of a be-hull of an a-space X in analogy with the d-hull as follows:

Let X be an «a-space, let B be a bc-domain, and let 4 : X — B be a homeomorphic
embedding of X into B. The pair (4,B) is called a bc-hull of X if the following two
conditions hold:
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(1) Universality: For every continuous map f : X — B’ from the «-space X into a
be-domain B’ there exists a continuous map f* : B — B’ such that f*1 = f.

(2) Minimality: If f : B — B is a continuous map of B into itself such that fA = A
then f= idg.

Remark that the uniqueness of a be-hull of X follows from the conditions (1) and
(2) in the following exact sense:

Proposition 8. If (4,B) and (V,B') are be-hulls of X, then there exists a unique
homeomorphism ¢ : B — B’ of the spaces B and B’ such that @i =}’

Proof. Due to universality of the be-hulls of X, there are continuous maps ¢ : B — B’
and ¢’: B — B such that 2’ = @A and 4+ = ¢’A’. But then ¢’¢ is a continuous map
of B into itself such that ¢'@i = ¢’/ = 1 and by minimality for (4,B) we have
@ ¢ = id. In the same way it is possible to deduce that ¢’ = idp. So, @ (¢') is a
homeomorphism from B onto B’ (from B’ onto B). O

Note. The example below shows that it is impossible to require uniqueness in the
condition (1) of the definition of a be-hull, though for a d-hull the uniqueness of f*
in condition (1) holds, as it was noticed in the proof of Proposition 4.

For the be-hull of X (if it exists) we will use the notation (fx, Huc(X)).

Now let us turn to the question of the existence of bec-hulls. Start from the case of
@-spaces.

Let X be a ¢-space, K = K(X) the set of all compact elements of X.

Let K* be the family of all nonempty subsets of K representable in the form kr =
Nuer(1d NK), where F is a finite subset of K (notice that K = ky € K*). Let <* be
the partial order on K* opposite to the inclusion relation k£ <*k’ = k' C k; (then K is
the least element of (K*, <*)).

Remark that (K*, <*) is a partial upper semilattice: if kg, kr, € K* and if there
is a k € K* such that kp, <*k and kp, <*k (0 # &k Ckr,,k Ckr,), then kg, Nkp, =
krur €K *(kpoup] Dk # () and is obviously the least upper bound for kg, and kg, in
(K*, <™.

Let B == IdI(K*, <*) be the ideal completion of (K*, <*); then B is an algebraic
bc-domain. Define a continuous map A : X — B as the (unique) continuous extension
of the monotonic (= continuous) map g : K — K* CII(K*, <*) defined by Ay(d) =
(TdNK)EK™).

Theorem 9. The pair (A,B) is a be-hull of X.
Proof. Let us check universality (property (1)): Let f : X — B’ be any continuous map

from X into a bc-domain B’. Define a monotone (= continuous) map fy : K* — B’
as follows:

fo*(k):igf{f(xﬂx €k} forany k€ K*.
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B’ is a be-domain, so inf exists in B’ for any nonempty subset of B’. From the defini-
tion of £ clear that £, is monotonic: ko <™k < ki Cho = {f(x)|x € ki } S{f(x)|x
€ kot = fiflko) = inf{f(x)|x € ko} <p [ (k) =inf{f(x)|x € ki }. If k = (Txo N K)
for xo € K then fy(k) = inf{f(x)|x € K, xo<x} = f(x0). The continuous map
fof of the basis K* of the algebraic bc-domain B has a unique continuous extension
f*:B — B’ and for this map we have for f*i(xo) = f;(TxoNK) = f(xo) for xo € K;
so f*4 is a continuous extension of the continuous map f {K of the basis K of the
space X into B’. But f is also an extension of f[K; by the uniqueness of an extension
from a basis we have f*1 = f. So the property of universality for the pair (4, B) is
proved.

Note an additional property of the function /™ which will be used later:

If f':B — B is a continuous map such that f = f'A, then f'< f*. Check that
) <p k)= f; (k)) for every k € K; from that the property just mentioned will
follow: Let k € K*, x € k; then k D(TxNK) = Ax), k<*Ax) and f/(k)<p f'A(x) =
f(x), because f’ is monotonic; so f’(k) is a lower boundary for the set { f(x)|x € k}
and f'(k)<p inf{f(x)|x €k} = ff(k)= k). O

Let us turn to proving the minimality (property (2)):

To start let us prove a lemma needed for later use also.

A subspace X € B of a be-domain B is called V-dense if any element » from B has
a presentation in the form b = supD for a set D such that every element of D has
the form x Vg - - - Vp x, for a finite subset {xy,...,x,} of X.

Lemma 10. If X is a V-dense subspace of a be-domain B, and if [ is a continuous
map of B into itself such that f|X = idy, then f>idp.

Any element b from B has the form b = sup Dy, Dy = {\/,cpx|F € %} for
some family %, of finite subsets of X bounded in X. Then f(b) = f(sup Dp) =

sup f(Dp); fDe)={f(NserX)|F € Fp}; but f(V,crX) 2V er [(X) =V, epx: s0
f(b)=sup f(Dp)=sup Dy =b. O

Proof of Theorem 9 (Continued). It is not hard to see that the condition of the lemma
is satisfied for A(X)CB.

Let f:B — B be a continuous map of B into itself such that fA = A(f[AX)) =
id;(x). Then f =idp by the lemma. For proving f = idy check that k£ = infp{lx N K
|x € k} for every k € K*.

If x €k, then xNKCk, k<* xNK and K and so k is a lower bound for the set
{1xNK|x € k} and k<*inf{Ix N K |x € k}. Suppose that k # inf{Ix N K |x € k};
then there is A’ € K* such that &’ <™inf{Tx N K|x € k}, but &' * k, k ¢ k'. Let
xo € k\K', then Txo NK & k', k' *1xo N K. But this is impossible because &’ must be
a lower bound for {IxNK |x € k} 3Txp NK.

Let A*: B — B be the continuous map constructed as in the proof of the theo-
rem (proving the universality). On elements from K* we have A*(k) = AJ(k) =
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inf{A(x)|x € k} = inf{Tx N K |x € k} = k. Then A* = idg and by the property of the
construction * we have f <1* = idp; so f = idz and the theorem is proved. [0

Notice two corollaries of the (proof of the) theorem.

Corollary A. For a @-space X, the embedding Bx : X — Hyp(X) is a homeomorphism
onto a smooth subspace of Hp(X).

Proof. This follows from the construction of Hy(X) and from the following remark
that is not hard to verify: If a ¢-space X is a subspace of an a-space ¥, then X is
smooth iff every compact element of X is a compact element of Y. O

Corollary B. If X is a coherent algebraic domain then Hy(X) is a natural subspace
of the Smith powerdomain PS5(X) of X.

Proof. This easily follows from the construction of Hy (X ), the definition of coherence,
and from Theorem 6.2.14 [1]. O

We prove one more property of the construction which is not a direct corollary of
the (proof of the) theorem.

Proposition 11. Let X be a ¢-space, f : X — B a homeomorphic embedding of X
onto a smooth subspace of B'. Then the largest continuous extensions f* : Hy(X) —
B’ of f such that f = f*By is injective.

In the proof we shall use the concrete be-hull of X constructed in the proof of the
theorem; so we keep the same notations (Hu(X) =B, fx = 4,...).

Proof. Suppose that f/* is not injective, then f*(by) = f*(b;) for some by # b) € B.
Find an element & € K* such that ky <gbo, ko 5 b1 (if ko <pb1, ko  bo, then ex-
change 0 and 1 in the indices). The elements by and b; have a presentation b, =
sup{ke |kr € K*, F € %}, i = 0,1, for some families % and % of finite subsets
of K bounded in K closed under finite unions. We can suppose also that ky = kg, for
some Fy € %. For every F\ € # we have kg, * ke, kr, & ki, = (yep(TX NK).
So for every Fy € # there is an x € F; such that ks, & Tx N K. The set Fy 1s
finite, the family % is directed (under inclusion); so there is xp € Fyp such that kr, &
TxoNK for every F) € #. Now, f*(1xoNK)<p f*(by), because Txo MK < *kr, <pbo
and f*(bo) = f*(b1) = f*(sup{kr |F € #A}) = sup{f*(kp)|F € #}. We have
F*(Ixo NK) = f*Mxg) = f(x0). Now xq is a compact element of X, so f(xo) is a
compact element of B’ because f is a homeomorphism onto a smooth subspace of B!
Then f(xo)<p f*(kr,) for some F| € #; f*(kr,) = f(kr,) = infp {f(x)|x € kg, }
and f(xg)<p f(x) for every x € kp,. Because f is a homeomorphism we have xy <x
for every x € Kr,, 1xo 2 KFr,, but this contradicts to the choice of xy. [
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Example 12. We use the simple diagrams instead of many words:

a b a b 1

cVd

X=K K*=B fl B
If £:X — B is defined by f(a) = f(b)=1, f(c)= f(d)=0, then f*(cvd)=1,
f*(L) = 0. But for the monotonic (= continuous) map f’:B — B’ extending / and
such that f/(cvd)=0, f'(L)=0, we have f'A= f and f' # f*.

In concluding this section where we considered the case of @-spaces let us formulate
a proposition concerning the by-spaces with a constructivizable basis (see [4]).

If X is a b-space with a constructivizable basis then Hy.(X) is a bc-domain with
a constructivizable basis.

4. The bounded-complete hull: The general case of a-spaces

In this section the general case of an arbitrary a-space X will be considered. Note
one well-known fact for domains.

Proposition 13. Any a-space is a projection of some @-space.

Proof. Let X be an a-space we can suppose (Proposition 4) that X is a basis of
some domain Xy. If Yy = IdI(X, <x) is the ideal completion of the partial ordered set
(X, <x) then the pair of the maps

ey xg — Xy (= {x|x€X, x <x0}), x0EXo,
po:l —supl, Teldl(X, <yx)
is an embedding-projection pair [1]. If ¥ = p, HX), e = el X, p= po|Y then

(e, p) is an embedding-projection pair, and Y is a @-space because Y has the same
compact elements (| x,x€X) as ¥;. O

Let us establish one more general fact needed for the construction.

Proposition 14. If an a-space X is a smooth subspace of a be-domain B then there
exists a subspace B’ C B such that B’ is a be-domain, X C B’ and X is V-dense in B'.
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Proof. Let

Xo== {xp = Vpx
xeF

FCX is a finite bounded subset in X }

Note that 1z = xp €X,. Check that Xj is an a-space (as a subspace of B). Let W be
open in Xy and xoVg- - -Vgx, €W, x;,€X, i<n; let V be open in B such that ¥'NXy, = W.
There are open sets %,..., ¥, of B such that x;€ V¥, i<n, and if y;€V, y;<px;, i<n,
then yg Vg --- Vg v, € ¥V (because xy Vg -+ Ve x, € V' and because the operation Vg
restricted to |g (xp Vg -+ - VB X,) 1s continuous). Let W, = VNX, i<n; x;, €W, i<n.
Because X is an x-space there are y; € W, i € n, such that y; < x;, i<n; but then
VoVg - VBYy =B XgVp---Vax, and yo Vg - Vg ¥y € W = VNX,. <X0, <Xo> is a
partial upper semilattice; then Hy(Xy) is a bc-domain and the embedding of X, into
B can be extended to a homeomorphic embedding of H,(X;) into B ([3, Theorem 1,
Section 3]). The image of this embedding B’ obviously satisfies the conclusion of the
proposition. [J

Combining these two propositions we will have the following:

Proposition 15. For every a-space X there exists a homeomorphic embedding A’
X — B’ of X into a be-domain B’ such that V(X)) is V-dense in B' and the pair
(A, B") is universal for X.

Proof. Let e:X — ¥, p:Y — X be an embedding-projection pair for some ¢-space Y.
By Theorem 9, there exists a be-hull {fy, Hy(Y)) for Y. The embedding fye: X —
Hy(Y) is a homeomorphism onto a smooth subspace. Really, it is not hard to check
that ¢ embeds X into ¥ homeomorphically onto a smooth subspace of ¥, because (e, p)
is an embedding-projection pair (see, €.g., [1, Proposition 3.1.17]). The map By embeds
Y homeomorphically into Hy(Y) onto a smooth subspace (property (1) after the proof
of the Theorem 9). From that it follows that fye is a homeomorphism from X onto a
smooth subspace of Hy.(Y). By Proposition 14 there is a subspace B’ C Hy(Y) such
that B’ is a bc-domain and fye(X) is V-dense in B’. Let us show that (fye, Hy(Y)) is
universal relative to X. Let f:X — B be a continuous map from X into a bc-domain
B; then fp:Y — B is a continuous map and by the universality of (fy,Hp(Y))
for Y there is a continuous map (fp)* : Hy.(Y) — B such that fp = (fp)*By, then
f = fpe = (fp)*Bre and the universality of the pair (fye, Ho(Y)) for X holds. Now
one needs only to notice that for every subspace Z C Hy,.(Y) such that fye(X)C Z the
pair (Bye,Z) is universal for X; in particular, the pair (fye,B’) is universal for X. O

Theorem 16. For any a-space X there exists a be-hull.

Proof. By Proposition 15, there is a pair (4',B’) such that A’: X — B’ is a homeo-
morphic embedding from X into a be-domain B, A'(X) is V-dense in B’ and the pair
(A',B’) is universal for X. Consider the family % C C(B',B’) of the all continuous
maps f from the bc-domain B’ into itself such that f[A(X) = idyx) (or f¥ =X).
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Because the space C(B’,B’) of all continuous maps of B’ into itself is a dcpo (directed-
complete partial order) as a partial ordered set (C(B',B’), <z 5)), then by Zom’s
lemma in (#, <) there is a maximal element fy. By Lemma 10, f>idp for any
feF;so fozidy, fi=fo and f3N = fo(fod) = foi' = ¥, so f2 € F. From
the maximality of f5, we have f3 = fo; fo is a retraction (closure operator) on B'.
Let B = fo(B’)CB’; B is a bec-domain {by [3, Proposition 3, Section 2]), B is an
A-space and as a continuous image of the complete Ag-space (= bc-domain) B’, B
1s a complete Ag-space (= be-domain)). From foi' = 1" it follows that (X ) CB.
Because (A',B’) is universal for X, then (1, B) is universal for X. Let us check that
(#',B) is minimal. Let g:B — B be such a continuous map that g4’ = 2. By Lemma
10 (it is easy to check that A'(X) is V-dense in B) we have g=idp. If g > idg, then
S =gfo> foand fA =gfol =g =1, g€ F and g > f;. This is impossible
because /¢ is a maximal element of #. O

The construction of a be-hull in the general case is highly nonconstructive (using a
Zorn’s lemma); so two natural questions are open:

1. Is Proposition 11 true for arbitrary o-spaces X?

2. Is By X — Hy(X) embedding X onto a smooth subspace of Hp (X )?

Remark. Proposition 10 in [4] (more exactly, the second part of the proposition)
is not proved, because the intended proof of it contains a gap. I am grateful to
Dr. A. Jung for the indication of this gap.

Noted added in proof. After | submitted this paper Prof. K. Keimel pointed out to me
that M. Emé introduced in his paper “Scott convergence and Scott topology in partially
ordered sets, 11” (in: B. Banaschewski and R.-E. Hoffman, eds., Continuous lattices,
Lecture Notes Mathmatics, Vol. 871 (Springer, Berlin, 1981) 61-96) the notion of
C-space which is equivalent to the notion of x-space and so Theorem 2.11a of Emé’s
paper is equivalent to Theorem 3 of this paper. (See also: M. Erné, The ABC of
Order and Topology, in: H. Herrlich and H.-E. Porst eds., Category Theory at Work
(Heldermann Verlag, Berlin, 1991) 57-83).
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