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1. Introduction 

In the paper [3], the author suggested a general topological approach to domain 

theory as highly convenient and more general than the established more traditional 

approach using dcpos (directed-complete partial orders) starting from D. Scott’s work. 

This approach was realized by the author in the papers [2,3] for the cases of f-spaces 

and A-spaces (complete f&space = algebraic bounded-complete domain, complete Ao- 

space = bounded-complete domain; in the sequel, the term bc-domain will be used to 

denote bounded-complete domains). In the introduction to [3], the properties of the 

relation 4 of a recognizable approximation was discussed. 

I would like to quote from [3]: “It is natural to require that all recognizable approx- 

imations of a fixed element x should form a directed set and this can be satisfied in 

the strong (but sufficiently reasonable) form: 

(5) if x0 + x and x1 3 x then there exists an element x2 E X0 [basis] which is the 

exact upper bound (x2 = x0 V XI ) of these elements in (X, <) and x2 + x.” (Compare 

with the definition of an abstract basis in [l]). 

One of the arguments for the reasonability of the condition (5) is the following 

(naive) consideration: “If I know that x0 and x1 are approximations of an element x, 

then the pair (x0,x1) can be considered as an approximation of x, which contains only 

that information about x which is carried by the approximations x0 and XI. So from 

the point of view of information about x a couple (x0,x1 ) is the exact upper bound 

for x0 and XI .” The problem is that the pair (x0,x1) does not belong to the space of 

approximations X. 

It is the aim of the present paper to present a mathematically correct realization of 

the idea described above and to show that for any a-space (= a basis for a domain, see 

Proposition 4 below) there exists a uniquely dejined bc-domain B and a homeomorphic 

embedding A : X -+ B with the properties of universality and minimality (the exact 
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definitions see below). This pair (&B) will be called the bounded-complete hull (bc- 

hull) of X. 

The survey paper [l] contains all the needed definitions and properties of the do- 

mains, which will be used in the proofs. 

2. a-spaces and their d-hulls 

With any topological space X connect two binary relations < (<x) and + (-XX) 

defined as follows: 

X<_V G$ for every open V, if x E V then y E I/; 

(Lx = {zlz~x),Tx={yIx~~)) 

x 4 y +y~ IntTx. 

(Int V is the interior of a set V = the largest open set contained in I’.) 

The relation <X on a topological space X is a partial order (in general it is 

a preorder) iff X is a To-space. Below all topological spaces are supposed to be the 

To-spaces. 
, 

If X is a subspace of Y so call X a smooth subspace of Y iff the relation -+ is the 

restriction of the relation +r on X( <x=<r fl X2). Note that if X is a subspace of Y 

then +y f-CC2 C + (and ,<x = d r n Y2). 

A space X will be called an ~-space (see [3,4]), if for any open V and any x E V 

there is y E V such that y 4 x. 

Corollary 1. If X is an cc-space, x, ,v E X, and x + y then there exists an z E X such 

that x + z -C y. 

Indeed, the set U, E {z 1 x < z} is open, y E U,, and for z E U, such that z < y we 

also have x < z. 

Now we establish one of the most specific properties. 

Proposition 2. Let X be an cc-space and Y and Z be arbitrary topological spaces. 

The mapping ,f: X x Y + Z is continuous if and only if f is continuous in each 

argument. 

Proof. We only need to check that if f is continuous in each argument then for any 

open U C Z and (x0, ys) E f-‘(U) there exist neighborhoods V and W of x0 and yo 

such that V x W C f-‘(U). 

Since i,xf(x, yo) is continuous, it follows that there exists an open VO C X such that 

x0 E VO and VO x {yo} cf-‘(U). L e xl E VO be such that xl + x0 (X is an a-space!), t 

and let W C Y be an open set such that y. E W, {xl} x W C f-‘(U) (Ayf(xl, y) : 
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Y -3 Z is continuous!). If V z$ { x x’ E X, XI + x’} then V is open, x0 E V. We ’ ( 

show that V x W C f-‘( U). If (x’, y’) E V x W then f(xl, y’) E U by the choice 

of W. We have f(xr, y’) <zf(x’, y’) because xr <xx’ and ix,f(x, y’) is a continuous 

mapping. But then .f(x’, y’) E U and V x W C fp'(U). 0 

We now give a characterization of x-spaces in terms of the lattices of all open 

subsets. 2 

Recall (cf. e.g., [ 11) that a complete lattice L is called completely distributive if for 

any index set I and any families W; CL, i E I, the following equality holds: 

Theorem 3. A topological (To)-space X is un cc-space if und only if its lattice l&X’) 

qf all open sets is completely distributive. 

Proof. Let Q(X) be completely distributive, I/ 2 X be open, and x E U. For any 

y E U\(Lx) there exists an open Q(C U) such that y E L& and x $ q,.. 

Let WO S {q,ly E U \ (Ix)}. For any open cover S (by open subsets of U) 

of the set (Ix) n U we denote W, z$ WO U S. Since WO covers U \ (Ix) and S 

covers Ix \ nU then WS covers U and V WS = U (in the lattice Q(X) the union has 

the same set-theoretic sense). Thus, if I f {S 1 S is an open cover of (Ix)\ U} then 

AsE,(VWs) = u. S’ mce in this case Q(X) is completely distributive, there exists 

f E n,,, WS such that x E C: c$ /j,,,f (S). For any S E I we have x E f(S) E W, 

butx$VWo=U yEU,(lxj(UY) by the choice of Cr,. Consequently, f(S) E S. 

Thus, for any cover S E I an open set Ux containing x is contained in some V E S. 

We show that there exists zo E (Ix) n U such that U, C Tzo (and hence z. + x). 

Assume that there is no such ZO. Then, for any z E (ix) f~ U, there exists uZ E lJr\ 

(7~). Since U, 9 Tz and uZ $J z, there exists an open set VJ C U) such that z E V_ and 

U, @’ K. Let Ss ZG {K 1 z E (Ix) n U}. Then SO E I, ,f(So) E SO, and U, C V, for some 

z E (Ix) n U. This contradicts U, E U,\K. Thus, there exists a zo E (b) n U such that 

U, C T ZO, zo E U, and zo < x. Therefore X is an a-space. 

Let X be an x-space. Establish the relation (*) in the lattice Q(X). It suffices to 

prove the inclusion 2. 

Let x 6 U + A&l~>, then U IS open; let x0 E U and x0 -i x. For any i E I, 

u 5 v wj =I U{ v 1 v E W;}. 

Hence, there exists V, E W, such that x0 E 6. We assume that f E ni,, W, is such 

that f(i) = V, (i.e., x0 E f(i) for all i E I); if U,,, G {x’ E X, xo 3 x’} then U,,, 

is open, x E U,,,, and u,,, 2 Vj = f(i) for all i E 1. But in this case ci,,, C l\,E, f(i) 

’ I am grateful to E. Griffor who asked me a question which had led to this characterization 
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because &f(i) is the largest open subset of the set &f(i). Thus, we have 

The inclusion C, and hence the theorem, is proved. 0 

Remark. One can prove this theorem making use of the following proposition and the 

well-known corresponding result for domains [l]. However, the direct proof demon- 

strates that it is very easy to work with the notion of an “cx-space” directly, 

Note that every domain, considered as a topological space, is an r-space. 

Proposition 4. A space X is an a-space if and only ifX is homeomorphic to a basis 

.for some domain. 

Proof. Let X be an a-space, then (it is not hard to see) the system (X, +) is an 

(abstract) basis [l]; let X* C$ Id/(X, 3) be the ideal completion of (X, +), then by 

Proposition 2.2.22 in [l], X” is a domain and i :X + X* is a homeomorphism from 

X onto the basis i(X) of the domain X*(i(x) C$ Ix = {y / y 4 x}). 

Vice versa, let D be a domain (considered as a topological space) and XC D be 

a basis of D (i.e., for every d ED the family & e {x 1 x E X,x -x~ d} is directed and 

d = SUP &). 

Show that for every open VO in X, every element xg E Va there exists x E VO 

such that x +x0: X is a basis of D, so x0 = supX,, and if V is open in D such that 

VO = V&Y then (D is a domain!) VnX,, # 0; but VnX,, C VO and ifx E vnx., C V. 

then x <D x0. Because x +D xa implies x -+ x0, we have that x is an cc-space. 

Note in addition that X is also a smooth subspace of D: if x0 +X x1 and if V. is 

an open subset of X such that xt E VO &{x 1 x0 <Xx0, x E X}, then, as it was proved 

above, there is x E F’o such that x <Dxl; but x0 dx, x 4~x1 implies x0 +x1; so X is 

a smooth subspace of D. 0 

The following proposition, expressing known properties of bases of domains (for 

A-spaces see [3]), is formulated in a form which is convenient for the later consider- 

ations here. 

Proposition 5. For any cc-space X there are a domain D and a homeomorphic em- 

bedding A : X + D of the space X onto a basis of D. The pair (A, D) enjoys the 

following two conditions: 

(1) For every continuous map f : X -+ D’ from X into a domain D’ there is a 

continuous map f * : D + D’ such that f = f *A. 

(2) Zf f :D -+ D is a continuous map from D into itself such that f / n(X) = id),(x) 

(i.e., fn = %), then f = idD. 

The pair (L,D) with the properties (1) and (2) is uniquely de$ned up to a homeo- 

morphism over /1. 
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Proof. (1) For simplicity suppose that X G D (and 2 = idx). Let f be a continuous 

map from X into a domain D’; for every element d E D the set & + {x 1 x E X, x + d} 
is directed and d = sup &; let f*(d) + sup{f(x) 1.x E &}; f is continuous, hence 

monotonic (relative to the orders <x and <DJ) and consequently the set {f(x) 1 x E 

&} is directed and the map f * is well defined. Check that f* [ X = f: from the 

definition of f * one can see that f*(x) <or f (x) for all x E X. Suppose that there is 

x0 E X such that f (x0) $~tf*(xo); then there is an open V in D’ such that f (x0) E V, 
but f*(xo) # V. The set f-‘(V) is open in X and contains x0; then there is XI E 

f-‘(V) such that xl 3~x0, then x1 E XX, and f(xl)<f*(xg) = sup{f(x)Ix E XX,,}. 

But XI E f-‘(V), so f (x1) E V and f *(x0) (> f (xl)) E V; a contradiction. Check that 

f * is continuous: let V’ be open in D’, V S f*-‘(V’) and d E V. Then f*(d) E V’; 
f*(d) = sup ‘T {f(x) E &} and {f(x) Ix E &} r- V’ # 0; let x0 E & be such that 

f (x0) (= f *(x0)) E V’; then x0 E V and x0 -i d. From the obvious equality 7 V = V it 

follows that the open set {d’ I x0 4 d’} is contained in V and contains d. So, V is open 

and f * is continuous. Note in addition that f * is the unique extension of f on D. 
Really, if g : D -+ D’ is a continuous map such that g 1 X = f, then for every d E D, 
d = sup TXd we have g(d) = sup{g(x) / x E &} = sup{ f (x) Ix E &} = f*(d). 

(2) From this uniqueness, property (2) follows, because idD extends idx. 17 

A pair (A, D) which satisfied the conditions (1) and (2) of the Proposition 5 will be 

called a d-hull of X and we will use the notation i&(x) for D and 6~ for A. 

There is a description of the bases of algebraic domains analogous to Proposition 4. 

An element x of a topological space X is called compact if the set tx = (y I y E X, 

x< y} is open in X. 

A (topological) space X is called a q-space if for any open V in X and any x E V, 
there exists a compact element y E V such that y<x (note that for a compact y the 

relations y <x and y + x are equivalent). 

The following proposition practically has the same proof as Proposition 4. 

Proposition 6. A space X is a q-space if and only ifX is homeomorphic to a basis 
of some algebraic domain. 

Corollary 7. The d-hull &(X) of an a-space X is an algebraic domain if X is a 
cp-space. 

3. The bounded-complete hull: The case of q-spaces 

Consider now the question of embedding an a-space into a bc-domain. Define the 

notion of a bc-hull of an cc-space X in analogy with the d-hull as follows: 

Let X be an cc-space, let B be a bc-domain, and let 3. : X --f B be a homeomorphic 

embedding of X into B. The pair (A, B) is called a bc-hull of X if the following two 

conditions hold: 
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(1) Universality: For every continuous map f : X + B’ from the a-space X into a 

bc-domain B’ there exists a continuous map f * : B + B’ such that f *A = f. 
(2) Minimality: If f : B ---f B is a continuous map of B into itself such that fA = A 

then f = ids. 
Remark that the uniqueness of a bc-hull of X follows from the conditions (1) and 

(2) in the following exact sense: 

Proposition 8. If (5 B) and (A’, B’) ure bc-hulls of X, then there exists a unique 
homeomorphism 40 : B + B’ of the spaces B and B’ such that ~2 = i,‘. 

Proof. Due to universality of the bc-hulls of X, there are continuous maps rp : B + B’ 
and q’: Bl + B such that R’ = q/l and i = ~$2’. But then (p’q is a continuous map 

of B into itself such that (P’~IR = q’,I’ = i, and by minimality for (i,,B) we have 

(p’q = idB. In the same way it is possible to deduce that cp~$ = ids,. So, cp (cp’) is a 

homeomorphism from B onto B’ (from B’ onto B). 0 

Note. The example below shows that it is impossible to require uniqueness in the 

condition ( 1) of the definition of a bc-hull, though for a d-hull the uniqueness of f * 
in condition (1) holds, as it was noticed in the proof of Proposition 4. 

For the bc-hull of X (if it exists) we will use the notation (/3x,&,(X)). 

Now let us turn to the question of the existence of bc-hulls. Start from the case of 

cp-spaces. 

Let X be a q-space, K = K(X) the set of all compact elements of X. 

Let K” be the family of all nonempty subsets of K representable in the form kF z$ 
ndEF(Td n K), where F is a finite subset of K (notice that K = kg E K*). Let 6 * be 

the partial order on K* opposite to the inclusion relation k < *k’ + k’ C k; (then K is 

the least element of (K”, <*)). 
Remark that (K* , <*) is a partial upper semilattice: if kF,,, kF, E K* and if there 

is a k E K* such that kF, < *k and kF, < *k (0 # k C kFO, k C kF, ), then k,=,, n kF, = 
kFOUF, E K*(kF,“F, 2 k # 0) and is obviously the least upper bound for kFO and kF, in 

(K”, <*). 
Let B G ZdZ(K*, <*) be the ideal completion of (K”, <*); then B is an algebraic 

bc-domain. Define a continuous map A : X 4 B as the (unique) continuous extension 

of the monotonic (= continuous) map 3.0 : K + K* C Idl(K*, <*) defined by lo(d) cs 
(Td n K)(E K*). 

Theorem 9. The pair (A, B) is a bc-hull of X. 

Proof. Let us check universality (property (1)): Let f : X 4 B’ be any continuous map 

from X into a bc-domain B’. Define a monotone (= continuous) map fo : K* --+ B’ 
as follows: 

f:(k) = i${f(x) 1 x E k} for any k E K* 
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B’ is a bc-domain, so inf exists in B’ for any nonempty subset of B’. From the defini- 

tion of ft clear that fz is monotonic: ko < *ki H ki C ko =+ {f(x) ) x E kl } c{f(x) j x 

E ko} * f,*(h) = inf{f(x) Ix E kol GB,fg*(kl) = inf{f(x) /x E k,}. If k = (TxonK) 
for x0 E K then f:(k) = inf{f(x) /x E K, XO<X} = f(xo). The continuous map 

fz of the basis K* of the algebraic bc-domain B has a unique continuous extension 

f *: B + B’ and for this map we have for f*i(xo) = fc(txa nK) = f(xo) for x0 E K; 
so f *A is a continuous extension of the continuous map f rK of the basis K of the 

space X into B’. But f is also an extension of f rK; by the uniqueness of an extension 

from a basis we have f *I = f. So the property of universality for the pair (i., B) is 

proved. 

Note an additional property of the function f * which will be used later: 

If f ‘: B + B’ is u continuous mup such thut f = f ‘L, then f’ 6 f *. Check that 

f’(k) <sf f *(k)(= f:(k)) for every k E K; from that the property just mentioned will 

follow: Let k E K*, x E k; then k >(tx n K) = l(x), k < */z(x) and f’(k) GBt f ‘i(x) = 

f(x), because f’ is monotonic; so f’(k) is a lower boundary for the set {f(x) 1 x E k} 
and f’(k)dsfinf{f(x)Ix E k} = f:(k) = f*(k). Cl 

Let us turn to proving the minimality (property (2)): 

To start let us prove a lemma needed for later use also. 

A subspace X C B of a bc-domain B is called v-dense if any element b from B has 

a presentation in the form b = suprD for a set D such that every element of D has 

the form x0 VB . . . VB x, for a finite subset (x0,. . . ,x,} of X. 

Lemma 10. If X is a V-dense subspace of a bc-domain B, and if ,f is a continuous 
mup of B into itsev such that f YX = idx, then f aids. 

Any element b from B has the form b = sup Dh, Db = { VxEFx / F E Pb} for 

some family FJ, of finite subsets of X bounded in X. Then f(b) = f (sup Dh) = 

sup f(b); f(Db)={f(V.TEFx)lF E sb); but f(VxtFx)2&Ff(x) = &~x; so 
,f (b) = sup f (D/,) > sup & = b. 0 

Proof of Theorem 9 (Continued). It is not hard to see that the condition of the lemma 

is satisfied for n(X) LB. 

Let f: B + B be a continuous map of B into itself such that f 3, = R(f rR(X)) = 
id;,(x). Then f 3ids by the lemma. For proving f = idx check that k = infg{Tx f’ K 
IxEk} foreverykEK*. 

If x E k, then tx n K C k, k < * tx n K and K and so k is a lower bound for the set 

{txnKIx E k} and k< * inf{tx n K Ix E k}. Suppose that k # inf{tx n K lx E k}; 
then there is k’ E K* such that k’d * inf{tx n K 1 x E k}, but k’ * k, k $ k’. Let 

x0 E k\k’, then TXO n K $ k’, k’ *Txo n K. But this is impossible because k’ must be 

alowerboundfor {txnKIxEk}3txonKK. 
Let I,*: B 4 B be the continuous map constructed as in the proof of the theo- 

rem (proving the universality). On elements from K* we have l.*(k) = R,*(k) = 



10 YL. Ershovl Theoretical Computer Science 175 (1997) 3-13 

inf { J.(x) 1 x E k} = inf { Tx n K / x E k} = k. Then A* = ids and by the property of the 

construction * we have f <I,* = ids; so f = idB and the theorem is proved. 0 

Notice two corollaries of the (proof of the) theorem. 

Corollary A. For a q-space X, the embedding PX : X + HbC(X) is a homeomorphism 

onto a smooth subspace of HbC(X). 

Proof. This follows from the construction of HbC(X) and from the following remark 

that is not hard to verify: If a q-space X is a subspace of an a-space Y, then X is 

smooth iff every compact element of X is a compact element of Y. 0 

Corollary B. If X is a coherent algebraic domain then H&X) is a natural subspace 

of the Smith powerdomain P’(X) of X. 

Proof. This easily follows from the construction of HbC(X), the definition of coherence, 

and from Theorem 6.2.14 [I]. 0 

We prove one more property of the construction which is not a direct corollar$ of 

the (proof of the) theorem. 

Proposition 11. Let X be a q-space, f : X --+ B’ a homeomorphic embedding of X 

onto a smooth subspace of B’. Then the largest continuous extensions f * : f&(x) + 

B’ off such that f = f “/3x is injective. 

In the proof we shall use the concrete bc-hull of X constructed in the proof of the 

theorem; so we keep the same notations (HbC(X) = B, /?x = A,. . .). 

Proof. Suppose that f * is not injective, then f *(bo) = f *(bI) for some bo # bl E B. 

Find an element k E K* such that ko<Bbo, ko B 61 (if ko<Bbl, ko B bo, then ex- 

change 0 and 1 in the indices). The elements bo and b, have a presentation bi = 

sup{kF 1 kF E K*, F E R}, i = 0, 1, for some families 90 and 4 of finite subsets 

of K bounded in K closed under finite unions. We can suppose also that ko = kFO for 

some FO E 90. For every FI E 4 we have kFO * kF,, kF, $ kFO = nxCF,(Tx n K). 

So for every F1 E 4 there is an x E FO such that kF, $2 TX fl K. The set Fo is 

finite, the family 4 is directed (under inclusion); so there is x0 E FO such that kF, $ 

txonK for every F1 E 4. Now, f*(txonK)<B/f*(bo), because TxoflKd*k~o G&O 

and f *(bo) = f *(bl) = f*(sup{kF /F E 9,}) = sup{f*(kF) 1 F E 91). We have 

.f*(Txo n K) = f *A(xo) = f(xo). N ow x0 is a compact element of X, so f(x0) is a 

compact element of B’ because f is a homeomorphism onto a smooth subspace of B! 

Then f(xo)<Btf*(kF,) for some FI E 4; f*(kF,) = fz(kF,) = infp{f(x)lx E kF,} 

and f (x0) eBt f (x) for every x E kF,. Because f is a homeomorphism we have x0 bx 

for every x E KF,, txo 2 KF,, but this contradicts to the choice of x0. 0 
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Example 12. We use the simple diagrams instead of many words: 

11 

If f:X + B’ is defined by f(a) = f(b) = 1, f(c) = f(d) = 0, then f*(c V d) = 1, 

f*(_L) = 0. But for the monotonic (= continuous) map f’ : B + B’ extending f and 

such that f’(c V d) = 0, f’(l) = 0, we have f'i_ = f and f’ # f *. 

In concluding this section where we considered the case of cp-spaces let us formulate 

a proposition concerning the bs-spaces with a constructivizable basis (see [4]). 

!f‘X is a b-space with 

u constructivizuble basis. 

a constructivizable basis then HbJX) is a bc-domain wlith 

4. The bounded-complete hull: The general case of a-spaces 

In this section the general case of an arbitrary a-space X will be considered. Note 

one well-known fact for domains. 

Proposition 13. Any cc-space is a projection of some q-space. 

Proof. Let X be an x-space we can suppose (Proposition 4) that X is a basis of 

some domain X0. If Yo CS Zdl(X, <x) is the ideal completion of the partial ordered set 

(X, ,<x) then the pair of the maps 

e0:x0 H X,,,(* {x IxcX, x 3 x0}), x0 -0, 

po:l H supI, IEZdl(X, Go) 

is an embedding-projection pair [l]. If Y G+ p;‘(X), e * e. IX, p G$ p. 1 Y then 

(e, p) is an embedding-projection pair, and Y is a q-space because Y has the same 

compact elements (Jx,xEX) as Yo. 0 

Let us establish one more general fact needed for the construction. 

Proposition 14. Ij’an a-space X is u smooth subspace of a bc-domain B then there 

exists a subspace B’ C B such that B’ is a bc-domain, X C B’ and X is V-dense in B’. 
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Proof. Let 

Note that J-S = x0 E&. Check that X0 is an E-space (as a subspace of B). Let W be 

open in X0 and XOVB.. .VBX, E W, xi EX, i <n; let V be open in B such that Vn& = W. 

There are open sets V,, . . . , I$ ofB such thatxiEJ$, i<n, andif yiEQ, yl<Bxi, i<n, 

then yo VB . . V, yn E V (because x0 VB . . . VB x, E Y and because the operation Vg 

restricted to LB (x0 VB . . . VBx,) is continuous). Let R c$ Enx, i<n; xiE F, i<n. 

Because X is an a-space there are yi E fl, i E n, such that yi < xi, i <n; but then 

YO VB "' V,y, +B x0 VB . VB x, and yo VB VB y, E W = Vn&. (x0, <x0) is a 

partial upper semilattice; then &(X0) is a bc-domain and the embedding of X0 into 

B can be extended to a homeomorphic embedding of I&(&) into B ([3, Theorem 1, 

Section 31). The image of this embedding B’ obviously satisfies the conclusion of the 

proposition. 0 

Combining these two propositions we will have the following: 

Proposition 15. For euery a-space X there exists a homeomorphic embedding I’ : 

X --+ B’ of X into a bc-domain B’ such that R’(X) is V-dense in B’ and the pair 

(j,‘, B’) is universal for X. 

Proof. Let e:X + Y, p: Y --+ X be an embedding-projection pair for some q-space Y. 

By Theorem 9, there exists a bc-hull @‘y,&(Y)) for Y. The embedding Bye :X -+ 

&(Y) is a homeomorphism onto a smooth subspace. Really, it is not hard to check 

that e embeds X into Y homeomorphically onto a smooth subspace of Y, because (e, p) 

is an embedding-projection pair (see, e.g., [l, Proposition 3.1.171). The map Pr embeds 

Y homeomorphically into I&(Y) onto a smooth subspace (property (1) after the proof 

of the Theorem 9). From that it follows that bye is a homeomorphism from X onto a 

smooth subspace of &(Y). By Proposition 14 there is a subspace B’ C_ &c( Y) such 

that B’ is a bc-domain and Bye(X) is V-dense in B’. Let us show that (P@,&(Y)) is 

universal relative to X. Let f :X -+ i? be a continuous map from X into a bc-domain 

3; then fp : Y + B is a continuous map and by the universality of (fly,&(Y)) 

for Y there is a continuous map (fp)* : f&(Y) + B such that fp = (fp)*br, then 

f = fpe = (fp)*Pre and the universality of the pair (fire,&c(Y)) for X holds. Now 

one needs only to notice that for every subspace Z & Z&(Y) such that bye(X) C Z the 

pair (/?re,Z) is universal for X; in particular, the pair (Dye, B’) is universal for X. 0 

Theorem 16. For any m-space X there exists a bc-hull. 

Proof. By Proposition 15, there is a pair (A’, B’) such that 2’ :X -+ B’ is a homeo- 

morphic embedding from X into a bc-domain B’, A’(X) is V-dense in B’ and the pair 

(A’, B’) is universal for X. Consider the family F 2 C(B’, B’) of the all continuous 

maps f from the bc-domain B’ into itself such that f rA’(X) = idiJcxj (or f 3.’ = A’). 
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Because the space C(B’,B’) of all continuous maps of B’ into itself is a dcpo (directed- 

complete partial order) as a partial ordered set (C(B’,B’), Gc(~~,B~)), then by Zorn’s 

lemma in (.F, d) there is a maximal element fo. By Lemma 10, f3id~l for any 

,f’ E 9; SO ,fo 3 ids{, fi >,fo and f,‘iL’ = f&&A’) = fan’ = /2’, so fi E 3. From 

the maximality of f,, we have j”; = fo; fo is a retraction (closure operator) on B’. 

Let B =$ ,fo(B’)CB’; B is a bc-domain (by [3, Proposition 3, Section 2]), B is an 

A-space and as a continuous image of the complete &-space (= bc-domain) B’, B 

is a complete &-space (= bc-domain)). From Joi’ = R’ it follows that n’(X) LB. 

Because (3,‘, B’) is universal for X, then (j”‘, B) is universal for X. Let us check that 

(i.‘, B) is minimal. Let 9 : B -+ B be such a continuous map that gi.’ = R’. By Lemma 

10 (it is easy to check that 3,‘(X) is V-dense in B) we have y>ids. If g > ids, then 

.f’ G g.fo > ,fo and fA’ = gf,i,’ = glb’ = A’, g E 9 and g > .fo. This is impossible 

because fn is a maxima1 element of 9. 0 

The construction of a bc-hull in the general case is highly nonconstructive (using a 

Zom’s lemma); so two natural questions are open: 

I. Is Proposition 11 true for arbitrary a-spaces X? 

2. Is PX :X + H&X) embedding X onto a smooth subspace of H&x)? 

Remark. Proposition 10 in [4] (more exactly, the second part of the proposition) 

is not proved, because the intended proof of it contains a gap. I am grateful to 

Dr. A. Jung for the indication of this gap. 

Noted added in proof. After I submitted this paper Prof. K. Keimel pointed out to me 

that M. Em& introduced in his paper “Scott convergence and Scott topology in partially 

ordered sets, 11” (in: B. Banaschewski and R.-E. Hoffman, eds., Continuous lattices, 

Lecture Notes Mathmatics, Vol. 871 (Springer, Berlin, 1981) 61-96) the notion of 

C-space which is equivalent to the notion of a-space and so Theorem 2.1 la of Emt’s 

paper is equivalent to Theorem 3 of this paper. (See also: M. Em& The ABC of 

Order and Topology, in: H. Herrlich and H.-E. Porst eds., Cutegory Theory at Work 

(Heldermann Verlag, Berlin, 1991) 57-83). 
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