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1. INTRODUCTION
In [S] we have characterised the solutions of the inequality

F(ty ..., %05,) <EOF(xy ooy %) (= 1,2,>0,i=1,,m) (1)

assuming that F is a continuously differentiable positive function and
aq »..-, 4, are constants. We have found that (1) is valid if and only if

oF oF
: e By L agF (%1 yeery %) (2)

ayxy -———ax

holds forallx, > 0,7 = 1,...,n.
The generalization of this result lead us to the following problem.

Let u, v be continuously differentiable functions defined on [£, £ + a) such that

w(t) — f(t, u(®)) < (@) —f(t, o) tel§ €+ aq 3
and

u(€) = v(¢) 4)

where f: [£, £ + a] X R—> Ris a given continuous function, R is the set of reals.
Under what conditions do (3) and (4) imply

u(t) < oft)  te[é £+ a)? (5)

The continuity of f is surely not enough since if (3) and (4) imply (5) then the
solution of the initial-value problem y'(t) — f(t, (¢)) = 0, ¥(£) = 7 is unique
on [¢, £ + a].

* Present address.
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Instead of (3) and (4) we may consider the corresponding integral inequality

w) = [ fou)ds <o) = [ S oD telbird O

or even the inequality
u— Au < v — By

where u, v are elements of a Banach space X; 4, B are operators mapping X
into itself and < is a partial ordering on X. Under what conditiohs does this
inequality imply # < v?

Our first theorem, which may be regarded as an abstract generalization of
the Gronwall-Bellman lemma, gives an answer to the above question
(Section 2). In Section 3 we apply this theorem to get estimates for solutions of
initial-value problems. Finally in Section 4 we give a necessary and sufficient
condition for a function F to satisfy the inequality

F(kl(t’ xl))"" kn(t’ xn)) < ko(t7 F(xl 3ty xn))

where the functions k; and the variable ¢ are subjected to certain conditions.
In the special cases k{2, x) = 1%x and a, + x we prove the same result under
weaker assumptions and generalize an inequality of [3].

2. A GENERALIZATION OF THE GRONWALL-BELLMAN LEMMA

Let X denote a real Banach space and let C, a subset of X, be a cone i.e. a
closed convexe set such that x € C, « > 0 imply ax € C and from x, —x € C'it
follows that x = 0. By help of C a partial ordering < can be defined in X:
forx,ye X

x<<y if y—xeC. )

This partial ordering has the usual properties of the ordinary inequalities

(see, e.g., [4]).
The following theorem plays an important role in our investigations.

THeOREM 1. Assume that X is a real Banach space, C is a cone in X, < s
the partial ordering defined by (7). Assume further that A, B are two operators
(not necessarily linear) mapping X into itself such that

() xyeX, x <y imply Ax < By and
(ii) the equations

p=g+Ap Y =h+ By
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have unique solutions @, s whatever be the elements g, h € X, and these solutions
can be obtained as the limits (in norm convergence) of the sequences of the corre-
sponding successive approximations.

Then the inequality

u— Au < v— Bo u,veX

implies that
u <L o

Remark 1. 'The condition (i} is satisfied if Ax < Bx for all xe X and 4
(or B) is monotone in the sense that x, y € X, x <{ y imply Ax < Ay.

Remark 2. 'The condition (ii) is fulfilled if both 4 and B are contractions.

Remark 3. 1If A and B are linear bounded operators defined on the whole
X and for some natural number n A" and B" are contractions, then (ii) is
satisfied again. Namely in this case the sequence of successive approximations
of the equation ¢ = g -+ Ag can be written as

@n = (E+ A+ A+ 4 AVg

(n = 1, 2,..., E is the identity operator) which converges (necessarily to the
unique solution of the equation), since the spectral radius of 4 is

r(d) = inf(l 4*[yF < (1 A1 <1

and the same is true for the other equation.

Proof of Theorem 1. Denote by g and 4 the element # — Ax and v — Bv
respectively then

g<h ®)
and by (i1)
u = lim g, v = lim ¢, 9)

where @) = g, @uyy = g+ Ap, (n = 0, 1,...); by = h, Yy = b+ By,
(n = 0, 1,...). We prove by induction that

Pn <, (m=0,1,.). (10
Forn = 0 this is valid by (8). Assume (10) is true for n = % then by (i) and (8)
Prera =& + Apy < h+ By = ey

Letting 2 — oo in (10) we obtain # <{ v which completes the proof.
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3. EsTIMATES FOR SOLUTIONS OF OPERATOR-EQUATIONS

THEOREM 2. Assume that A and By, B, (in place of B) satisfy the
conditions of Theorem 1, except that instead of (i) we require the validity of the
tnequalities

Bx <Ax < Byx xeX
and
Ae <Ay if x<y; xyelkX.
Then the solutions v, , v, of the equations

vl——Bl‘Ulzo ‘vz_Bz‘UZ:O

approximate the solution u of

in the sense that

THEOREM 3. Assume that A = B satisfy the conditions of Theorem 1. Then

u—Au < v— Av u,veX

implies the inequality
u<Lv

that is the inverse operator (E — A)~' is monotone increasing.

The proof of these theorems follows immediately from Theorem 1.

Choosing in Theorem 3 the element v as the solution of ¥ — Ay = 0 and
specializing A we can get many results obtained earlier. Instead of listing
these we refer the reader to [1] where also detailed references can be found.
Here we want to specialize Theorems 2, 3 only for the case of integral and
differential operators.

Let f, g1, £::[€ & + a] X R— R be continuous real-valued functions
satisfying Lipschitz condition in their second variable. Assume further that f
is an increasing function in its second variable.

Cororrary 1. If

slxy) < flx,y) <glxy) x€l[f,é+a], yeR (11)

then the solution y of the initial-value problem

Y =Ffxy) ) =n



THE GRONWALL-BELLMAN LEMMA 705

is approximated by the solutions y, ,y, of the initial-value problems

= glx ) 3 = Y2 = go%,¥2) ¥o(€) =,
that is
yi(®) < yx) <yo(x)  xe[f €+ a] (12)

COROLLARY 2. Under the above mentioned conditions (for f) the inequalities

w(t) — ftu@®) <v'@) — ft o) telf & +a 13)
u(§) = v(§)
imply
u(t) < o(t) te[¢, € + a] (14)

The proofs are obvious if we apply Theorem 2 and 3 respectively for
X = C[¢, & + a], the Banach space of all real-valued functions defined and
continuous on [£, £ + 4}, and for the operators 4, B, , B, defined by

(A9) () = + [ “f(t, plt)) dt

Bo) @) =1+ [ ato®)  (=12)

We remark that if f, g, , g, are defined only on [, £ 4 a] X [0, 7 + &]
then the validity of inequalities (12) and (14) can be guaranteed only on the
interval [§, € + o], where « = min{a, b/M} and M is a common bound for
the absolute values of f, g, , g, . Instead of a Lipschitz condition we may use
weaker assumptions as well, namely we only have to provide the uniform
convergence of the sequence of successive approximations. For this see [2].

4. SUBHOMOGENEOUS FUNCTIONS

Let I, | be open intervals, k;: | X I—1 (i = 1,...,n), ky: ] X R—> R
given functions. Assume that
(i) there exists a 7, € J such that

kity,x) =x  xellifi=1,..,n); xeRGfi=0),

(ii) the functions %, , #; ({ = 1,..., n) are differentiable with respect to
their first variable on J X R and ] x I respectively,

(i)  R/(t, %) = k/(to, klt, ) B(t) (i = O,..., 7)

409/44/3-12
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holds for all possible values of ¢ and x, where 4 is a continuous non-negative
function on ] and the prime denotes the partial derivative with respect to the
first variable,

(iv) ky'(%, ®) is a continuous increasing function satisfying Lipschitz
condition:

| Ro'(fo s x1) — ko'(fg s %) < o 2 — 25 | %y, ¥ € R

with constant «.

DerFmNiTION. A function F: 1" — R is called a positive subhomogeneous
function with respect to the functions %, ,..., &, satisfying (i)~(iv) if

F(ky(t, %1),.., B2, %,)) << Ro(t, F(%q .-, %,)) (15)
holds for all x = (%, ,..., x,) €™, t€ J, N [ty , 00), where
Jo ={tlte ] k(t, x) e J(i = 1,...,m)}

F is called negative subhomogeneous with respect to ky ,..., &, if (15) holds for
allxelrand te J, N (—o0, &).

The notion of positive, respectively, negative superhomogeneous function can
be defined analogously changing the sign < to = in (15).

Of course these definitions have sense even if the functions k,..., &,
satisfy only condition (i), but our theorems shall be true only under the
assumptions (i)~{(iv).

TueoreM 4. Let F:I* — R be a continuously differentiable function on I.
F is positive subhomogeneous with respect to kg ,..., k, (satisfying (1)~(iv)!) that is

F(Ry(t, 1)y, B2, %)) << KoL, F(xy ..., %)) (15)
holds for all xe I, t € J, N [t,, o) if and only if
oF , oF ,

k' (to, %) aif) R A PR &Sx) <k'(ty,F(x)), «xeln (16)

Proof. Necessity. Let x € I™ be a fixed vector and denote by u(f) and =(z)
the left and right side of (15) respectively. Then u(t,) = v(t,), thus (15) may
be written as

((2) — u(t)/(t — 1) < (0()) — v/t —t), € Jo N (fo, ).
Letting ¢ — t, + O we have
u(ty) < v'(t)

which is identical to (16).
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Sufficiency. Put kyt, x;) instead of x; in (16) and multiply the obtained
inequality by A(t), the function occured in (iii). Using the property (iii) we get

o OECL 2) pooia, ) << Ry (8, F(R(E, ) R(E)

Y

where x € I", t € J,, and k(t, x) = (ky(t, %1),..., kn(t, %,)). Hence
w'(2) — V() < ky'(ty, F(R(t, ) h(t) — ky/(2, F(x))
since v'(t) = ky'(t, F(x)). By (iii) (used for i = 0)
w(t) — ko'(to, u(t) h(t) < U'()) — ko'(ta, sODA(®),  te Jo.  (17)
Applying Corollary 2 we get
u(t) < o(2), te J.N[t,, ) (18)

which was to be proved.

We remark that Theorem 4 remains in force if we write > instead of <C
both in (15) and (16). Changing only the condition e J, N [£,, o) into
te J, N (—a, tg] the inequality sign in (16) will change. This implies that if
(15) is satisfied for all x € I", t & J, then (16) holds with equality sign thus
(15) can hold also with equality sign.

In the special cases k;(t, x) = t%x ({ = 0,...,n), ] = R* = (0, 0) and
ki(t,x) = a4+ x (i = 0,...,n), ] = R we can obtain stronger result then
Theorem 4 (see also [5] Theorems 1, 2).

Let F:I* — R be a (totally) differentiable function on I™. The inequality
F(t"%, ..., t*a,) < tOF(x),..,%,), =xel”, teRSNJl, o0)
is equivalent to
ayxy(OF (x)[0x)) + 4 a,%,(0F(x)/0x,) < auF(x), xeln

Similarly, the inequality
Flagt + %y ..., azt + x,) < agt + F(xy ..., x,), xel", teR,N[0, )
1s equivalent to

ay(OF(x)[0%;) -+ - + a,(0F(x)/(0x,) < ay, xel™

The proof is the same as that of Theorem 4 except the implication
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(17) — (18). The continuity of the partial derivatives were used only in this
step. In the first case the inequality corresponding to (17) has the form

u(t) — (ao/2) u(t) < V'(2) — (aof?) v(2)-
After a multiplication by #-% this can be written as
(d/dr) (£"u(t)) < (d]dt) (£™"(t))

from which
ut) <o(t),  teRF N[l )
since #(1) = »(1).
In the second case (17) has the form

U(t) — ay < U(t) — aq

which obviously implies u(t) < v(z) for te R, N [0, o) since %(0) = ©(0).

Let n > 2 be a fixed natural number and denote by W, the set of all
vectors p = ( Py ,--., Pn) having the properties p; =0 (i = 1,..., 1), Yoy p = 1.
If ¥ = (xy,..., ¥;) then tx and ¢+ x denote the vectors (fx,..., &x,) and

( + x, ..., t -+ %) respectively.
Applying the above results to the function,

Fs) = Fy() = @ (3, ps) — 3. 50

where @: I — R is a differentiable function on the open interval I, pe W, ,
x eI we get further interesting inequalities.

CoroLLARY 3. The inequality
Fy(tx) < Fy(x)

istrue forallx e I", p € W, and t > 1 with tx € I" if and only if the function ¥
defined by W(x) = x®'(x) is a convex function on I,

CoroLLARY 4. Inorder that the inequality
Fyt + %) < Fy(#) (19)

holds for all xeI®, pec W, and t > 0 with t + x eI it is necessary and
sufficient that O, the derivative of ®, be a convex function on I.

This is a generalization of Theorem 4 of [3]. There it was proved that (19)
is true if @ is a concave and @’ is a convex function on I(=R*).
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