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Abstract

In this paper, the homotopy analysis method (HAM) is applied to obtain series solutions to linear and nonlinear systems of
first- and second-order partial differential equations (PDEs). The HAM solutions contain an auxiliary parameter which provides a
convenient way of controlling the convergence region of series solutions. It is shown in particular that the solutions obtained by the
variational iteration method (VIM) are only special cases of the HAM solutions.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The homotopy analysis method (HAM) was first proposed by Liao in his Ph.D. thesis [1]. A systematic and clear
exposition on HAM is given in [2]. In recent years, this method has been successfully employed to solve many types
of nonlinear, homogeneous or nonhomogeneous, equations and systems of equations as well as problems in science
and engineering [3–23]. Very recently, Ahmad Bataineh et al. [24,25] presented two modifications of HAM to solve
linear and nonlinear ODEs. The HAM contains a certain auxiliary parameter h̄ which provides us with a simple way
to adjust and control the convergence region and rate of convergence of the series solution. Moreover, by means of
the so-called h̄-curve, it is easy to determine the valid regions of h̄ to gain a convergent series solution. Thus, through
HAM, explicit analytic solutions of nonlinear problems are possible.

Systems of partial differential equations (PDEs) arise in many scientific models such as the propagation of shallow
water waves and the Brusselator model of the chemical reaction-diffusion model. Very recently, Batiha et al. [26]
improved Wazwaz’s [27] results on the application of the variational iteration method (VIM) to solve some linear and
nonlinear systems of PDEs. In [28], Saha Ray implemented the modified Adomian decomposition method (ADM) for
solving the coupled sine-Gordon equation.

In this paper, we present an alternative approach based on HAM to approximate the solutions of linear and nonlinear
systems of first- and second-order PDEs. Comparisons with the solutions obtained by VIM [27] and ADM [28] shall
be made. It is shown in particular that the VIM [27] solutions are just special cases of the HAM solutions.

∗ Corresponding author.
E-mail address: ishak h@ukm.my (I. Hashim).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.11.022

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82209185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:ishak_h@ukm.my
http://dx.doi.org/10.1016/j.camwa.2007.11.022


2914 A. Sami Bataineh et al. / Computers and Mathematics with Applications 55 (2008) 2913–2923

2. Basic ideas of HAM

We consider the following differential equations,

Ni [zi (x, t)] = 0, i = 1, 2, . . . , n,

where Ni are nonlinear operators that represent the whole equations, x and t denote the independent variables and
zi (x, t) are unknowns function respectively. By means of generalizing the traditional homotopy method, Liao [2]
constructed the so-called zero-order deformation equations

(1 − q)L[φi (x, t; q) − zi,0(x, t)] = q h̄i Ni [φi (x, t; q)], (1)

where q ∈ [0, 1] is an embedding parameter, h̄i are nonzero auxiliary functions, L is an auxiliary linear operator,
zi,0(x, t) are initial guesses of zi (x, t) and φi (x, t; q) are unknown functions. It is important to note that, one has
great freedom to choose auxiliary objects such as h̄i and L in HAM. Obviously, when q = 0 and q = 1, both

φi (x, t; 0) = zi,0(x, t) and φi (x, t; 1) = zi (x, t),

hold. Thus as q increases from 0 to 1, the solutions φi (x, t; q) varies from the initial guesses zi,0(x, t) to the solutions
zi (x, t). Expanding φi (x, t; q) in Taylor series with respect to q, one has

φi (x, t; q) = zi,0(x, t) +

+∞∑
m=1

zi,m(x, t)qm, (2)

where

zi,m =
1

m!

∂mφi (x, t; q)

∂qm

∣∣∣∣
q=0

. (3)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters h̄i , and the auxiliary functions are properly
chosen, then the series equation (2) converges at q = 1 and

φi (x, t; 1) = zi,0(x, t) +

+∞∑
m=1

zi,m(x, t),

which must be one of solutions of the original nonlinear equations, as proved by Liao [2]. As h̄i = −1, Eq. (1)
becomes

(1 − q)L[φi (x, t; q) − zi,0(x, t)] + q Ni [φi (x, t; q)] = 0, (4)

which are mostly used in the homotopy-perturbation method [29].
According to (3), the governing equations can be deduced from the zero-order deformation equations (1). Define

the vectors

Ezi,n = {zi,0(x, t), zi,1(x, t), . . . , zi,n(x, t)}.

Differentiating (1) m times with respect to the embedding parameter q and then setting q = 0 and finally dividing
them by m!, we have the so-called mth-order deformation equations

L[zi,m(x, t) − χm zi,m−1(x, t)] = h̄i Ri,m(Ezi,m−1), (5)

where

Ri,m(Ezi,m−1) =
1

(m − 1)!

∂m−1 Ni [φi (x, t; q)]
∂qm−1

∣∣∣∣
q=0

, (6)

and

χm =

{
0, m ≤ 1,

1, m > 1.
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It should be emphasized that zi,m(x, t) (m ≥ 1) is governed by the linear equation (5) with the linear boundary
conditions that come from the original problem, which can be easily solved by symbolic computation softwares such
as Maple and Mathematica.

3. Applications

We will apply the HAM to linear and nonlinear systems of PDEs to illustrate the strength of the method and to
establish exact and/or approximate solutions for these problems. Comparisons with the VIM [27] and ADM [28] shall
be made.

3.1. Homogeneous linear system

First we present the analytical solutions for the linear homogeneous system of PDEs:

ut − vx + (u + v) = 0, (7)

vt − ux + (u + v) = 0, (8)

subject to the initial conditions

u(x, 0) = sinh x, v(x, 0) = cosh x . (9)

To solve system (7)–(9) by means of homotopy analysis method HAM, we choose the initial approximations

u0(x, t) = sinh x, v0(x, t) = cosh x,

and the linear operator

L[φi (x, t; q)] =
∂φi (x, t; q)

∂t
, i = 1, 2, (10)

with the property

L[ci ] = 0, (11)

where ci (i = 1, 2) are integral constants. Furthermore, systems (7) and (8) suggest that we define a system of
nonlinear operators as

N1[φi (x, t; q)] =
∂φ1(x, t; q)

∂t
−

∂φ2(x, t; q)

∂x
+ φ1(x, t; q) + φ2(x, t; q),

N2[φi (x, t; q)] =
∂φ2(x, t; q)

∂t
−

∂φ1(x, t; q)

∂x
+ φ1(x, t; q) + φ2(x, t; q).

Using the above definition, we construct the zeroth-order deformation equations

(1 − q)L
[
φi (x, t; q) − zi,0(x, t)

]
= q h̄i Ni [φi (x, t; q)] , i = 1, 2. (12)

Obviously, when q = 0 and q = 1,

φ1(x, t; 0) = z1,0(x, t) = u0(x, t), φ1(x, t; 1) = u(x, t),

φ2(x, t; 0) = z2,0(x, t) = v0(x, t), φ2(x, t; 1) = v(x, t).

Therefore, as the embedding parameter q increases from 0 to 1, φi (x, t; q) varies from the initial guess zi,0(x, t) to
the solution zi (x, t) for i = 1, 2. Expanding φi (x, t; q) in Taylor series with respect to q one has

φi (x, t; q) = zi,0(x, t) +

+∞∑
m=1

zi,m(x, t)qm,

where

zi,m(x, t) =
1

m!

∂mφi (x, t; q)

∂qm

∣∣∣∣
q=0

.
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If the auxiliary linear operator, the initial guesses and the auxiliary parameters h̄i are properly chosen, the above series
is convergent at q = 1, then one has

u(x, t) = z1,0(x, t) +

+∞∑
m=1

z1,m(x, t),

u(x, t) = z2,0(x, t) +

+∞∑
m=1

z2,m(x, t),

which must be one of the solutions of the original nonlinear equations, as proved by Liao [2]. Now we define the
vector

Ezi,n = {zi,0(x, t), zi,1(x, t), . . . , zi,n(x, t)}.

So the mth-order deformation equations is

L
[
zi,m(x, t) − χm zi,m−1(x, t)

]
= h̄i Ri,m

(
Ezi,m−1

)
, (13)

with the initial conditions

zi,m(x, 0) = 0, (14)

where

R1,m(Ezi,m−1) = (z1,m−1)t − (z2,m−1)x + z1,m−1 + z2,m−1,

R2,m(Ezi,m−1) = (z2,m−1)t − (z1,m−1)x + z1,m−1 + z2,m−1.

Now, the solution of the mth-order deformation equation (13) for m ≥ 1 becomes

zi,m(x, t) = χm zi,m−1(x, t) + h̄i

∫ t

0
Ri,m(Ezi,m−1)dτ + ci , (15)

where the integration constants ci (i = 1, 2) are determined by the initial conditions (14). We now successively obtain

z1,1(x, t) = h̄t cosh x, (16)

z1,2(x, t) =
h̄t

2
[2(1 + h̄) cosh x + h̄t sinh x], (17)

z1,3(x, t) =
h̄t

6
[(6 + 12h̄ + 6 h̄2

+ h̄2 t2) cosh x + 6h̄t (1 + h̄) sinh x], (18)

z2,1(x, t) = h̄t sinh x, (19)

z2,2(x, t) =
h̄t

2
[2(1 + h̄) sinh x + h̄t cosh x], (20)

z2,3(x, t) =
h̄t

6
[(6 + 12h̄ + 6 h̄2

+ h̄2 t2) sinh x + 6h̄t (1 + h̄) cosh x], (21)

etc. Then the series solutions expression by HAM can be written in the form

u(x, t) = z1,0(x, t) + z1,1(x, t) + z1,2(x, t) + z1,3(x, t) + · · · , (22)

v(x, t) = z2,0(x, t) + z2,1(x, t) + z2,2(x, t) + z2,3(x, t) + · · · , (23)

or specifically when h̄ = −1,

u(x, t) = sinh x

(
1 +

t2

2!
+

t4

4!
+ · · ·

)
− cosh x

(
t +

t3

3!
+

t5

5!
+ · · ·

)
,

v(x, t) = cosh x

(
1 +

t2

2!
+

t4

4!
+ · · ·

)
− sinh x

(
t +

t3

3!
+

t5

5!
+ · · ·

)
,
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which are exactly the same as the solutions obtained by VIM [27] converging to the closed-form solutions,

u(x, t) = sinh(x − t), v(x, t) = cosh(x − t). (24)

3.2. Nonhomogeneous linear system

Now consider the following nonhomogeneous linear system:

ut − vx − (u − v) = −2, (25)

vt − ux − (u − v) = −2, (26)

subject to the initial conditions

u(x, 0) = 1 + ex , v(x, 0) = −1 + ex . (27)

To solve system (25)–(27) by means of HAM, we choose the initial approximations

u0(x, t) = 1 + ex , v0(x, t) = −1 + ex ,

and the linear operator as in (10) with the property (11), the zero-order deformation equations (12) and the mth-order
deformation equations (13) with the initial conditions (14), where

R1,m(Ezi,m−1) = (z1,m−1)t − (z2,m−1)x − z1,m−1 + z2,m−1 + 2 − 2χm,

R1,m(Ezi,m−1) = (z2,m−1)t + (z1,m−1)x − z1,m−1 + z2,m−1 + 2 − 2χm .

Now, the solution of the mth-order deformation for m ≥ 1 are the same as (15), where the integration constants ci
(i = 1, 2) are determined by the same initial conditions (14). We now successively obtain

z1,1(x, t) = −h̄tex , (28)

z1,2(x, t) =
h̄tex

2
[−2 + h̄(t − 2)], (29)

z1,3(x, t) = −
h̄tex

6
[6 − 6h̄(t − 2) + h̄2(t2

− 6t + 6)], (30)

z2,1(x, t) = h̄tex , (31)

z2,2(x, t) =
h̄tex

2
[2 + h̄(t + 2)], (32)

z2,3(x, t) =
h̄tex

6
[6 + 6h̄(t + 2) + h̄2(t2

+ 6t + 6)], (33)

etc. In the special case h̄ = −1, we recover the VIM solutions [27],

u(x, t) = 1 + ex
(

1 +
t2

2!
+

t3

3!
+ · · ·

)
,

v(x, t) = 1 + ex
(

1 − t +
t2

2!
−

t3

3!
+ · · ·

)
,

which converge to the closed-form solutions

u(x, t) = 1 + ex+t , v(x, t) = −1 + ex−t .

3.3. Nonhomogeneous nonlinear system

Consider the following nonhomogeneous nonlinear system:

ut + vux + u − 1 = 0, (34)

vt − uvx − v − 1 = 0, (35)
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subject to the initial conditions

u(x, 0) = ex , v(x, 0) = e−x . (36)

To solve system (34)–(36) by means of HAM, we choose the initial approximations

u0(x, t) = ex , v0(x, t) = e−x ,

and the linear operator as in (10) with the property (11), the zero-order deformation equations (12) and the mth-order
deformation equations (13) with the initial conditions (14). We now successively obtain

z1,1(x, t) = h̄tex , (37)

z1,2(x, t) =
h̄tex

2
[2 + h̄(t + 2)], (38)

z1,3(x, t) =
h̄tex

6
[6 + 6h̄(t + 2) + h̄2(t2

+ 6t + 6)], (39)

z2,1(x, t) = −h̄te−x , (40)

z2,2(x, t) =
h̄te−x

2
[−2 + h̄(t − 2)], (41)

z2,3(x, t) = −
h̄te−x

6
[6 − 6h̄(t − 2) + h̄2(t2

− 6t + 6)], (42)

etc. In the special case h̄ = −1, we recover the VIM solutions [27],

u(x, t) = ex
(

1 − t +
t2

2!
−

t3

3!
+ · · ·

)
,

v(x, t) = e−x
(

1 + t +
t2

2!
+

t3

3!
+ · · ·

)
,

which are convergent to the closed-form solutions,

u(x, t) = ex−t , v(x, t) = e−x+t .

3.4. Homogeneous nonlinear system

We consider to examine the homogeneous nonlinear system [30]:

ut + uxvx + u yvy + u = 0, (43)

vt + vxwx − vywy − v = 0, (44)

wt + wx ux + wyu y − w = 0, (45)

subject to the initial conditions

u(x, y, 0) = ex+y, v(x, y, 0) = ex−y, w(x, y, 0) = e−x+y . (46)

According to HAM, the initial approximations are selected by using the given initial conditions

u0(x, y, t) = ex+y, v0(x, y, t) = ex−y, w0(x, y, t) = e−x+y,

and the linear operator

L[φi (x, t; q)] =
∂φi (x, t; q)

∂t
, i = 1, 2, 3,

with the property

L[ci ] = 0,
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where ci (i = 1, 2, 3) are integral constants. Following similar procedure as in the previous subsections, the solution
of the mth-order deformation equation for m ≥ 1 becomes

zi,m(x, t) = χm zi,m−1(x, t) + h̄i

∫ t

0
Ri,m(Ezi,m−1)dτ + ci , (47)

where the integration constants ci (i = 1, 2, 3) are determined by the same initial conditions (14). We now successively
obtain

z1,1(x, y, t) = h̄tex+y, (48)

z1,2(x, y, t) =
h̄tex+y

2
[2 + h̄(t + 2)], (49)

z1,3(x, y, t) =
h̄tex+y

6
[6 + 6h̄(t + 2) + h̄2(t2

+ 6t + 6)], (50)

z2,1(x, y, t) = −h̄tex−y, (51)

z2,2(x, y, t) =
h̄tex−y

2
[−2 + h̄(t − 2)], (52)

z2,3(x, y, t) = −
h̄tex−y

6
[6 − 6h̄(t − 2) + h̄2(t2

− 6t + 6)], (53)

z3,1(x, y, t) = −h̄te−x+y, (54)

z3,2(x, y, t) =
h̄te−x+y

2
[−2 + h̄(t − 2)], (55)

z3,3(x, y, t) = −
h̄te−x+y

6
[6 − 6h̄(t − 2) + h̄2(t2

− 6t + 6)], (56)

etc. Then the series solutions expression by HAM can be written in the form

u(x, t) = z1,0(x, t) + z1,1(x, t) + z1,2(x, t) + z1,3(x, t) + · · · (57)

v(x, t) = z2,0(x, t) + z2,1(x, t) + z2,2(x, t) + z2,3(x, t) + · · · (58)

w(x, t) = z3,0(x, t) + z3,1(x, t) + z3,2(x, t) + z3,3(x, t) + · · · . (59)

So in the special case h̄ = −1, we obtain

u(x, t) = ex+y
(

1 − t +
t2

2!
−

t3

3!
+ · · ·

)
,

v(x, t) = ex−y
(

1 + t +
t2

2!
+

t3

3!
+ · · ·

)
,

w(x, t) = e−x+y
(

1 + t +
t2

2!
+

t3

3!
+ · · ·

)
,

which are the VIM solutions [27] converging to the closed-form solutions,

u(x, t) = ex+y−t , v(x, t) = ex−y+t , v(x, t) = e−x+y+t .

3.5. Coupled sine-Gordon equations

We finally consider a system of nonlinear second-order PDEs given by the coupled sine-Gordon equations [28]:

ut t − uxx = −δ2 sin(u − w), (60)

wt t − c2wxx = sin(u − w), (61)
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Fig. 1. The h̄-curve of ut (0, 0) and vt t (0, 0) given by (22) and (23) based on the fifth-order HAM approximations.

subject to the initial conditions

u(x, 0) = A cos(kx), ut (x, 0) = 0, (62)

w(x, 0) = 0, wt (x, 0) = 0, (63)

where c, δ, A and k are constants.
To solve (60)–(63) by means of HAM, we choose the initial approximations

u0(x, t) = A cos(kx), w0(x, t) = 0,

and the linear operators for i = 1, 2

L[φi (x, t; q)] =
∂2φi (x, t; q)

∂t2 ,

with the property

L[ci + ci t] = 0,

where ci (i = 1, 2) are integral constants. Following similar procedure as in the previous examples, we obtain:

z1,1(x, t) =
h̄

2
[Ak2 cos kx + δ2 sin(A cos kx)]t2,

z2,1(x, t) = −
h̄

2
sin(A cos kx)t2.

So, the 2-term HAM series solutions in the special case h̄ = −1 are

u(x, t) = A cos kx −
1
2
[Ak2 cos kx + δ2 sin(A cos kx)]t2, (64)

w(x, t) =
1
2

sin(A cos kx)t2. (65)

The validity of the method is based on such an assumption that the series (2) converges at q = 1. It is the auxiliary
parameter h̄ which ensures that this assumption can be satisfied. In general, by means of the so-called h̄-curve, it
is straightforward to choose a proper value of h̄ which ensures that the solution series is convergent. The h̄-curves
for the five examples considered in this paper are presented in Figs. 1–3 which were obtained based on the fifth-
order HAM approximations solutions. By HAM, it is easy to discover the valid region of h̄, which corresponds to
the line segments nearly parallel to the horizontal axis. In HAM it possible to obtain a large family of solutions.
For the examples considered in this work, the special case h̄ = −1 yields the VIM solutions [27] and hence the
exact solutions. Fig. 4 discussed the numerical comparison between the fifth-order HAM with different values of h̄
and the exact solution of the problem in Section 3.1 in the interval x ∈ [0, 1] at t = 1 the result shows that the
proper value of h̄ is −1. Figs. 5 and 6 show the comparisons between the 3-term of HAM and the 5-term of ADM
solutions [28] for the case h̄ = −1, c = δ = A = 1 and k = 1.6. The results presented in Figs. 5 and 6 clearly show
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Fig. 2. The h̄-curve of ut (0, 0) and vt (0, 0) given by (28)–(33) and (37)–(42) based on the fifth-order HAM approximations.

Fig. 3. The h̄-curve of ut (0, 0, 0), vt (0, 0, 0) and wt (0, 0, 0) given by (57)–(59) based on the fifth-order HAM approximations.

Fig. 4. The fifth-order HAM solutions (22) and (23) for different values of h̄ vs the exact solution (24).

the good accuracy of HAM. In addition, HAM avoids the need for calculating the Adomian polynomials which can be
complicated.

4. Conclusions

In this paper, it was shown how HAM can be applied to systems of PDEs. By HAM we obtained a family of
solutions whose special cases are the solutions obtained by VIM and ADM. The advantage of HAM is the auxiliary
parameter which provides a convenient way of controlling the convergence region of series solutions. This is not
possible in other analytic methods like VIM and ADM. It is shown that the homotopy analysis method is a promising
tool for other more complicated linear or nonlinear, homogeneous or nonhomogeneous, systems of PDEs.
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Fig. 5. (a) The numerical results for u(x, t) by means of 3-term HAM solution. (b) The numerical results for u(x, t) by means of 5-term ADM
solution [28].

Fig. 6. (a) The numerical results for w(x, t) by means of 3-term HAM solution. (b) The numerical results for w(x, t) by means of 5-term ADM
solution [28].
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