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a b s t r a c t

Murine norovirus (MNV), identified in 2003, is the only norovirus which replicates efficiently in tissue
culture and as a result has been used extensively as a model for human noroviruses, a major cause of
acute gastroenteritis. The current report describes the generation of a new approach to reverse genetics
recovery of genetically defined MNV that relies on the transfection of in vitro transcribed capped RNA
directly into cells. The use of the recently developed ScriptCap post-transcriptional enzymatic capping
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system, followed by optimized Neon mediated electroporation of the highly permissive RAW 264.7 cells,
resulted in the rapid and robust recovery of infectious MNV. Transfection of cells capable of support-
ing virus replication but not permissive to virus infection, namely human or hamster kidney cells, also
resulted in robust recovery of infectious virus without subsequent amplification by multiple rounds of
re-infection. This latter system may provide a reproducible method to measure the specific infectivity
of mutant norovirus RNA allowing the accurate quantitation of the effect of mutations on norovirus

 

replication.

. Introduction

Since the first demonstration that in vitro transcribed RNA from
cDNA clone of a positive strand RNA virus (Polio) was infectious

n tissue culture (Racaniello and Baltimore, 1981), reverse genetics
as proven to be an invaluable approach to studies on many aspects
f virus replication and pathogenesis. In many cases, it has allowed
n unprecedented ability to examine the effect of mutations not
nly on virus replication in tissue culture, but also on pathogenesis
n the natural host. For some organisms this has led to the devel-
pment of rationally attenuated viruses (Cavanagh et al., 2007) or
mproved vaccine candidates (Macadam et al., 2006).

Murine norovirus (MNV), a member of the Caliciviridae family
f small positive stranded RNA viruses, was first reported in 2003
Karst et al., 2003) and still represents the only norovirus which
eplicates efficiently in tissue culture (Wobus et al., 2004). The dis-
overy of MNV has allowed an unprecedented analysis of the role
f viral sequences in norovirus translation, replication and patho-
enesis in the natural host. As a result, MNV is used widely as a

odel system for the human noroviruses, a major cause of viral

astroenteritis in man (Wobus et al., 2006). The murine norovirus
enome contains four reading frames (Fig. 1A); ORF1 encodes a
arge polyprotein which is cleaved co- and post-translationally to
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produce the viral non-structural proteins required for viral genome
replication (NS1-7) (Sosnovtsev et al., 2006); ORF2 encodes the
major capsid protein VP1; ORF3 encodes a minor structural protein
whereas ORF4 encodes a protein of unknown function (Sosnovtsev
et al., 2006).

A reverse genetics approach for MNV described previously
relies on the transfection of a full-length cDNA construct of MNV
into cells infected previously with fowlpox virus expressing T7
RNA polymerase (FPV-T7) (Chaudhry et al., 2007). This system
was used subsequently to address many aspects of the norovirus
life cycle including the identification of RNA structures impor-
tant for norovirus replication (Simmonds et al., 2008), as well
as mapping virulence determinants in the viral capsid protein
(Bailey et al., 2008) and the 3′ untranslated region of the viral
genome (Bailey et al., 2010). An RNA polymerase I promoter
based reverse genetics system for the recovery of MNV has also
been described (Ward et al., 2007), although published yields
appear to be greater than 10-fold lower than those obtained
using FPV-T7; 103 plaque forming units/ml versus >5 × 104 TCID50
per 35 mm dish for the Pol-I and FPV-T7 based systems respec-
tively.

During the course of previous studies to generate a reverse

Open access under CC BY license.
genetics system (Chaudhry et al., 2007), the use of capped in
vitro synthesised MNV RNA was examined as a possible reverse
genetics approach as this has proven effective for other mem-
bers of the Caliciviridae; both feline calicivirus (Sosnovtsev and
Green, 1995) and porcine enteric calicivirus (Chang et al., 2005).
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Fig. 1. Murine norovirus full-length cDNA clone and translation of in vitro synthesised RNA. (A) Schematic of the infectious cDNA clone used in this study highlighting the
positions of the four open reading frames, the T7 RNA polymerase promoter and the position of the 3′ ribozyme sequence. The asterisk highlights the position of the frame
shift used to generate the mutated cDNA clone pT7:MNV-G 3′Rz F/S. (B) In vitro translation of in vitro transcribed murine norovirus genomic (G) or subgenomic RNA (SG). RNA
w y capp 7

S spho
p roduc

H
c
t
c
p
p
t
t
2
r
e
v

r
f
t
>
e
w
n

2

2

(
c
B
d
K
G
i
f
t
p
r

as in vitro transcribed as described in Section 2.3 and in some cases enzymaticall
amples were resolved subsequently by 15% SDS-PAGE prior to exposure to a pho
roposed previously (Sosnovtsev et al., 2006). NS7* represents the truncated NS7 p

owever infectious virus was not recovered by transfection of
apped in vitro transcribed MNV RNA into a number of efficiently
ransfected cell lines, including human 293T and hamster BHK
ells, which although not permissive to infection by MNV viral
articles, resulted in robust virus release when transfected with
urified VPg-linked viral RNA (Chaudhry et al., 2007). In addi-
ion, transfection of in vitro transcribed capped viral RNA into
he highly permissive, but more refractile to transfection RAW
64.7 murine macrophage cell line also failed to result in virus
ecovery. However, in this case, difficulties in the efficient deliv-
ry of RNA may have had a major impact on the ability to recover
irus.

The current report describes the generation of an efficient and
obust method for recovery of genetically defined murine norovirus
rom in vitro transcribed, post-transcriptionally capped RNA by
ransfection of several different cell types. This method displays
10-fold increase in virus yield when compared to the methods
stablished previously and provides an additional approach with
hich to accurately quantify the effect of mutations within the
orovirus genome on virus replication.

. Materials and methods

.1. Cells

Human embryonic kidney (293T) and murine macrophage cells
RAW 264.7) were obtained from ATCC and maintained in DMEM
ontaining 10% foetal calf serum (FCS) at 37 ◦C with 10% CO2.
HK cells engineered to express T7 RNA polymerase (BSR-T7), as
escribed previously (Buchholz et al., 1999), were obtained from
arl-Klaus Conzelmann (Ludwig Maximilians University, Munich,
ermany) and maintained as described for 293 cells with the
nclusion of 0.5 mg/ml G418. Note that BSR-T7 cells were used
or this study simply due to their improved growth characteris-
ics compared to BHK parental cells and the expression of T7 RNA
olymerase in these cells has no effect on virus recovery as similar
esults are obtained using BHK (data not shown).
ed, highlighted by the prefix m , prior to translation in rabbit reticulocyte lysates.
imager screen. Note that the protein assignments are based on the nomenclature
t generated as a result of the frame shift introduced in pT7:MNV-G 3′Rz F/S.

2.2. Plasmids and primers

pT7:MNV 3′Rz containing the wild type MNV-1 sequence under
the control of a truncated T7 RNA polymerase promoter was
described previously (Chaudhry et al., 2007). A modified version
of this in which a frame shift was introduced into the NS7 region
of the ORF1 open reading frame (pT7:MNV 3′Rz F/S) has also
been described previously (Chaudhry et al., 2007). To generate a
cDNA template for the synthesis of MNV subgenomic RNA, the
PCR primers IGIC18 (TAATACGACTCACTATAGGGGTGAATGAGGAT-
GAGTGATGGC) and 7400R (TTTTTTTTTTTTTTTTTTTTTTTTTTTTT-
TAAAATGCATCTAACTACCACAAAG) were used to amplify the viral
subgenomic region, introducing a 5′ T7 RNA polymerase promoter
and 30 nucleotides long 3′ poly-A tail.

2.3. In vitro transcription, RNA capping and RNA purification

Typically, transcription reactions contained 200 mM Hepes pH
7.5, 32 mM magnesium acetate, 40 mM DTT, 2 mM spermidine,
7.5 mM of each NTP, 25 ng/�l of linearised DNA template and
50 �g/ml of T7 RNA polymerase. Reactions were incubated at 37 ◦C
for 2–7 h, treated with DNase at a final concentration of 0.1 unit/�l
(New England Biolabs) then precipitated using lithium chloride,
final concentration 2.5 M. RNA was resuspended in RNA storage
solution (Ambion) and stored at −20 ◦C until required. The cDNA
clones pT7:MNV 3′RZ or pT7:MNV F/S 3′RZ were linearised with
NheI prior to in vitro transcription. RNA transcripts produced in
this manner resulted in the inclusion of GCUAG at the 3′ end of the
viral transcript due to the NheI overhang. RNA was capped using the
ScriptCap system from Epicentre according to the manufacturer′s
instructions. Briefly, up to 75 �g of RNA was denatured by heating
to 65 ◦C for 10 min prior to rapid chilling on ice. The capping reac-

tion was then set up by the addition of 10 �l of 10× capping buffer,
10 �l of 10 mM GTP, 0.5 �l of 20 mM S-adenosyl methionine, 2.5 �l
of Scriptguard and 4 �l of ScriptCap enzyme mix in a total reac-
tion volume of 100 �l. The reaction was incubated at 37 ◦C for 1 h
then the RNA precipitated using lithium chloride. RNA was washed
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ith 70% ethanol prior to resuspension in RNA storage solution
Ambion). RNA was stored at −20 ◦C until required.

Viral VPg-linked RNA was prepared as described previously
Chaudhry et al., 2007). Briefly, RAW 264.7 cells were infected with

NV using a multiplicity of infection of two TCID50 per cell, total
NA was then prepared from the infected cells between 12 and 18 h
ost-infection using the GenElute purification system (Sigma). The
recise quantity of viral genome present in each preparation was
ot routinely determined, however analysis indicated that 1 �g of
NA prepared in this manner typically contained between 5 × 105

nd 5 × 106 copies of MNV genomic RNA as determined using quan-
itative real-time RT-PCR (data not shown).

.4. In vitro translation

In vitro translation reactions were performed using the Flexi
abbit reticulocyte lysate system from Promega. Reactions were
repared according to the manufacturer’s instructions as described
or capped mRNAs and programmed with 1 �g of RNA per 25 �l
eaction. Reactions were incubated at 30 ◦C for 90 min prior to the
ddition of an equal volume of SDS-PAGE sample buffer. Samples
ere resolved subsequently on a 15% SDS-PAGE gel before exposure

o phosphoimager screen.

.5. Transfection of 293T and BSR-T7 cells

293T and BSR-T7 cells were transfected using Lipofectamine
000 according to the manufacturer’s instructions (Invitrogen).
riefly, 24 h prior to transfection, 7.5 × 105 cells were seeded into a
5 mm dish in antibiotic free DMEM containing 10% FCS. Cells were
hen typically transfected with 1 �g of RNA, or amounts detailed
n the figure legends, complexed with 4 �l of Lipofectamine 2000
or 20 min at room temperature in 200 �l of Optimem (Invitro-
en). The transfection mixture was added to cells drop-wise prior
o incubation at 37 ◦C. For virus recovery, cells were incubated
or 24 h at 37 ◦C prior to freezing at −80 ◦C and subsequent titra-
ion by TCID50 on RAW 264.7 cells. Samples were prepared for
estern blot in an identical manner except rather than freezing

t −80 ◦C, cells were lysed in RIPA buffer (50 mM Tris/HCl (pH 8.0),
50 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS) and anal-
sed subsequently by SDS-PAGE (15% acrylamide) and western blot
sing antisera to the viral polymerase NS7 or the minor capsid
rotein VP2.

.6. Optimization of Neon mediated transfection of RAW 264.7
ells

In order to determine the optimum transfection conditions for
he RAW 264.7 cell line highly permissive to MNV infection, cells
ere transfected with 1 �g of pGFPmax plasmid (Lonza) using

he Neon transfection system. 6 × 106 cells per transfection were
arvested and washed once in PBS (Invitrogen). Cells were then
esuspended in 100 �l of resuspension buffer and electroporated as
etailed in Fig. 3A. Cells were immediately transferred to a 35 mm
ish containing pre-warmed antibiotic free media and incubated
t 37 ◦C for 24 h. Cells were first observed by bright field and flu-
rescence microscopy prior to harvesting and analysis by flow
ytometry. Prior to flow cytometry analyses, cells were washed
wice with ice-cold PBS and fixed with 4% paraformaldehyde for
5 min. After fixing, cells were rinsed with PBS and then analysed

y flow cytometry using a CyAnTM ADP flow cytometer (Dako).
ive cells were discriminated from dead cells and debris using
orward and side scatter. The percentage of live cells expressing
FP was determined by comparison to mock transfected control
ells.
l Methods 169 (2010) 112–118

3. Results

3.1. In vitro transcribed enzymatically capped MNV RNA
translates efficiently in vitro

An infectious cDNA clone of MNV-1 in which the full-length viral
cDNA is under control of a T7 RNA polymerase promoter, modi-
fied so that transcripts do not contain sequences of non-viral origin
at the 5′ end of the T7 transcript has been described previously
(Chaudhry et al., 2007). This plasmid, pT7:MNV 3′Rz also contains
a unique NheI restriction site after a 27 nucleotide long poly-A tail,
followed by a 3′ hepatitis delta virus ribozyme sequence (Fig. 1A).
A derivative of this in which the NS7 RNA polymerase coding
sequence contains a frame-shift (pT7:MNV 3′Rz F/S) has also been
described previously (Chaudhry et al., 2007). Synthetic genomic
RNA was prepared by T7 transcription of both plasmids as described
in the materials and methods. Subgenomic RNA (sgRNA) was gen-
erated by transcription of a PCR product designed to introduce a T7
promoter at the 5′ end with a 30 nucleotide long 3′ poly-A tail (see
Section 2 for details). Capped RNA was then generated using the
ScriptCap enzymatic capping system and the effect of capping on
the efficiency of the translation in rabbit reticulocyte lysates exam-
ined. Rabbit reticulocyte lysates were programmed with either
capped or uncapped RNAs and protein synthesis levels examined
(Fig. 1B). Whereas uncapped MNV genomic or subgenomic RNA
failed to translate efficiently in vitro, enzymatically capped RNA
typically produced >10-fold more protein in vitro (Fig. 1B).

3.2. In vitro transcribed enzymatically capped MNV RNA
translates efficient and is infectious in cell culture

Previous work has highlighted that transfection of in vitro tran-
scribed MNV RNA co-transcriptionally capped by the inclusion of
cap analogue resulted in very low translation efficiency in cells
(Chaudhry et al., 2007). As will be discussed later, this may be at
least partly due to the inefficiency of capping and/or the stimulation
of the interferon response as a result of transfecting 5′ phosphory-
lated RNA (Hornung et al., 2006; Nallagatla et al., 2007; Pichlmair
et al., 2006). To examine if enzymatic capping of RNA could be
used to overcome some of these issues and be efficiently trans-
lated in cells, a heterologous cell system, namely human embryonic
kidney cells (293T) or baby hamster kidney cells (BSR-T7) were
transfected with either capped or uncapped viral RNA transcripts
then the levels of viral protein examined by western blot (Fig. 2). As
expected, uncapped MNV genomic or subgenomic RNA did not pro-
duce detectable levels of viral proteins after transfection of either
293 or BSR-T7 cells. However, transfection of enzymatically capped
RNA resulted in efficient and robust viral protein synthesis (Fig. 2).
High levels of the viral NS7 protein, the product of open reading
frame 1, was readily detected when capped viral genomic RNA was
transfected into either cell type, whereas transfection of the viral
subgenomic RNA lead to high levels of VP2 synthesis upon trans-
fection of 293T cells only (Fig. 2). Note that VP2 expression was
detected in BSR-T7 cells upon longer exposure but the expression
levels were substantially reduced compared to the levels observed
in 293T cells.

The presence of infectious virus in the cultures was also exam-
ined by subsequent titration on the highly permissive murine
macrophage cell line RAW 264.7. High levels of infectious virus
were readily detected in cultures transfected with capped viral
genomic RNA only. Typical yields from a 35 mm dish (∼1.5 × 106
cells) were >4 × 105 TCID50, over 10-fold higher than the T7 RNA
polymerase driven DNA based recovery system (Chaudhry et al.,
2007) and >100-fold higher than a Pol-I based system (Ward et
al., 2007). Previous analysis indicated that 293 and BSR-T7 cells,
although competent for MNV replication as transfection of viral
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Fig. 2. Recovery of murine norovirus using a heterologous cell system.Western blot analysis of either baby hamster kidney cells (BSR-T7) or human embryonic kidney cells
(293T) transfected in vitro transcribed murine norovirus RNA. Cells were transfected with in vitro transcribed uncapped (G, SG) or enzymatically capped RNA (m7G, m7SG or
m7F/S) as described in Section 2.3. In vitro transcribed genomic (G) or a derivative containing a frame shift in the NS7 region was prepared using the plasmids pT7:MNV-G 3′Rz
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nd pT7:MNV-G 3′Rz F/S respectively. Subgenomic RNA was prepared using a PCR
n Section 2.2. Cells were transfected with RNA and samples prepared for western
amples were also harvested and analysed subsequently for the presence of infect
1.5 × 106 cells).

Pg-linked RNA results in high yields of infectious virus, are not
ermissive to infection, presumably due to the lack of a suitable
irus receptor (Chaudhry et al., 2007). Therefore the yields of virus
btained after transfection of RNA into these cells represents a sin-
le cycle of replication only.

.3. Optimization of RAW 264.7 cell transfection

Previous attempts to recover infectious MNV directly in the

ighly permissive RAW 264.7 murine macrophage cell line have
een hindered by the inability to delivery viral nucleic acid effi-
iently to these cells (data not shown). To obtain high efficiency
ransfection of RAW 264.7 cells, the optimum conditions for the
elivery of DNA were first examined by electroporation of pGFP-

ig. 3. Neon mediated electroporation of RAW 264.7 cells. (A) Table depicting the results
�g of GFP encoding DNA (pGFPmax) or 1 �g murine norovirus viral RNA (contained in a t
ith 1 �g of plasmid using the conditions detailed in the table. The percentage of cells ex

ield was determined as TCID50 per 6 × 106 cells at 24 h post-transfection. (B) Bright fie
ondition 6 (1700 V, 25 ms) 48 h post-transfection.
ct engineered to contain a truncated T7 RNA polymerase at the 5′ end as described
using antisera to the viral NS7 and VP2 proteins 24 h post-transfection. Duplicate
irus by TCID50 on RAW 264.7 cells. Virus yield is show as TCID50 per transfection

max using the Neon electroporation system (Invitrogen). A variety
of conditions were examined and the percentage of GFP positive
cells determined (Fig. 3A). Optimum conditions for DNA based
delivery were determined to be 1700 V with a 25 ms pulse length.
Under these conditions ∼95% of viable cells were GFP positive after
transfection of 1 �g of DNA (Fig. 3B). To identify the optimal condi-
tions for delivery of viral RNA, various transfection conditions were
again examined however cells were transfected with 1 �g of MNV
VPg-linked viral RNA, contained in a total RNA preparation from

infected cells, and the virus yield determined 24 h post-transfection
(Fig. 3A). Typical yields of infectious MNV after a single cycle of
replication, namely 24 h post-transfection, were in excess of 1 × 106

TCID50 per transfection (6 × 106 cells). The optimal conditions for
virus recovery were identified as 1725 V with a 25 ms pulse length

obtained by transfection of RAW 264.7 cells under various conditions with either
otal RNA preparation isolated from infected cells). RAW 264.7 cells were transfected
pressing GFP was determined at 48 h post-transfection using flow cytometry. Virus
ld and fluorescence imaging of RAW 264.7 cells transfected with pGFPmax using
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Fig. 4. Optimization of murine norovirus recovery from RAW 264.7 cells. The virus
yield obtained 24 h post-transfection of RAW 264.7 cells using varying amounts of
in vitro transcribed post-transcriptionally capped MNV RNA. RAW 264.7 cells were
transfected using the optimized conditions determined for virus recovery (1725 V,
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Fig. 5. Time course analysis of murine norovirus recovery from RAW 264.7 cells.
The virus yield from RAW 264.7 cells transfected with various amounts of either
in vitro transcribed post-transcriptionally capped murine norovirus RNA or purified
5 ms). Virus yield is expressed as TCID50 per 6 × 106 cells and represents the aver-
ge of three repetitions. The asterisk highlights that no infectious virus was obtained
ut that the detection limit was ∼50 TCID50. Error bars represent the standard
eviation.

nd under these conditions typical yields were 3.4 × 107 TCID50 at
4 h post-transfection of 1 �g of viral VPg-linked RNA (Fig. 3A).

.4. Optimization of recombinant MNV recovery from RAW 264.7
ells

To identify the optimum conditions which will allow the
fficient and robust recovery of genetically defined noroviruses,
ncluding those with substantial growth defects, the optimum
uantity of in vitro transcribed enzymatically capped RNA required
or virus recovery was examined using the conditions demon-
trated previously to give maximum yields from viral VPg-linked
NA. The yield of virus obtained by transfection of various quan-
ities of RNA after a single cycle of replication, namely 24 h
ost-transfection, was examined (Fig. 4). These results indicate that
aximum single cycle yields of virus were obtained after transfec-

ion of ∼1 �g of in vitro transcribed viral RNA, with typical yields
f 7.7 × 105 TCID50 per 6 × 106 cells obtained (Fig. 4). At concen-
rations above 1 �g, increased cytopathic effect was observed (data
ot shown), but decreased yields of infectious virus were obtained.

.5. Kinetic analysis of virus recovery from RAW 264.7 cells

The rate at which infectious virus could be recovered from
ransfected RAW 264.7 cells was examined in comparison to viral
Pg-linked RNA contained in a total RNA preparation from infected
ells (Fig. 5). Rapid recovery of infectious MNV was observed
hen RAW 264.7 cells were transfected with viral VPg-linked RNA,
ith >106 TCID50 recovered as early as 12 h post-transfection and
eak viral titres obtained at 48 h where >108 TCID50 could be
etected (Fig. 5). In contrast, transfection of in vitro transcribed
ost-transcriptionally capped MNV RNA resulted in slower recov-
ry; >103 TCID50 could be recovered by 12 h post-transfection but
eak titres were obtained 72 h post-transfection. Maximal virus
ields from RAW 264.7 cells transfected with in vitro transcribed
NA reached >109 TCID50 per 6 × 106 cells.
. Discussion

Until recently, in vitro synthesised capped RNAs have been
enerated by co-transcriptional incorporation of cap analogues
viral VPg-linked RNA. At various times post-transfection, cells were freeze–thawed
to release infectious virus and the yield of virus determined by TCID50. Virus yield is
expressed as TCID50 per 6 × 106 cells and represents the average of three repetitions.
Error bars represent the standard deviation.

including m7G(5′)pppG (Yisraeli and Melton, 1989), into RNA. By
the addition of an excess of cap analogue to in vitro transcrip-
tion reactions, usually at a 10:1 or 4:1 ratio of cap analogue
to GTP, much of the RNA produced contains a 5′ cap struc-
ture (m7G(5′)pppG(pN)). However, at best capping efficiencies of
75–80% can be achieved, with the remaining 20–25% of RNA con-
taining a triphosphorylated 5′ end (Meis and Meis, 2007). Another
drawback of this approach is that in many transcripts the cap ana-
logue incorporates in the incorrect orientation (G(5′)pppm7G(pN))
and as such the RNA is translated inefficiently (Grudzien et al., 2004;
Pasquinelli et al., 1995). Typically, in a transcription reaction in
which a 4:1 ratio of cap analogue to GTP is used, approximately
80% of transcripts are capped, of which only 60% have incorporated
the cap in the correct orientation. The use of anti-reverse cap ana-
logues (ARCA) can overcome some of these limitations as due to the
lack of one of the 3′ OH groups, incorporation can occur in the cor-
rect orientation only (Grudzien et al., 2004; Stepinski et al., 2001).
However, it is impossible to obtain 100% capping efficiencies and
therefore some RNA prepared in this manner remains uncapped
possessing a triphosphorylated 5′ end.

Recent work on the characterisation of innate immune
responses to virus infection have highlighted that 5′ phosphory-
lated RNA can stimulate the interferon system via the cellular RIG-I
protein (Pichlmair et al., 2006). New studies have also indicated
that in addition to a 5′ triphosphate, base-paired RNA sequences
are required for interferon induction by RIG-I and PKR (Hornung et
al., 2006; Nallagatla et al., 2007; Pichlmair et al., 2006). Hence, the
use of capped in vitro synthesised viral RNA as a possible approach
to reverse genetics is not only limited by the inability of some of
the RNA to translate efficiently as a result of either the absence
of a 5′ cap or an incorrectly incorporated 5′ cap, but also by the
induction of interferon by those transcripts which are not capped.
Given the reported sensitivity of murine norovirus to the interferon
response (Changotra et al., 2009; Karst et al., 2003; Mumphrey et
al., 2007), any induction of the interferon response is likely to result
in a significant reduction in virus yield. Studies have also reported
that the MNV genome possesses base-paired RNA structures at the
5′ end of the viral genomic RNA (Simmonds et al., 2008), hence,

although not directly assayed in the current report, transfection of
5′ triphosphorylated MNV will inevitably result in interferon induc-
tion. Recent work has highlighted how type I and type II interferon
can have a dramatic effect on MNV protein synthesis (Changotra et
al., 2009).
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The current report examines the use of enzymatically capped
NA, generated by the addition of an authentic cap structure to
he 5′ end of in vitro transcribed RNA into by the tri-functional
accinia virus capping enzyme or guanyltransferase (Martin and
oss, 1975, 1976), commercially available from Epicentre as the

criptCap capping system (Meis and Meis, 2007). The 5′ end of
n vitro transcribed RNA is converted into a cap 0 structure post-
ranscriptionally, with efficiencies which approach 100% (Meis and

eis, 2007). RNA produced in this manner typically translate with
>5-fold increased efficiency in cells compared to RNA generated
sing traditional cap analogue or >3-fold greater efficiency than
NA produced using ARCA cap analogues (Meis and Meis, 2007).

t is worth noting that by virtue of the mechanism of action of
he enzymatic capping reaction, RNA produced in this manner will
ontain two 5′ G residues at the 5′ end of the viral genome rather
han 1 i.e. m7GpppGpU. Whilst it is likely that this additional non-
iral methylated G at the 5′ end may reduce the infectivity of the
NA, this may at least partially be compensated for by the lack of
or reduced) interferon induction achieved by transfection of RNA
repared in this manner.

Transfection of post-transcriptionally enzymatically capped
NA into heterologous cells, such as human 293T or hamster BSR-
7 kidney cells, allowed efficient recovery of virus in the absence
f subsequent amplification due to re-infection. This approach may
herefore be of use in quantifying the effect of specific mutations
n viral proteins or RNA structures within the norovirus genome as
irus yield would be the direct result of a single round of virus
eplication only. Transfection of synthetic capped genomic RNA
esulted in yields of >4.5 × 105 per 35 mm dish (1.5 × 106 cells)
Fig. 2). Transfection of synthetic capped subgenomic RNA resulted
n robust protein production in 293T cells only (Fig. 2), however
pon longer exposure of the western blot displayed in Fig. 2, low

evels of VP2 could also be detected in BSR-T7 cells (data not
hown). Interestingly, co-transfection of viral genomic and varying
mounts of subgenomic RNA did not increase virus yield in either
ell type (data not shown).

By combining RNA capped using the Vaccinia virus capping
nzyme with efficient transfection of the murine macrophage cell
ine RAW 264.7, it was possible to develop an efficient method of
ecovery of MNV in permissive cells. Optimized transfection con-
itions were determined using the Neon transfection system from

nvitrogen (Fig. 3). In contrast to the majority of electroporation
ystems which use a cuvette based chamber, the Neon transfec-
ion system is based on the use of a pipette tip chamber which
roduces a more uniform electric field, resulting in higher cell via-
ility (Kim et al., 2008). Using this system, transfection efficiencies
f >95% were achieved and optimal condition for the recovery of
NV determined (Fig. 3A). Transfection of >1 �g of RNA resulted in

ubstantial cytopathic effect at early times post-transfection, with
educed viral yield (Fig. 4). The observed increased cytopathic effect
s most likely due the substantial over-expression of the viral pro-
eins, prior to viral RNA replication, which resulted in premature
ell death and reduced virus yield. In contrast, transfection of ∼1 �g
f capped viral RNA resulted in >109 TCID50 72 h post-transfection
Fig. 5), comparable to titres obtained following virus infection.
nterestingly, as observed in 293T and BSR-T7 cells, co-transfection
f the viral subgenomic RNA did not result in increased virus yield
nd in most cases produced substantially lower virus yields (data
ot shown).

In conclusion, a new method for norovirus reverse genetics was
eveloped, which allows the rapid and robust recovery of geneti-

ally defined viruses in tissue culture. This method, when combined
ith mutational analyses, provides an additional tool with which to
ncover the molecular mechanisms of norovirus translation, repli-
ation and ultimately virulence, aiding understanding of this group
f significant pathogens.
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