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We study a variational-like inequality problem for a multifunction. A certain 
relevant complementarity problem is defined. We establish some existence theorems 
for the above two problems. An application to convex mathematical programming 
is also shown. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

Given a set S in R” and a multifunction (i.e., a point-to-set map) V from 
R” into itself, the generalized variational inequality (see, e.g., [ 11) is to find 
X E S, j E V(X) such that 

(j,x-X)30 for all x E S. (1) 

We introduce an extension of (1) as follows: Let S and C be subsets of R” 
and R p, respectively. Given two maps M: S x C --+ R” and ‘I: S x S + R”, 
and a point-to-set map V: S + C, find X E S, j E V(X) such that 

(WX Y), rl(x, 4 > 2 0 for all x E S. (2) 

We call it the generalized variational-like inequality problem. If 
~(x, X) = x - 2, then (2) reduces to the problem of finding X E S, j E V(X) 
such that 

(M(2, j), x-X) 20 

which is a special case of (1). 

for all x E S, (2’) 

Let K be a closed convex cone in R”. The polar cone K* of K is the set 

{l E R": (r, x) B 0 for each x E K}. Let C be a closed convex subset of RP. 
Given a map M: Kx C-R” and a point-to-set map V: K+ C, the 
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generalized complementarity problem related to (2’) is to find x E R”, 
YE V(x) such that 

x E K, Mb, Y) E K*, (Wx, Y), x> = 0. (3) 

If M(x, y) = y, then (3) becomes the generalized complementarity problem 
studied by Saigal [2]. Problem (3) is the mathematical form for a variety 
of problems in mathematical programming, game theory, economics, 
mechanics, etc., hence its importance. 

Our first main result, Theorem 2, is an existence theorem for (2). As a 
consequence of Theorem 2 we obtain, in Section 2, several other existence 
theorems for (2) and (2’). Section 3 is devoted to establishing some fairly 
general existence results for (3). Finally, in Section 4, we apply some 
existence results of Section 2 to the existence of solutions to two specific 
problems: (a) a nonlinear programming problem (P), and (b) a saddle 
point problem (SPP), both associated with a function L(x, y) defined for 
(x, y) E Xx D, where X and D are sets in R” and RP, respectively. 

(P): MincX,yjE u Ux, Y), where 

U= {(x, y): x E X, y E D, L(x, y) = mEa; L(x, v)}, 

(SPP): Find x* E X, y* ED such that 

L(x*, y) < L(x*, y*) d L(4 Y*) 

for all xEXand yED. 

2. A VARIATIONAL-LIKE INEQUALITY 

Given a point-to-set map l’ from R” into itself, I/ is said to be upper 
semicontinuous if {x”} converging to x, and ( y”}, with y’~ V(x”), con- 
verging to y, implies y E V(x). For a set C in RP, we denote by P(C) the 
collection of all compact convex subsets of C. 

THEOREM 1. Let S be a compact convex set in R”, and C a closed convex 
set in RP. Let V: S + P(C) be upper semicontinuous and cp: S x Cx S+ R 
continuous. Suppose that 

(i) cp(x, y, x) 3 0 for each x E S, 

(ii) for each fixed (x, y) E S x C, cp(x, y, u) is quasiconvex in u E S. 

Then there exist X E S, J E V(X) such that 

cp(K Y, x) 2 0 forall xES 
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ProoJ For each (x, y)~ R” x RP, let 

Since cp is quasiconvex in U, X(X, y) is a convex set. It is easy to show that 
n is an upper semicontinuous map. By [3, Theorem 3, p. 1 lo], the set 
V(S) = UX~S I’(x) is a compact subset of C. Hence the convex hull of V(S), 
denoted by H, is a compact convex set. Consequently, the point-to-set map 
F: S x H -+ Sx H, defined by F(x, y) = (rc(x, y), V(x)), is nonempty, con- 
vex valued and upper semicontinuous. Now invoking Kakutani fixed-point 
theorem [4], we get (X, j)eF(‘(X, j). Hence, YE V(X) and USE X(X, j), or for 
each XE S, cp(X, j, x) 2 cp(X, j, X) B 0. This completes the proof of the 
theorem. 

Theorem 1 gives immediately the first existence theorem for (2). 

THEOREM 2. Let S, C, V be as in Theorem 1, and let the maps 
M: S x C -+ R” and I]: S x S + R” be continuous. Suppose that 

(i) n(x,x)=Ofor each XES, 

(ii) ,for each fixed (x, y) E S x C, the function 

(M(x, Yh Il(u, xl > is quasiconvex in 24 E S. 

Then there exist X E S, j E V(X) such that 

(M(%, j), q(.x, X))>O forall XES. 

Proof The proof follows directly from Theorem 1 by setting 
d4 Y, u) = <M(x, Y), rl(% xl>. 

COROLLARY 1. Let S, C, V, M be as in Theorem 2. Then there exist 
X E S, ji E V(X) which satisfy (2’). 

Proof Define ~(u, x) = u -x for all u, x E S, and apply Theorem 2. 

The following result is an extension of Theorem 2 to noncompact sets. 

THEOREM 3. Let S and C be closed convex sets in R” and R p, respec- 
tively, and let V, M, n be as in Theorem 2. Suppose that 

(i) ~(x, x) = 0 for each x E S, 

(ii) for each fixed (x, y) E S x C, the function 

(Wxt YX rl(u, xl> is convex in u E s. 
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If there is a ii E S and a constant r > [liilj such that 

max (Mb, Y), ~(6 xl > 6 0 YE V(x) (4) 

for all x E S with llxll = r, then there exists a solution to (2). 

Proof. Let S,= {XE S: llxll < r}. Since S, is compact and convex, by 
Theorem 2 we have X E S,, j E V(X) such that 

(w% Y), ?(X, -3) 30 for all xES,. (5) 

We distinguish two cases. 

Case 1. IlXll = r. Since iiE S,, it follows from (4) and (5) that 
(M(Z, j), g(ii, X)) = 0. Now, let x E S and choose 0 < A < 1 small enough 
so that w=Ilx+(l-1); lies in S,. Then, by the convexity of 
(M-f, Y), ?(U, 4 >, 

and consequently, (X, j) satisfies (2). 

Case 2. llX\l cr. Given x E S, again we can choose 0 < A< 1 small 
enough so that w’ = Ax + (1 - 1)X lies in S,. Then, by proceeding as in 
Case 1, it can be shown that (X, j) satisfies (2). 

The following corollary, obtained as a consequence of Theorem 3, 
generalizes Theorem 2.3 of More’ [S) to multifunctions. 

COROLLARY 2. Let S, C, V, A4 he as in Theorem 3. Zf there is a U E S and 
a constant r> IlUll such that 

max (M(x, y), U-X) 60 
1’s V(x) 

(6) 

for each x E S with llxll = r, then there exists a solution to (2’). 

We now introduce the following generalization of monotone functions. 
Let q: S x S + R" be such that ~(x, x) = 0 for each XE S. Then, a mul- 
tifunction V: S -+ R” is said to be v]-monotone if 

whenever y E V(x), u E V(u). Note that this definition reduces to the usual 
definition of monotone functions [6] if ~(u, x) = u - x. 
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The following gives an existence result for (2) under q-monotonicity of 
the map M. 

THEOREM 4. Let S, C, V, M, q be as in Theorem 3, and let the map 
x H { M(x, y): y E V(x)} be q-monotone on S. Zf there exist UE S, VE V(U) 
such that 

lim (M(ti, V), q(x, ii)) > 0, (7) 
l/-~/l + cc .x E s 

then (2) has a solution. 

Proqf: nypothesis (7) implies that there is an r> /Ull such that 
(Mu, 3, v(x, 4) > 0 f or all x E S with llxll = r. Hence, for any such x, it 
follows from the q-monotonicity of M that 

(M(x, Y), rl(& xl> 6 -(WC V), dx, 4) <O 

for all y E V(x). This shows that condition (4) of Theorem 3 is satisfied. 
Therefore, (2) has a solution. 

THEOREM 5. Let S be a pointed closed cone in R”, and let C, V, M be as 
in Theorem 3. Let the map xw {M(x, y): YE V(x)} be monotone on S. If 
there is a UE S and a VIZ V(U) such that M(ti, V) E int S*, then (2’) has a 
solution. 

Proof: Since M(i& V) E int S*, the set D = {x E S: (M(zi, U), x - ii) 6 0} - - 
is compact, and consequently, for all x E S\D, (M(u, u), x - U) > 0. This - - 
implies that there is a r > lIti such that (M(u, u), x - U) > 0 for all XE S 
with llxll = r. Then it follows from the monotonicity of M that 

(M(x,y),x-ti)a(M(u,v),x-u)>O 

for all y E V(x) whenever x E (x E S: llxll = r}. Hence we can conclude that 
condition (6) of Corollary 2 is satisfied, and the proof is complete. 

3. GENERALIZED COMPLEMENTARITY PROBLEM 

It is known (see, e.g., [7]) that if S= K, then the solution sets of (2’) and 
(3) are the same. Corollary 2 now stated in the terminology of the com- 
plementarity problem (3), gives 
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THEOREM 6. Let M: K x C + R” be continuous, and V: K + P(C) upper 
semicontinuous. Zf there is a ii E K and a constant r > llU\l such that 

max (M(x, y), ii - X) < 0 
ye W) 

for each x E K with llxll = r, then (3) has a solution. 

Consider a special form of M(x, y) given by M(x, y) = F(x) + y, where 
F: K-t R”. Then (3) assumes the form: Find XE R”, YE V(x) such that 

x E K, F(x) + y E K*, (F(x)+y,x)=O. (3’) 

It is noted that the Kuhn-Tucker stationary point problem for a number of 
nondifferentiable mathematical programming problems such as those 
studied in [S, 91 can be projected into the form of (3’). 

Our next result, Theorem 7, is on the existence of a solution to (3’). 

THEOREM 7. Let K be pointed, and dE int K*. Let C be a compact con- 
vex set in RP. Let F: K + R” be continuous, and V: K -+ P(C) upper semicon- 
tinuous. If G(x) = F(x) - F(0) is positively homogeneous of some degree fl 
and the system 

G(x) + tdE K*, O#XEK, 

(G(x) + td, x) = 0, t>O 
(8) 

is inconsistent, then (3’) has a solution. 

Proof For any real a > 0, the set K, = (x E K: dTx < a} is nonempty, 
compact and convex, and F(x) + y is continuous on K, x C. By Corollary 1 
there exist xa E K,, y” E V(x*) such that 

(F(x”) + y”, xa> = Xe; (F(x’) + y”, x), 
1 

and applying the duality theory of linear programming, we get a scalar r’ 
such that 

F(xa) + y’ + 5”dE K*, (9) 

(F(x”) + y” + 5’d, x=) = 0, (10) 

5”>,0, (cz - dTx”) r” = 0. (11) 

If t” = 0 for some a, then (x’, y’) constitutes a solution to (3’). We 
establish by contradiction that there is at least one c1 with <” = 0. Assume, 
thus, that 5” >O for each 0 <U < co. By (10) we have dTx’ = LX Let 
un = xoL/cq and then drum = 1 and ucL E K. Now, the set of points (zP, y”) is in 
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the compact set {U E K: 8~ = 1 } x C, and therefore, there is a convergent 
sequence of (u’, y”) with c( + cc which converges to some (u, y) in the 
compact set. Let this sequence be one with u E { cli}it r, and be denoted by 
{tui7 Yi))ierr where r is an index set. Since G is positively homogeneous of 
degree fl, we have from (10) and (9) respectively, 

O> -(~r,)-~t’= (G(d), d) + (LX~)-~(F(O)+ y’, d), 

G(d) + (ci,)-p(F(0) + yi) + (q) -“i”‘de K* 

for all ie f. By taking the limit, we obtain O> (G(u), u) = -t (say) and 
G(U) + td E K*. Since d’u = 1, we also have (G(U) + td, u ) = 0. This implies 
that (u, t) is a solution to the system (8) which contradicts the assumption 
of the theorem. Thus the theorem follows. 

Theorem 7 extends a result of Karamardian [ 10, Theorem 3.11. In [lo], 
the hypothesis concerning the regularity of the function involved is similar 
to our hypothesis requiring the inconsistency of the system (8). 

4. APPLICATIONS 

In [ 111, Hanson introduced a class of differentiable functions which con- 
tains as a subclass the class of differentiable convex functions. As a par- 
ticular case, we consider the following class of functions: Let Ic/: S + R” be 
differentiable. Then rl/ is q-convex if there exists a continuous map 
?J: S x S + R” such that 

(i) q(x,x)=O for each XES, 
(ii) $(x) - $(u) 3 (V+(u), ~(x, u)) for all x, u E S. 

Note that the examples given in [ 11, p. 5471 are r]-convex functions. It is 
known that if Ic/ is convex on S, then V$ is monotone on S. In the same 
vein, we have here that V$ is q-monotone whenever ti is q-convex. 

Now, we associate with (SPP) the following variational-like inequality 
problem: Find x* E X, y* E Y(x*) such that 

where 

(VAX*, Y*), r(x, x*1> 20 for all x E X, (12) 

Y(x*) = { y E D: L(x*, y) = max ,5(x*, v)}. 
VED 

It is easily seen that if L(x, y) is q-convex in x E X for every fixed y E D, and 
if (x*, y*) is a solution of (12), then (x*, y*) is also a solution of (SPP). 
Further, it follows from a lemma of Mangasarian and Ponstein [ 12, 
Lemma 3.41 that any solution (x*, y*) of (SPP) is an optimal solution of 

409/124/l-6 
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(P). Hence, the question of the existence of solutions to (P) and (SPP) can 
be investigated via (12). Consequently, we have 

THEOREM 8. Let X be a closed convex set in R”, and D a compact convex 
set in RP. Suppose that L(x, y) is n-convex in x E X for every fixed y E D, 
and concave in y E D for every fixed x E X. Suppose also that for each fixed 
(x, y)~Xx D, (V,L(x, y), ~(u, x)) is convex in UEX. Zf there exist zip X, 
U E Y( ii) such that 

lim (V,L(U, V), q(x, U)) > 0, 
II-~11 - 00 .x t x 

then (SPP) has a solution, and hence, so does (P). 

Proof Since D is compact and convex, and L(x, y) is concave in y ED, 
Y(x) is compact and convex. It can be easily checked that the map Y is 
upper semicontinuous From the q-convexity of L, we have 

Lb, Y) - L(u, 0) 2 U-G v) - UK 0) 2 (V,L(u, VI, rl(x, U)>> 

L(u, 0) - L(x, Y) 2 UK Y) - L(x, y) 2 o?J(x, Y), rl(u, -x)>, 

for every YE Y(x) and v E Y(U), from which it follows that the map 
XH {V,L(x, y): YE Y(x)} is q-monotone on X. Hence, by Theorem 4, (12) 
has a solution, and consequently, (SPP) and (P) have solutions. 

By strengthening the convexity requirements on L, we obtain the next 
existence result. 

THEOREM 9. Let X, D be as in Theorem 8, and let L(x, y) be con- 
vex-concave on Xx D. If there is a U E X and a 17 E Y(U) such that 

lim (V,L(U, V), x - U) > 0, 
II rll + m 

XE x 

then there exists a solution to (SPP), and hence an optimal solution to (P). 

Proof This is the special case of Theorem 8 in which ~(x, U) = x - u for 
all x, 24 E X. 
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