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In this paper, by using bifurcation method, we successfully find the Fornberg–Whitham
equation

ut − uxxt + ux = uuxxx − uux + 3uxuxx,

has a type of traveling wave solutions called kink-like wave solutions and antikink-
like wave solutions. They are defined on some semifinal bounded domains and possess
properties of kink waves and anti-kink waves. Their implicit expressions are obtained.
For some concrete data, the graphs of the implicit functions are displayed, and the
numerical simulation is made. The results show that our theoretical analysis agrees with
the numerical simulation.

Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the exact solutions for the nonlinear partial differential equations can help people know deeply the
described process. So an important issue of the nonlinear partial differential equations is to find their new exact solutions.
Traveling wave solution is an important type of solution for the nonlinear partial differential equations and many nonlinear
partial differential equations have been found to have a variety of traveling wave solutions. For instances, the well-known
Korteweg–de Vries equation

ut − 6uux + uuxxx = 0 (1.1)

has solitary wave solutions and its solitary waves are solitons [1]. A KdV-like equation

ut + a
(
1 + bun)

unux + δuxxx = 0 (1.2)

has some kink wave solutions [2]. Its kink wave solution u(ξ) (ξ = x−ct) was defined on (−∞,+∞), and limξ→−∞ u(ξ)= A,
limξ→∞ u(ξ) = B , where A and B are two constants and A �= B . The Camassa–Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx (1.3)

has peakons, cuspons, stumpons, composite wave solutions [3]. It also has compactons [4]. The Degasperis–Procesi equation

ut − uxxt + 4uux = 3uxuxx + uuxxx (1.4)
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has a multitude of peculiar wave solutions: peakons, cuspons, composite waves, and stumpons [5]. The Kuramoto–
Sivashinsky equation

ut + uux + uxx + uxxxx = 0 (1.5)

has periodic and solitary solutions [6]. In [7], Liu, Li and Lin found a new type of traveling wave solutions for the Camassa–
Holm equation, which are defined on some semifinal bounded domains and possess properties of kink waves or anti-kink
waves. They called them kink-like waves and antikink-like waves. Later, Guo and Liu [8] found the CH-γ equation

ut + c0ux + 3uux − α2(uxxt + uuxxx + 3uxuxx) + γ uxxx = 0, (1.6)

posses kink-like waves when α2 > 0. Tang and Zhang [9] showed the CH-γ equation (1.6) also has kink-like wave solutions
even when α2 < 0. Chen and Tang [10] showed that the Degasperis–Procesi equation (1.4) has such type of traveling wave
solutions. Recently, Liu and Yao [11] found the following generalized Camassa–Holm equation:

ut + 2kux − uxxt + auux = 2uxuxx + uuxxx (1.7)

also posses kink-like wave solutions.
We are motivated to seek kink-like wave and antikink-like wave solutions for the Fornberg–Whitham equation

ut − uxxt + ux = uuxxx − uux + 3uxuxx. (1.8)

To our knowledge, such type of traveling wave solution has never been found for the Fornberg–Whitham equation. Eq. (1.8)
was used to study the qualitative behaviors of wave-breaking [12]. It admits a wave of greatest height, as a peaked limiting
form of the traveling wave solution [13], u(x, t) = A exp( 1

2 |x − 4
3 t|), where A is an arbitrary constant.

The remainder of the paper is organized as follows. In Section 2, we state the main results which are implicit expressions
of the kink-like wave and the antikink-like wave solutions. In Section 3, we give the proof of the main results. In Section 4,
we make the numerical simulation of the kink-like and the antikink-like waves. A short conclusion is given in Section 5.

2. Main results

We state our main result as follows.

Theorem 1. For given constant c, let

ξ = x − ct, (2.1)

ϕ±
0 = c − 1 ±

√
(c − 1)2 − 2g, (2.2)

g1(c) = (c − 1)2

2
, (2.3)

g2(c) = (c − 1)2 − 1

2
. (2.4)

(1) If g < g2(c), then Eq. (1.8) has two kink-like wave solutions u = ϕ1(ξ) and u = ϕ3(ξ) and two antikink-like wave solutions
u = ϕ2(ξ) and u = ϕ4(ξ).

(2
√

ϕ2
1 + l1ϕ1 + l2 + 2ϕ1 + l1)(ϕ1 − ϕ−

0 )α1

(2
√

a1

√
ϕ2

1 + l1ϕ1 + l2 + b1ϕ1 + l3)α1

= β1e− 1
2 ξ , ξ ∈ (−∞, ξ1

0

)
, (2.5)

(2
√

ϕ2
2 + l1ϕ2 + l2 + 2ϕ2 + l1)(ϕ2 − ϕ−

0 )α1

(2
√

a1

√
ϕ2

2 + l1ϕ2 + l2 + b1ϕ2 + l3)α1

= β1e
1
2 ξ , ξ ∈ (−ξ1

0 ,∞)
, (2.6)

(2
√

ϕ2
3 + m1ϕ3 + m2 + 2ϕ3 + m1)(ϕ3 − ϕ+

0 )α2

(2
√

a2

√
ϕ2

3 + m1ϕ3 + m2 + b2ϕ2 + m3)α2

= β2e− 1
2 ξ , ξ ∈ (−ξ3

0 ,∞)
, (2.7)

and

(2
√

ϕ2
4 + m1ϕ4 + m2 + 2ϕ4 + m1)(ϕ4 − ϕ+

0 )α2

(2
√

a2

√
ϕ2

4 + m1ϕ4 + m2 + b2ϕ4 + m3)α2

= β2e
1
2 ξ , ξ ∈ (−∞, ξ3

0

)
, (2.8)

where
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l1 = 2

3

(
1 − 3c − 3

√
(c − 1)2 − 2g

)
, (2.9)

l2 = 2

3

[
1 − 4c + 3c2 − 3g + (3c + 1)

√
(c − 1)2 − 2g

]
, (2.10)

l3 = 4

3

[
2 − 5c + 3c2 − 6g + (3c + 2)

√
(c − 1)2 − 2g

]
, (2.11)

m1 = 2

3

(
1 − 3c + 3

√
(c − 1)2 − 2g

)
, (2.12)

m2 = 2

3

[
1 − 4c + 3c2 − 3g − (3c + 1)

√
(c − 1)2 − 2g

]
, (2.13)

m3 = 4

3

[
2 − 5c + 3c2 − 6g − (3c + 2)

√
(c − 1)2 − 2g

]
, (2.14)

a1 = 4
(
1 − 2c + c2 − 2g +

√
(c − 1)2 − 2g

)
, (2.15)

a2 = 4
(
1 − 2c + c2 − 2g −

√
(c − 1)2 − 2g

)
, (2.16)

b1 = −4

3
− 4

√
(c − 1)2 − 2g, (2.17)

b2 = −4

3
+ 4

√
(c − 1)2 − 2g, (2.18)

α1 = − 1 + √
(c − 1)2 − 2g

2
√

(c − 1)2 − 2g + √
(c − 1)2 − 2g

, (2.19)

α2 = −1 + √
(c − 1)2 − 2g

2
√

(c − 1)2 − 2g − √
(c − 1)2 − 2g

, (2.20)

β0
1 = (2

√
c2 + l1c + l2 + 2c + l1)(c − ϕ−

0 )α1

(2
√

a1

√
c2 + l1c + l2 + b1c + l3)α1

, (2.21)

β0
2 = (2

√
c2 + m1c + m2 + 2c + m1)(c − ϕ+

0 )α2

(2
√

a2

√
c2 + m1c + m2 + b2c + m3)α2

, (2.22)

β1 = ln
(2

√
a2 + l1a + l2 + 2a + l1)(a − ϕ−

0 )α1

(2
√

a1

√
a2 + l1a + l2 + b1a + l3)α1

, (2.23)

β2 = (2
√

b2 + m1b + m2 + 2b + m1)(b − ϕ+
0 )α2

(2
√

a2

√
b2 + m1b + m2 + b2b + m3)α2

, (2.24)

ξ1
0 = ln

(
β1/β

0
1

)
, (2.25)

ξ3
0 = ln

(
β0

2/β2
)
. (2.26)

a and b are two constants satisfying ϕ1(0) = ϕ2(0) = a, ϕ3(0) = ϕ4(0) = b, and ϕ−
0 < a < c < b < ϕ+

0 .
(2) If g2(c) � g � g1(c), then Eq. (1.8) has a kink-like wave solution u = ϕ1(ξ) of implicit form (2.5) and an antikink-like wave

solution u = ϕ2(ξ) of implicit form (2.6).

We will give the proof of this theorem in Section 3. Now we take a set of data and employ Maple to display the graphs
of u = ϕi(ξ) (i = 1,2,3,4).

Example 1. Taking c = 1 and g = −4 < g2(c) (corresponding to (1) of Theorem 1), it follows that ϕ−
0 = −2.82843,

ϕ+
0 = 2.82843, l1 = −6.99019, l2 = 15.5425, l3 = 50.8562, a1 = 43.3137, b1 = −12.647, α1 = −0.581712. Further, choosing

a = −1 ∈ (ϕ−
0 , c), we obtain ξ1

0 = 0.387475. We present the graphs of the solutions ϕ1(ξ) and ϕ2(ξ) in Fig. 1(a) and (b), re-
spectively. Meanwhile, we get m1 = 4.32352 and m2 = 0.457528, m3 = 13.1438, a2 = 20.6863, b2 = 9.98038, α2 = 0.40201.
Further, choosing b = 2 ∈ (c,ϕ+

0 ), we get ξ3
0 = 0.274787. The graphs of the solutions ϕ3(ξ) and ϕ4(ξ) are presented in

Fig. 1(c) and (d), respectively. The graphs in Fig. 1 show that ϕ1(ξ) and ϕ3(ξ) are kink-like waves and ϕ2(ξ) and ϕ4(ξ) are
antikink-like waves.
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(a) (b)

(c) (d)

Fig. 1. The graphs of ϕi(ξ) (i = 1,2,3,4) when c = 1, g = −4, a = −1, b = 2.

3. Proof of main results

Let u = ϕ(ξ) with ξ = x − ct be the solution for Eq. (1.8), then it follows that

−cϕ + cϕ′′′ + ϕ′ = ϕϕ′′′ − ϕϕ′ + 3ϕ′ϕ′′. (3.1)

Integrating (3.1) once we have

ϕ′′(ϕ − c) = g − cϕ + ϕ + 1

2
ϕ2 − (ϕ′)2, (3.2)

where g is the integral constant.
Let y = ϕ′ , then we get the following planar system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dϕ

dξ
= y,

dy

dξ
= g − cϕ + ϕ + 1

2 ϕ2 − y2

ϕ − c
,

(3.3)

with a first integral

H(ϕ, y) = (ϕ − c)2
[

y2 − (ϕ − c)2

4
− 2

3
(ϕ − c) − g − c + c2

2

]
= h, (3.4)

where h is a constant.
Note that (3.3) has a singular line ϕ = c. To avoid the line temporarily we make transformation dξ = (ϕ − c)dζ . Under

this transformation, Eq. (3.3) becomes⎧⎪⎪⎨
⎪⎪⎩

dϕ

dζ
= (ϕ − c)y,

dy

dζ
= g − cϕ + ϕ + 1

2
ϕ2 − y2,

(3.5)

Eq. (3.3) and Eq. (3.5) have the same first integral as (3.4). Consequently, system (3.5) has the same topological phase por-
traits as system (3.3) except for the straight line ϕ = c. Obviously, ϕ = c is an invariant straight-line solution for system (3.5).

Now we consider the singular points of system (3.5) and their properties. Note that for a fixed h, (3.4) determines a set
of invariant curves of (3.5). As h is varied (3.4) determines different families of orbits of (3.5) having different dynamical
behaviors. Let M(ϕe, ye) be the coefficient matrix of the linearized system of (3.5) at the equilibrium point (ϕe, ye), then

M(ϕe, ye) =
(

ye ϕe − c
)

ϕe − (c − 1) −2ye
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(a) (b)

Fig. 2. The sketches of orbits connecting with saddle points. (a) g < g2(c); (b) g2(c) � g � g1(c).

and at this equilibrium point, we have

J (ϕe, ye) = det M(ϕe, ye) = −2y2
e − (ϕe − c)

[
ϕe − (c − 1)

]
,

p(ϕe, ye) = trace
(
M(ϕe, ye)

) = −y2
e � 0.

By the theory of planar dynamical system (see [14]), for an equilibrium point of a planar dynamical system, if J < 0, then
this equilibrium point is a saddle point; it is a center point if J > 0 and p = 0; if J = 0 and the Poincáre index of the
equilibrium point is 0, then it is a cusp.

Since system (3.3) has the same topological phase portraits as system (3.5) except for the straight line ϕ = c. By investi-
gating the topological dynamics of system (3.5), we can obtain the following properties for system (3.3).

(1) If g < g2(c), then system (3.4) has two equilibrium points (ϕ−
0 ,0) and (ϕ+

0 ,0). They are saddle points and there is
inequality ϕ−

0 < c − 1 < c < ϕ+
0 . In this case, there are four orbits connecting with (ϕ−

0 ,0), we use l1
ϕ−

0
and l2

ϕ−
0

to denote

the two orbits lying on the right side of (ϕ−
0 ,0) (see Fig. 2(a)). Meanwhile, there are four orbits connecting with (ϕ+

0 ,0),
we employ l1

ϕ+
0

and l2
ϕ+

0
to denote the two orbits lying on the left side of (ϕ+

0 ,0) (see Fig. 2(a)).

(2) If g2(c) � g � g1(c), then system (3.4) has two equilibrium points (ϕ−
0 ,0), (ϕ+

0 ,0). (ϕ−
0 ,0) is a saddle point and

(ϕ+
0 ,0) is a center point or a degenerate center point. ϕ−

0 and ϕ+
0 satisfy that ϕ−

0 < c − 1 < ϕ+
0 < c. l1

ϕ−
0

and l2
ϕ−

0
are used

to denote the two orbits lying on the right side of (ϕ−
0 ,0) (see Fig. 2(b)).

(3) If g1(c) < g , then system (3.4) has no equilibrium point.
On the ϕ − y plane, the orbits l1

ϕ−
0

, l2
ϕ−

0
, l1

ϕ+
0

and l2
ϕ+

0
have the following expressions, respectively,

l1
ϕ−

0
: y = 1

2

(ϕ − ϕ−
0 )

√
ϕ2 + l1ϕ + l2

c − ϕ
, (3.6)

l2
ϕ−

0
: y = 1

2

(ϕ−
0 − ϕ)

√
ϕ2 + l1ϕ + l2

c − ϕ
, (3.7)

l1
ϕ+

0
: y = 1

2

(ϕ+
0 − ϕ)

√
ϕ2 + m1ϕ + m2

ϕ − c
, (3.8)

l1
ϕ+

0
: y = 1

2

(ϕ − ϕ+
0 )

√
ϕ2 + m1ϕ + m2

ϕ − c
, (3.9)

where ϕ−
0 and ϕ+

0 are in (2.2), l1 and l2 are in (2.9) and (2.10), m1 and m2 are in (2.12) and (2.13).
Assume that ϕ = ϕ1(ξ), ϕ = ϕ2(ξ), ϕ = ϕ3(ξ) and ϕ = ϕ4(ξ) on l1

ϕ−
0

, l2
ϕ−

0
, l1

ϕ+
0

and l2
ϕ+

0
, respectively and ϕ1(0) = ϕ2(0) = a,

ϕ3(0) = ϕ4(0) = b, where a and b are two constants, and a ∈ (ϕ−
0 , c), b ∈ (c,ϕ+

0 ). Substituting (3.6)–(3.9) into the first
equation of (3.3) and integrating along the corresponding orbits, respectively, we have

ϕ1∫
a

c − s

(s − ϕ−
0 )

√
s2 + l1s + l2

ds = 1

2

ξ∫
0

ds
(
along l1

ϕ−
0

)
, (3.10)

a∫
ϕ2

c − s

(ϕ−
0 − s)

√
s2 + l1s + l2

ds = 1

2

0∫
ξ

ds
(
along l2

ϕ−
0

)
, (3.11)

b∫
ϕ

s − c

(ϕ+
0 − s)

√
s2 + m1s + m2

ds = 1

2

0∫
ds

(
along l1

ϕ+
0

)
, (3.12)
3 ξ
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(a) (b)

(c) (d)

Fig. 3. The numerical simulations of integral curves of Eq. (3.2). (a) ϕ(0) = −1, ϕ′(0) = 2.217532085; (b) ϕ(0) = −1, ϕ′(0) = −2.217532085; (c) ϕ(0) = 2,
ϕ′(0) = 1.499467912; (d) ϕ(0) = 2, ϕ′(0) = −1.499467912.

ϕ4∫
b

s − c

(s − ϕ+
0 )

√
s2 + m1s + m2

ds = 1

2

ξ∫
0

ds
(
along l2

ϕ+
0

)
. (3.13)

Computing the above four integrals we obtain the implicit expressions of ϕi(ξ) as (2.5)–(2.8).
Meanwhile, suppose that ϕ1(ξ) → c as ξ → ξ1

0 , ϕ2(ξ) → c as ξ → −ξ2
0 , ϕ3(ξ) → c as ξ → −ξ3

0 , ϕ4(ξ) → c as ξ → ξ4
0 ,

then it follow from (3.10)–(3.13) that

ξ1
0 = ξ2

0 =
c∫

a

c − s

(s − ϕ−
0 )

√
s2 + l1s + l2

ds
(
along l1

ϕ−
0

)
, (3.14)

ξ3
0 = ξ4

0 =
c∫

b

s − c

(s − ϕ+
0 )

√
s2 + m1s + m2

ds
(
along l2

ϕ+
0

)
. (3.15)

Computing the above two integrals, we get the expressions of ξ1
0 and ξ3

0 as in (2.25) and (2.26). The proof is finished.

4. Numerical simulations

In this section, we will simulate the planar graphs of the kink-like and the antikink-like waves.
From Section 3, we see that in the parameter expressions ϕ = ϕ(ξ) and y = y(ξ) of the orbits of system (3.3), the graph

of ϕ(ξ) and the integral curve of Eq. (3.2) are the same. In other words, the integral curves of Eq. (3.2) are the planar
graphs of the traveling waves of Eq. (1.8). Therefore, we can see the planar graphs of the kink-like and the antikink-like
waves through the simulation of the integral curves of Eq. (3.2).

Example 2. Take the same data as Example 1, that is c = 1, g = −4, a = −1, b = 2. Let ϕ = a = −1 in (3.6) and (3.7), then
we can get y ≈ 2.217532085 or y ≈ −2.217532085. And let ϕ = b = 2 in (3.8) and (3.9), then we obtain y ≈ 1.499467912 or
y ≈ −1.499467912. Thus we take the initial conditions of Eq. (3.2) as follows: (i) Corresponding to l1

ϕ−
0

we take ϕ(0) = −1

and ϕ′(0) = 2.217532085. (ii) Corresponding to l2
ϕ−

0
we take ϕ(0) = −1 and ϕ′(0) = −2.217532085. (iii) Corresponding to l1

ϕ+
0

we take ϕ(0) = 2 and ϕ′(0) = 1.499467912. (iv) Corresponding to l2
ϕ+

0
we take ϕ(0) = 2 and ϕ′(0) = −1.499467912.

Under each set of initial conditions we use Maple to simulate the integral curves of Eq. (3.2) as Fig. 3. Comparing Fig. 1
with Fig. 3, we can see that the graphs of ϕi(ξ) (i = 1,2,3,4) are the same as the simulation of integrals curve of Eq. (3.2).
This implies that our theoretic results agree with the numerical simulations.
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5. Conclusion

In this paper, we find new bounded waves for the Fornberg–Whitham equation (1.8). Their implicit expressions are
obtained in (2.5)–(2.8). From the graphs (see Fig. 1) of the implicit functions and the numerical simulations (see Fig. 3)
we see that these new bounded solutions are defined on some semifinal bounded domains and possess properties of kink
waves and anti-kink waves.
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