
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Water Resources and Industry

Water Resources and Industry 7-8 (2014) 38–48
http://d
2212-37
(http://c

n Corr
5156917

E-m
journal homepage: www.elsevier.com/locate/wri
Modeling of monthly rainfall and runoff of Urmia
lake basin using “feed-forward neural network”
and “time series analysis” model

Jamileh Farajzadeh a,n, Ahmad Fakheri Fard b, Saeed Lotfi c

a East-Azarbaijan Regional Water Company, Tabriz, Iran
b Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
c Ministry of Energy, Tehran, Iran
a r t i c l e i n f o

Article history:
Received 21 April 2014
Received in revised form
29 September 2014
Accepted 5 October 2014

Keywords:
Time series forecasting
Feed-forward neural network
ARIMA model
Flow coefficient regime
Urmia lake basin
x.doi.org/10.1016/j.wri.2014.10.003
17/& 2014 The Authors. Published by Elsev
reativecommons.org/licenses/by-nc-nd/3.0

esponding author at: Water Programming
737, Tabriz, Iran. Tel.: þ98 411 36698410.
ail address: farajzadeh@azarwater.ir (J. Fara
a b s t r a c t

Urmia lake basin located in northwestern Iran is the second largest
saline lake in the world. Due to many reasons i.e. climate changes,
several dam constructions, building a bridge across the Lake, extra
agricultural consumption and improper management of water
resources, the water level of the lake has been decreased since
1997 and thousand hectares of emerged salty land has made
numerous ecological and environmental problems. Therefore, an
accurate forecast of the entrance runoff to the lake is important in
managing the river flow and water transfer within basins. There
are various methods for time-series based forecasting; in the
presented study Feed-forward Neural Network and Autocorrela-
tion Regressive Integrated Moving Average (ARIMA) models were
applied to forecast the monthly rainfall in Urmia lake basin. The
results showed that the estimated values of monthly rainfall
through Feed-forward NN were close to ARIMA model with
coefficient of correlation 0.62 and the root mean square error of
12.43 mm over the 6 years test period; then rainfall amount were
predicted for a 6-year period starting from 2012 (2012–2017).
Using the runoff coefficient regime which was calculated from
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parallel data of rainfall over the basin and resulted runoff for the
period of 39 years, the future runoff were obtained through
predicted rainfall over that period.

& 2014 The Authors. Published by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Urmia lake with its previous lake area of approximately 5000–6000 km2, had a crucial socio-
economic and ecological role in the Northwestern part of Iran. But during the past 15 years water level
has been decreased up to 5 m. Changes occurred in lake inflows due to the climate changes,
overutilization of water resources, dam constructions and reduction of precipitation over the lake
basin are the main factors which reduce the lake water level [13]. The most important factor in
disruption of system inflow and outflow balance is the river discharge into the lake. A great
percentage of inflows to the lake are through the rivers in comparison with rainfall over the lake and
groundwater. Some detailed studies are required to understand the amount of rainfall over the lake
basin in the coming years for the purpose of inflow estimating through rivers to the Lake.

Several techniques which have been used for rainfall forecasting since past century were basically
linear, conceptual and statistical models. One of these popular and frequently used models was ARIMA
model [16,23,17,28]. Weesakul and Lowanichchai [30] used ARIMA model for annual rainfall
forecasting at 31 rainfall stations in Thailand. Mahsin et al. [20] used seasonal ARIMA model for
monthly rainfall forecasting in Dhaka Division of Bangladesh.

In recent two decades, Artificial Neural Networks have become a valuable method for nonlinear
phenomenon modeling i.e. rainfall–runoff modeling [1,26,6,8], reservoir inflow forecasting [22],
stream flow prediction [5,7,19,25,18], sea level prediction [15], water level fluctuations [4,29] and
rainfall prediction [27,3,11,2,10,9,21]. Based on these research outcomes ANNs could be appropriate
method to simulate and forecasting.

Hung et al. [14] compared feed-forward neural network model with a simple persistent model for
75 rain gauge stations’ hourly data in Bangkok, Thailand. They concluded that a generalized Feed-
forward NN model using hyperbolic tangent transfer function achieved the best rainfall generalization
with lead times varying from 1 to 3 h ahead. Moustris et al. [24] compared ANN with classical
statistical methods at four meteorological stations in Greece in order to forecast the monthly mean
and cumulative precipitation totals within a period of the next four consecutive months. They
concluded that the ability of neural networks as a precipitation predictive tool seemed to be quite
satisfactory. In the present work the Feed-forward NN and ARIMA models were applied for rainfall
forecasting in Urmia lake basin and flow coefficient regime was used to estimate the entrance surface
runoff to the lake.
2. Materials and methods

2.1. Study area description and problems

Urmia lake basin is located in northwest of Iran limited in 441 070E to 471 530E longitude and 351
400N to 381 300N latitude with total area of about 52,679 km2 (Fig. 1). Urmia lake is the largest lake in
Iran and one of the world’s salt-saturated lakes that has significant role in moderating the climate of a
vast area containing East and west Azarbaijan and Kurdistan provinces.

According to 39-year period of daily precipitation data (1973 to 2011) the annual mean
precipitation over the basin is 352 mm. The annually increasing domestic, industrial and agricultural
consumes as well as groundwater feeding along the river which were supplied through the river flow



Fig. 1. Urmia lake basin with rivers network and involved provinces.
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caused the significant reduction in discharge to the lake. Having significant changed during the past
15 years (1997–2011) the lake level has been reduced from 1276 m to 1271.3 m approximately up to
5 m which was caused the lake surface to be reduced from 5400 to 3000 km2; so the large salty area
resulted from the lake recession, motivated numerous ecological and environmental problems, i.e. salt
movement from the lake toward agricultural areas and significantly reduction of Artemia population
as an important creature of lake feeding thousands of local and migratory birds.
2.2. Brief theory of models used in the study

2.2.1. Autocorrelation regressive integrated moving average (ARIMA)
Combination of deterministic, stochastic and seasonal properties in a system causes the system to

follow the ARIMA model. In a system, deterministic or memory properties are the sequentially
relation of events, stochastic properties come from instantaneous climate shocks and seasonality is
the periodically repetition of events. So the rainfall–runoff system in a catchment with storage
properties which includes snow, groundwater and lake storage, similarity in events and basin
morphology could be analyzed by ARMA model. The general ARMA(p, q) model is:

zt ¼ ∑
p

j ¼ 1
φj zt� j– ∑

q

j ¼ 0
θj εt� j ð1Þ

where εt� j is lagged white noise by j and θj, φj are model’s parameters that indicate participation of
the previous events in actual event. According to seasonality order d, the ARIMA model could be
established by differencing the seasonal data d times. I.e. for d¼1 the differenced data is:

ut ¼ zt�zt�w ð2Þ
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w is the differenced time period and for d¼2 data converted to:

yt ¼ ut�ut�w ð3Þ
In fact the ARIMA model is ARMA using differenced data.

2.2.2. Feed-forward neural network
Artificial Neural Network has been inspired from billions of interconnected neurons in human

brain based on a mathematical configuration. It has been proven that ANN could be a better efficient
alternative for traditional methods for modeling the nonlinear time series. Neural network must be
able to greatly map the data set of numeric inputs to the set of numeric targets. The applied network is
a two-layer Feed-forward with sigmoid hidden and linear output neurons. This network was trained
with Levenberg–Marquardt backpropagation (LMBP) algorithm as the fastest method for training
moderate sized Feed-forward Neural Networks (up to several hundred weights). This algorithm uses
the approximate Hessian matrix in the weight update procedure as follows:

xk þ 1 ¼ xk� Hþμ I½ ��1 g ð4Þ
where H¼ JT J denotes the approximate Hessian matrix, μ is a small scalar that controls the learning
process, I is the identity matrix, g ¼ JT e computes the gradient, J is the Jacobian matrix that contains
first derivatives of the network errors with respect to the weights and biases, and e is residual error.
The LMBP algorithm is used to train the proposed network model [12]. In this research neural network
with LMBP was applied for prediction of monthly rainfall using MATLAB software.
3. Results and discussion

3.1. Rainfall, runoff and flow coefficient

The monthly rainfall data of 228 stations located inside and outside of Urmia lake basin as well as
the monthly flow data of 18 hydrometric stations located around the lake were used to analyze and
model the rainfall–runoff relationship. According to Fig. 2 the average of annual rainfall and flow time
series were abruptly reduced since 1997 as the average rainfall reduced from 358 to 342 mmwhereas
the average of flow reduced from 4.8 to 2.2 CBM per year.

Since precipitation in warm months of the year is not sufficient enough to compensate the various
gross water requirements mainly in land irrigation, some small and large dams have been built on the
main rivers to store water during wet seasons to supply these needs. It seems the constructed dams
have a great role in reducing the level of lake water (Fig. 3).

Runoff coefficient is a key parameter in determining the amount of runoff generated from rainfall
in a basin which can be calculated in different time period from short (the moment) to long (annual)
terms. In this study, the regime of runoff coefficient over the Urmia lake basin was obtained through
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Fig. 2. Annual precipitation variations over the Lake Basin and annual entrance surface runoff variations to Urmia lake.
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Fig. 3. Monthly precipitation regime and gross water requirement in Urmia lake basin.
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Fig. 4. Relations between annual precipitation and surface runoff in each month.
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the slope of rainfall–runoff charts for each month according to Figs. 4 and 5. Fig. 5 shows the monthly
regime of runoff coefficients.

The runoff data calculated through runoff coefficient regime were compared with observations and
obtained correlation coefficient was 0.76.
3.2. Prediction of rainfall and runoff

In this study, 27 years monthly rainfall data set picked up from a data set of 39 years as input and
the same set lagged by 6 years, as output were used in a two-layer Feed-forward Network assigning 10
sigmoid hidden neurons selected through trial and error procedure. For training, validation and
testing of Feed-forward NN model, 70, 15 and 15 percent of data were used; whereas coefficients of
correlationwere obtained 91, 80 and 74 percent, respectively. The ending 6 years data set were used to
compare the observed and calculated set (Fig. 6).

In this study we also used Box–Jenkins methodology to build ARIMA model for 33 years monthly
rainfall data. The model of ARIMA (2,0,0)(4,1,2)12 was found to be proper to forecast the monthly
rainfall for the remaining 6 years data set (Fig. 6).

Fig. 6 shows the plot of predicted vs. observed values of the monthly rainfall data from 2006 to
2011 using both Feed-forward NN and ARIMA procedures. Monthly runoff was computed by use of
runoff coefficient and monthly rainfall predicted from Feed-forward NN and ARIMA models and also
directly through Feed-forward NN and ARIMA models during the 72 months testing period (Fig. 7).

Two different types of statistical measures were used to analyze the coordination between
forecasted and actual rainfall during the testing period. These measures include the Root Mean Square
Error (RMSE) and the Mean Absolute Error (MAE) to examine the relative accuracy of both models for



0
100
200
300
400
500
600
700
800

12 24 36 48 60 72

Observed Runoff 
Feed-forward NN Predicted
From Feed-forward NN Based Predicted Rainfall
ARIMA Predicted
From ARIMA Based Predicted Rainfall

Fig. 7. Comparison of observed runoff and runoff obtained from rainfall predicted through Feed-forward NN and ARIMA
methods.

Table 1
Comparative performance of feed-forward NN and ARIMA techniques for monthly rainfall test data set and monthly calculated
runoff (a) and monthly runoff test data set (b).

(a)

Techniques Error measures for monthly Error measures for monthly

Rainfall test data set Calculated runoff

R RMSE (mm) MAE (mm) R RMSE (mm) MAE (mm)

Feed-forward NN 0.663 21.07 14.03 0.754 3.92 2.55
ARIMA (2,0,0)(4,1,2)12 0.654 21.4 14.64 0.75 3.76 2.35

(b)

Techniques Error measures for monthly

Runoff test data set

R RMSE (mm) MAE (mm)

Feed-forward NN 0.465 8.4 4.35
ARIMA (2,1,2)(4,0,0)12 0.784 4.35 2.56
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Fig. 8. To extend monthly runoff for 6 years 2012 to 2017.
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monthly rainfall as represented by Eqs. (5) and (6).

RMSE ¼ ∑
M

j ¼ 1
PRðjÞ�ARðjÞð Þ2= M

 !1=2

ð5Þ
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MAE¼ 1
M

∑
M

j ¼ 1
PRðjÞ�ARðjÞj
�� ð6Þ

where PRðjÞ and ARðjÞ are the predicted and actual rainfall, respectively; M is the number of the
months. Table 1 shows the estimated errors for monthly rainfall test data set as well as for monthly
calculated runoff.
Residual Plots for C1

60300-30

0.999
0.99

0.9

0.5

0.1

0.01
0.001

Residual

Pr
ob

ab
ili

ty

806040200

60

40

20

0

-20
R

es
id

ua
l

4530150-15-30

100

75

50

25

0

Residual

Fr
eq

ue
nc

y

350300250200150100501

60

40

20

0

-20

Observation Order

R
es

id
ua

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Fitted Value

Residual Plots for C1

3020100-10
Residual

Pr
ob

ab
ili

ty

604530150

30

20

10

0

-10

Fitted Value

R
es

id
ua

l

24181260-6-12

160

120

80

40

0

Residual

Fr
eq

ue
nc

y

350300250200150100501

30

20

10

0

-10

ObservationOrder

R
es

id
ua

l

Normal Probability Plot Versus Fits

Histogram Versus Order

0.999
0.99

0.9

0.5

0.1

0.01
0.001

Fig. 9. The probability density function of rainfall (a) and runoff (b).



60544842363024181261

Lag

Lag

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

A
ut

oc
or

re
la

tio
n

ACF of Residuals for C1
(with 5% significance limits for the autocorrelations)

ACF of Residuals for C1
(with 5% significance limits for the autocorrelations)

60544842363024181261

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

A
ut

oc
or

re
la

ti
on

Fig. 10. Auto correlation function of errors (white noise) for rainfall (a) and runoff (b).

J. Farajzadeh et al. / Water Resources and Industry 7-8 (2014) 38–4846
According to Table 1 it can be revealed that the predicted value of monthly rainfall by Feed-forward
NN are almost closer to those predicted from ARIMA (2,0,0)(4,1,2)12; whereas the predicted runoff
through ARIMA (2,1,2)(4,0,0)12 procedure could provide better outcomes than those predicted from
Feed-forward NN model. Fig. 8 shows the estimated runoff for 6 years 2012 to 2017.

To verify the goodness of fit of predicted rainfall and runoff from ARIMA as well as Feed-forward
NN models for normality of errors, the Frequency distribution of residuals histogram and P–P
histogramwere presented (Fig. 9). The bell-shaped histogram and colonization of residuals around the
normal lines and also standing of serial correlations of errors within the independency bond of ACF
diagrams suggested that the model covered the deterministic part of data structure and extracted the
white noise perfectly (Fig. 10).
4. Conclusion

The results of this research indicate that the predicted monthly rainfall through feed-forward NN
and ARIMA (2,0,0)(4,1,2)12 models are similar and have not significant difference which are nearly
close to the actual values. The predicted monthly runoff results through Feed-forward NN and ARIMA
(2,1,2)(4,0,0)12 models show a big difference while the results of the ARIMA (2,1,2)(4,0,0)12 model are
close to the real ones. It seems that due to low inflow values to the lake in the 4 years period (from
1998 to 2002) which is associated with low precipitation and dam constructions, the model of feed-
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forward NN couldn’t been well trained. The results of this model show a difference input volume of
about 318 MCM per year which is a considerable amount during 6 years period.

It can be concluded that for predicting upcoming runoff the ARIMA (2,1,2)(4,0,0)12 model is better
compared to feed-forward NN model. Also, it can be calculated by using the predicted rainfall from
each model and runoff coefficient.

In case of runoff caused from runoff coefficient on rainfall both methods show high accuracy and
similarity. The fairly high correlation coefficients RF–f NN¼0.754 or RARIMA¼0.75 implied that both
models were able to cover the variance of observed data.

The aim of this paper is mainly to investigate the runoff made by rainfall and it suggests that there
is little runoff toward the lake but it cannot make the balance of the lake positive. To make this
happen, there should be a careful management of water resources in terms of water consumption and
the most important items in this are reduction of agricultural uses and reduction of excessive
groundwater withdrawal; As lowering of ground water levels in the basin, especially in rivers has
reduced the flow coefficient drastically and has made the lake balance negative. Therefore, if careful
management of water resources increases the groundwater level in river basin, it will lead the lake
toward revival.
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