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We study two classes of unbounded fan-in parallel computation, the standard one, based on 
unbounded fan-in ANDs and ORs, and a new class based on unbounded fan-in threshold 
functions. The latter is motivated by a connectionist model of the brain used in artificial 
intelligence. We are interested in the resources of time and address complexity. Intuitively, the 
address complexity of a parallel machine is the number of bits needed to describe an 
individual piece of hardware. We demonstrate that (for WRAMs and uniform unbounded 
fan-in circuits) parallel time and address complexity is simultaneously equivalent to alter- 
nations and time on an alternating Turing machine (the former to within a constant multiple, 
and the latter a polynomial). In particular, for constant parallel time, the latter equivalence 
holds to within a constant multiple. Thus, for example, polynomial-processor, constant-time 
WRAMs recognize exactly the languages in the logarithmic time hierarchy, and polynomial- 
word-size, constant-time WRAMs recognize exactly the languages in the polynomial time 
hierarchy. As a corollary, we provide improved simulations of deterministic Turing machines 
by constant-time shared-memory machines. Furthermore, in the threshold model, the same 
results hold if we replace the alternating Turing machine with the analogous threshold Turing 
machine, and replace the resource of alternations with the corresponding resource of 
thresholds. Threshold parallel computers are much more powerful than the standard models 
(for example, with only polynomially many processors, they can multiply two integers, 
compute the parity function and sort in constant time), and appear less amenable to known 
lower-bound proof techniques. 8 1988 Academic Press, Inc. 

1. INTRODUCTION 

There has recently been a growing interest in the time complexity of massively 
parallel computers, that is, parallel machines with an excessively large number of 
processors and unbounded fan-in. Two machine models which have become 
popular are the MIMD shared-memory machine, a non-uniform collection of 
random-access machines which communicate via a shared memory (a MIMD 
parallel computer may have a different program for each processor, see Flynn 
[lo]), and the unbounded fan-in circuit, a nonuniform combinational circuit built 
from unbounded fan-in AND and OR gates. The important resources for the 
former are (unit-cost) time and number of processors, and for the later, size 
(number of wires) and depth (maximum length of any path from an input to an 
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output). There is a well-known result [37] which states that simultaneous size and 
depth of nonuniform unbounded fan-in circuits is equivalent to simultaneous 
processors and time on a MIMD shared-memory machine, the former related by a 
constant multiple, and the latter by a polynomial. Recent research has centered on 
the number of processors required-to obtain constant time on a massively parallel 
machine. Independently, Furst, Saxe, and Sipser [ 121 and Ajtai [3] proved that a 
superpolynomial number of processors is required to compute the parity of n bits in 
constant time on a nonuniform model. Recently, Andrew Yao [43] has shown that 
2” ‘-’ processors are necessary, for some real number 1> 0. We provide a matching 
upper bound in this paper. 

We wish to characterize unz~orm unbounded fan-in parallel computers, such as 
the WRAM, a SIMD shared-memory machine with simultaneous writes. Limited 
characterizations have been attempted, but they appear to fail when the number of 
processors get too large or the parallel running time gets too small. The parallel 
computation thesis of Goldschlager [13, 143 is an attempt to characterize the 
power of fast parallel computers. One interpretation states that fast parallel com- 
puters recognize exactly the languages in POLYLOGSPACE. For convenience, we 
will call this the first parallel computation thesis. The extended parallel computation 
thesis of Dymond [8,9] is an attempt to characterize the power of small, fast 
parallel computers. One interpretation states that small, fast parallel computers 
recognize exactly the languages in NC. (NC is the class of languages recognizable in 
polynomial time and polylog reversals by a k-tape deterministic Turing machine 
[30]). For convenience, we will call this the second parallel computation thesis. 

These parallel computation theses appear to have lost popularity due to the 
increasing interest in massively parallel computers. Blum [4] demonstrated that 
neither the first nor the second parallel computation thesis holds for shared- 
memory machines with a large number of processors. It was shown in [25] that the 
first parallel computation thesis holds for shared-memory machines with word-size 
bounded by a polynomial in parallel running time and that it appears to fail 
otherwise; in particular, constant parallel time is possible for any recursive function 
if word-size (and number of processors) is large enough. One of our aims in this 
paper is to provide a characterization of unbounded fan-in parallelism which is 
valid for sub-logarithmic, or even constant parallel time. 

We will also tind that this characterization extends to a wider class of parallel 
computation. The standard parallel models described above derive their power 
from the ability to compute unbounded fan-in Boolean ANDs and ORs. We con- 
sider parallel computers based on unbounded fan-in threshold functions, motivated 
by connectionist models of the brain used in artilical intelligence. Parallel com- 
puters based on threshold functions seem immensely powerful (for example, they 
can compute the parity function in constant time using linear processors). The well- 
known lower-bound techniques for unbounded fan-in circuits appear to break 
down completely in the case of threshold circuits. 

The remainder of this paper is divided into seven sections. In Section 2 we 
examine a machine model from artificial intelligence called the Boltzmann machine. 
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We define the unboundedfan-in threshold circuit, and show that it is equivalent to a 
deterministic variant of the Boltzmann machine. In Section 3 we define a variant of 
the popular shared-memory model which we call the TRAM. This is similar to the 
standard WRAM, except the multiple-write convention makes use of threshold 
functions. Section 4 contains some prelimilary lemmas on the power of WRAMs. In 
Section 5 we define the threshold Turing machine, a model similar to the standard 
alternating Turing machine, based on threshold quantifiers instead of universal and 
existential quantifiers. In Section 6 we simulate a TRAM on a threshold Turing 
machine, and in Section 7 we simulate a threshold Turing machine on a TRAM. 
Finally, in Section 8 we gather together the evidence provided by these simulations 
into two parallel computation theses, one for the standard unbounded fan-in 
models, and one for the new unbounded fan-in threshold models. 

This paper contains eleven simulations of one resource-bounded parallel machine 
by another. A brief summary appears in Table I. A preliminary version of this paper 
has appeared in [26]. 

2. BOLTZMANN MACHINES AND THRESHOLD CIRCUITS 

Connectionist models of the brain have recently regained popularity amongst 
researchers in artificial intelligence. The connectionist model is a parallel system 
which has a large number of simple processing elements. Computation is performed 
by increasing or decreasing the strength of communications between physically con- 
nected processors. One such model is the Boltzmann machine [ 1, 181, an undirected 
graph in which vertices represent processors, and edges links. Each vertex is 
labelled with a threshold value, and each edge with a weight, both of which are 
integers. Each processor can be in one of two states, which we will call active and 
inactive. The computation occurs synchronously as follows. At time t, a processor 
computes the sum of the weights of the edges connecting it to its active neighbors. 
That processor is active at time t + 1 with probability depending on the difference 
between that sum and its threshold (with probability tending to zero below the 
threshold, exactly one-half at the threshold, and tending to one above it). At the 
start of the computation a distinguished set of input vertices is held in either the 
active or inactive state, to represent the input in binary. The output is similarly 
encoded in the states of a distinguished set of output vertices on completion of the 
computation. The computation is completed when the energy of the system is at a 
local minimum. 

The three key properties of this model are that it is probabilistic, it computes 
using threshold functions, and that the termination condition depends on global 
energy. We wish to focus on the second property and address the question of how 
parallel machines which compute using threshold functions differ from previously 
studied models of parallel computers. This may throw some light on the prodigious 
computing power of the human brain. We isolate this property by making the 
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model deterministic and simplifying the termination condition. This enables us to 
avoid certain problems concerned with the determination of the global energy in 
the more general model [20,21]. 

Formally, a deterministic Boltzmann machine (hereafter we will drop the adjective 
“deterministic”) is an infinite family of finite machines, B, , B,, . . . . one for each input 
size. Each B, consists of a directed graph G, = (V,, E,), distinguished sets of input 
and output vertices I,, 0, s V,, II,, 1 = n, a threshold assignment h, : V,, --+ Z (Z 
denotes the set of integers) and a weight assignment w,: E, --) Z. Computation on 
an input x E (0, 1)” proceeds as follows. At time t = 0, the input processors are 
placed in states which encode x. All other processors are placed in the inactive 
state. A processor u E V, is active at time t > 0 iff Cuts, w,(u) B h,(o), where 

The computation terminates when no further change of state occurs in the system. 
At that time, the output is encoded in the states of the output vertices. A Boltzmann 
machine runs in time T(n) if the maximum number of steps taken by B, on an input 
of size n is bounded above by T(n), and has size Z(n) if IE,l <Z(n). We assume 
that G, is connected, so that the number of edges is a reasonable measure of size. 
We also assume that the absolute values of the edge weights (and therefore the 
thresholds) are bounded above by a polynomial in size, and that T(n) < Z(n). 

A number of features of this model are noncritical; for example, the connection 
graph can be made acyclic, all weights can be made 1, and all threshold values can 
be made nonnegative. In addition, the threshold functions can be replaced by 
“exactly equal” functions. Let B = (0, 1 } denote the Boolean set. Define the 
function #k: B” -+ B as follows: #Jx,, x2, . . . . x,) = 1 iff exactly k of the xj’s are 
equal to 1. Define an unboundedfan-in threshold circuit to be similar to the standard 
unbounded fan-in circuit (see, for example, [ 12, 37]), except for the fact that gates 
compute #-functions instead of unbounded fan-in AND and OR. Clearly these are 
equivalent to circuits built from upper-threshold (true if at least k inputs are true) 
and lower-threshold (true if at most k inputs are true) gates, with at most a 
polynomial increase in size and a simultaneous increase in depth of at most a con- 
stant multiple. We will refer to a parallel machine based on upper- and lower- 
threshold functions as a threshold parallel computer. Where exactness in resources is 
not crucial, we will choose the convenient normal form based on #-functions. 
Unbounded fan-in threshold circuits are more powerful than standard unbounded 
fan-in circuits, for example 
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THEOREM 2.1. Size and time on a Boltzmann machine is simultaneously equivalent 
to size and depth on an unbounded fan-in threshold circuit, size to within a 
polynomial, and time/depth to within a constant multiple. 

Proof (Sketch). If w, , . . . . w, E Z, define the function # ,J w,, . . . . w,): B” + B as 
follows: # ,Jwl, . . . . w,)(xI, . . . . x,) = 1 provided C;= 1 xi . wi = k (and 0 otherwise). 
Similarly define sk(wl, . . . . wn) and >,Jw,, . . . . w,): Z” + B to be 1 iff 
C;=, xi . wi < k and I;=, xi . wi > k, respectively. 

CLAIM 1. Boltzmann machines based on #k are at least as powerful as those 
based on >k. 

Proof For all integers k, 

>,k(WlY ...T W,)(X1? . . . . x,) = # k(W,, . . . . wJ(x1, . . . . x,) v #k + ,(w1, . . . . W,)(XI) **., X”) 

v ... v #-& W,(W,, ---9 W”)(XI, .a*, %A. I 

CLAIM 2. Boltzmann machines based on ak are at least as powerful as those 
based on # k. 

Proof For all integers k, 

#k(WI, . ..Y WAXI, . . . . x,) = a/Awl, . . . . W&I, . . . . x,) A <k(W1, . . . . wJ(x,, . . . . x,) 

and 

Gk(W1, w2, .a*, wJ(x1, x2, . . . . x?J= kk(FW1, -w2, . . . . -w,)(x,, x2, . . . . x,). I 

Thus #-functions provide a convenient normal-form for Boltzmann machines. It 
remains to show that these normal-form machines can be “unwound” into circuits. 

CLAIM 3. All edge-weights can be made positive. 

Proof Consider a vertex computing #,Jw,, w2, . . . . wn)(xI, . . . . x2, . . . . x,). 
Without loss of generality assume that wl, . . . . w, > 0 and w,+ 1, . . . . w, < 0. Let 
S = xi=, wi. First construct S-k + 1 vertices computing 

# Awl 9 w2, ...? W,)(XI 9 x2, *..3 x,) for k<r<S 

and S - k vertices computing 

#A-W,fl, -wt+2> .a*9 -w,)b,+l, x,+2, ...? %I) for 1 <.s<S-k. 

Finally, AND together all pairs of # , and # s pairs with r - s = k, and OR together 
these ANDs. 1 

If we allow the connection graph to have multiple edges, we have 

CLAIM 4. All edge-weights can be made 1. 
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Proof Replace each edge of weight w from vertex u to vertex v by w edges of 
weight 1. 1 

CLAIM 5. The graph can be “unwound” into a circuit. 

Proof: Uses standard techniques similar to those used in [ 16,331. Multiple 
edges in the graph can easily be handled using additional fan-out. u 

Each of these transformations increases the size by a polynomial and the depth 
by a constant multiple. u 

It is also interesting to observe that combinatorial circuits built from “majority” 
gates are also equivalent to Boltzmann machines. Let half(x,, . . . . x,) = 
# Ln,2j(XI 9 ...? GA for n > 1. Then if k < LnPl, #&I 7 ..., x,) = 
half(x,, . . . . x,, y,, . . . . ynPIk), where yi = 1 for 1 6 i< n - 2k. If k > Ln/2], 
# &I 9 . . . . x,) = half(x,, . . . . x,, y,, . . . . yzkpn), where yi=O for l<i<2k-n. The 
number of inputs to each gate can also me made a power of 2. Suppose n is even, 
and m = 2rl”gn1. Then half(x,, . . . . x,) = half(x,, . . . . x,, y,, . . . . y,,-,), yZiP i = 0, 
yZi = 1 for 1 < y < (m - n)/2. If n is odd, half(x,, . . . . x,) = half(x,, . . . . x,, 1). The con- 
stants 0 and 1 are readily available, since half(x, x) = 0 for all x E B, and half(O) = 1. 

Even polynomial-size uniform threshold circuits appear to be extremely powerful. 
For example, we have seen that they can compute the parity of n bits in constant 
time. Chandra, Stockmeyer, and Vishkin [6] observe that they can also sort n 
polynomial-bit integers, add n polynomial-bit integers, and multiply two n-bit 
integers in constant time. They can also multiply two n x n matrices of polynomial- 
bit integers in constant time. We have chosen to remove the probabilism from 
uniform Boltzmann machines. It is not known whether this reduces their power. 
However, it can be shown using a result of Adleman [2] that probabilism can be 
removed from nonuniform Boltzmann machines without increasing their size by 
more than a polynomial, and their running time by more than a constant multiple 
~271. 

We have chosen to model the brain as an unbounded fan-in computer. It may be 
argued that this is an unreasonable low-level model, since the brain appears to have 
around 10” neurons and degree around 103. However, at a higher level, com- 
putations in the brain appear to involve concepts, which can be modelled using 
large groups of geographically diverse but strongly connected neurons [ 151. These 
concepts behave much like the processors of the Boltzmann machine (if sufficiently 
many neurons in the concept become activated, then the whole concept becomes 
activated) and may be better modelled using unbounded fan-in. 

3. THE SHARED-MEMORY MODEL 

The shared-memory machine is a popular parallel model used by complexity 
theorists. Informally, it consists of a large number of powerful processors which 
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communicate via a shared memory. Each processor possesses an infinite number of 
general purpose registers ro, ri, r2, . . . . each of which can hold a single integer, and a 
unique read-only processor identity register PID which is preset to i in the ith 
processor, iE N (N denotes the set of nonnegative integers). The shared memory 
consists of an infinite number of cells so, si , s2, . . . . each of which is also capable of 
holding a single integer. A program for this machine consists of a finite list of 
instructions; each instruction is either a local instruction (an internal computation 
or transfer of control), or a communication instruction (a read from, or a write into, 
shared memory). The local instruction-set has the following form, where “0” denotes 
a binary operation defined on integers: 

ri t constant 

ri t rj 0 rk 

ri +- rr, 

rr, + rj 

ri c PID 

halt 

gotomifri>O 

(load register with constant) 

(binary operation) 

(indirect load) 

(indirect store) 

(store PID) 

(end execution) 

(conditional transfer of control). 

Communication instructions have the form: 

ri + s,, (read) 

ST8 + rj (write). 

So far, we have left the binary operation “ 0 ” unspecified. In particular, we will be 
interested in two types of instruction-sets. The minimal instruction-set allows integer 
addition and subtraction, and logical shifts: 

ri t rj * rk (addition) 

ri c Lrj*2rk _I (logical shift ). 

Note that in the second instruction, rk may be either positive (corresponding to a 
left-shift) or negative (corresponding to a right-shift). The general instruction-set 
includes any instruction which can be simulated by a k-tape deterministic Turing 
machine in polynomial time. (That is, a k-tape deterministic Turing machine can, 
when given as input the m-bit binary representations of the operands, compute the 
binary representation of the result in time m’(‘).) 

More formally, each machine is specified by a program M and a processor bound 
P(n). A computation proceeds roughly as follows. Suppose XE Z”, x = 
(x1 1 x2, *.*, x,). Each xi is called an input symbol. The symbol xi is placed into 
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shared-memory location i, for 1 ,< i 6 n. All other memory locations and general 
purpose registers are set to zero. Processors 0, 1, . . . . P(n) - 1 are activated 
simultaneously; they synchronously execute the program M. When all processors 
have halted, the output is to be found in some specified place in the shared 
memory. In particular, single-integer outputs are found in shared memory location 
s,,. A shared-memory machine acts as an acceptor if the inputs are restricted to a 
finite alphabet (encoded as integers in the obvious fashion), and at the end of a 
computation, shared memory location s0 contains either 1 or 0, indicating accep- 
tance or rejection of the input, respectively. We will consider several different 
protocols for dealing with simultaneous memory access, starting with the most 
straightforward: 

1. The PRAM model. Simultaneous memory access is forbidden. In the 
following models, simultaneous access to individual shared-memory locations is 
allowed. Any number of processors may simultaneously read from any shared- 
memory location. We will be interested primarily in two different conventions for 
dealing with simultaneous writes. 

2. The WRAM model. If several processors are attempting to write into a 
single shared-memory cell, then the smallest-numbered processor succeeds. All 
other data is lost. 

3. The TRAM model. Suppose several processors are attempting to write into 
a shared-memory location which currently contains the value k. If exactly k of them 
are attempting to write a nonzero value, then the smallest-numbered processor 
succeeds. Otherwise the shared-memory location takes on the value zero. 

The processor bound P(n) is a measure of the number of processors used as a 
function of input size. The machine is said to have word-size W(n) if the maximum 
value in any register or shared memory location during any computation on an 
input of size n has absolute value less than 2 W(n) Note that this includes the inputs, . 
outputs and processor identity registers, so in particular W(n) = Q(log P(n)). We 
will concentrate on parallel machines with W(n) = @(log P(n)), which preludes 
parallel models such as the Vector Machine [ 17, 311, whose word-size is much 
larger than is needed to address its processors. We also assume that W(n) = 
Q(log n). This is a reasonable assumption, since at least rlog(n + l)] bits are 
required to address the n shared-memory locations containing the inputs. The time 
bound T(n) is the number of instructions executed before all processors have 
halted, again as a function of input size. We will call a shared-memory machine 
with the general instruction-set reasonable provided T(n) = W(n)“‘l’; that is, the 
running time is exponentially smaller than the number of processors. 

Similar parallel machine models have appeared in a large number of papers, the 
earliest of which include Fortune and Wyllie [ll J, Goldschlager [ 131, Schwartz 
[34], and Shiloach and Vishkin L-351. Our model is not strictly SIMD (see Flynn 
[lo] for nomenclature), since different processors can be at different points in their 
program at any given time. However, it is easy to show [23] that is equivalent to a 
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strictly SIMD one. Note that our machines are slightly nonuniform in the sense 
that information (depending on the input-size) may be encoded in the number of 
processors P(n). Our simulations will make heavy use of this property. 

4. SOME PRELIMINARY RESULTS CONCERNING SHARED MEMORY MACHINES 

WRAMs are powerful parallel machines. In particular, they can compute various 
useful arithmetic functions in constant time. The results in this section will prove 
useful during the simulation of threshold Turing machines by TRAMS in Section 7. 
The reader who wishes to process this paper in a top-down fashion may skip the 
material contained in this section during the first reading. 

LEMMA 4.1. A PRAM with [log nl processors can compute [log nl or Llog n J in 
constant time with word-size O(log n), when given as input a single positive integer n. 

Proof Suppose n 2 1; Llog n J is computed as follows. Processor i, i 3 0, com- 
putes the value v = j-n/2’] using a single shift instruction. If it finds that v > 0 and 
Lv/2 J = 0, then i= Llog nJ. Computation of [log nl from Llog n] is simple; if n = 2’ 
then [log nl = i, otherwise Flog nl = i + 1. The required value can then be written 
into shared-memory cell s,, by processor i. 1 

LEMMA 4.2. A WRAM with word-size O(n(b + log n)) can add n b-bit numbers in 
constant time. 

Proof: We use the techniques of [23-251. Suppose that we are given n b-bit 
integers x,, . . . . x,. Let us assume, for the purposes of this proof, that they are all 
positive. The modifications necessary for the inclusion of negative integers are sim- 
ple but tedious. We can assume without loss of generality that n is a power of 2. 

First, it is easy to determine n, the number of inputs. We can adopt the conven- 
tion that zero is never used for an input value (if necessary we can encode non- 
negative integers by adding one to them). Processor i reads shared memory cells i 
and i + 1. If the latter contains zero while the former contains a nonzero value, then 
i = n. Processor i can then write its PID into shared-memory location 0, where it 
can be read simultaneously by all processors. Note that if n is not a power of 2, 
then we can compute [log nl using Lemma 4.1, and then using a single processor 
compute 2 r’Og ” the power of 2 immediately above 
will have a negligible effect on our resource bounds. 

n, using a shift operation. This 

The sum of n b-bit numbers can have no more than b + log n bits. Each processor 
requires this value. The value log n can be computed using Lemma 4.1; it remains 
to determine the value of b. We do this by finding the largest input integer. We use 
the first n* processors, divided into n equal-sized teams. Each processor can deter- 
mine whether it participates in this subcomputation by comparing its PID to n*. 
Since n is a power of 2 and both n and log n are known to all processors, r? can be 
computed with a single shift operation. Next, each processor determines which team 
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it is in, and its identity number within its team, as follows. Each processor extracts 
the last log n bits of its PID using two shifts and a subtraction. It treats this value 
as its identity number within its team. It treats the remaining leading bits of its PID 
as its team identity number. That is, it has divided its PID in constant time into 
two values (i, j), where 0 d i, j< n, and acts as the jth member of the ith team. 

The ith team uses shared memory location n + i + 1 for communication (remem- 
bering that the cells 1 through n contain the input). The 0th processor in team i 
(which we will call the leader of that team) sets shared-memory n + i+ 1 to zero. 
The ith team 0 <i< n determines whether the (i+ 1)th input integer xi+ i is the 
largest overall. The jth processor in the ith team compares xj+ r with xi+, , for 
0 6 i, j < n. If the former is greater than the latter, then it writes a one into shared- 
memory location n + i+ 1. When this is finished, the team-leader reads shared- 
memory location n + i + 1. If that location contains zero, it knows that x,, , is the 
largest input. It can then write this value into shared-memory location 0, where it 
can be read by all processors. This has taken constant time, and can be performed 
provided the word-size is at least 2 log n. The value of b can finally be obtained by 
finding the logarithm of this largest input value using Lemma 4.1. 

Now the value b + log n is known to all processors. Let us assume for the pur- 
poses of this proof that it is a power of 2. If not, then it can easily be rounded up to 
a power of 2 by again using Lemma 4.1 and a shift operation. The number of bits in 
this value is also easily obtained using Lemma 4.1. The processors now divide them- 
selves into 2°(“u’+‘ogn)) teams of n processors. Each team interprets its team iden- 
tification number (which has O(n(b log n)) bits) as a sequence of II (b + log n)-bit 
integers. The ith member of each team, 1 < i < n extracts the ith and (i+ 1)th 
integer in this sequence, while the 0th processor extracts the first integer. The ith 
processor will have to do a shift of i(b + log n) bits. In order to do this, it will have 
to first compute the shift amount. Since the latter factor is a power of 2, the mul- 
tiplication can be implemented using a shift operation. The ith processor of each 
team, 1 < i < n verifies that this (i + 1) th integer is equal to the ith plus xi+ i, while 
the 0th processor verifies that the first integer equals x,. Those processors which 
find a discrepancy report to their team leaders via the shared-memory as described 
in the previous paragraph. Exactly one team will find no discrepancy. Its team 
leader knows that its team identity number represents a valid prefix-sum string for 
the given inputs. It then extracts the total sum (the last integer in the sequence) 
which it finally writes into shared-memory location 0 for output. 

All of the operations described take place in constant time. The PIDs of the 
processors have O(n(b+log n)) bits, and are the largest words used in the 
computation. 1 

LEMMA 4.3. A WRAM with word-size O(b2) can multiply two b-bit positive 
integers in constant time. 

Proof: We will use the standard shift-and-add algorithm. For simplicity, let us 
assume that the two input integers x, and x2 are both positive. The machine first 
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finds the value of b by taking the logarithm of the largest input (using Lemma 4.1). 
Processor i, 0 6 i < b, does the following. 

(a) Extract the ith bit of x2 (where the bits are numbered from left-to-right 
starting with 0) using shifts and a subtraction. 

(b) If the value obtained in (b) is nonzero, then left-shift x, by i places (that 
is, multiply it by 29, and write the result into shared-memory location i+ 1. 

The sum of these values is computed in constant time using Lemma 4.2. i 

LEMMA 4.4. A WRAM, when given as input a single integer m, can compute 
[rn’l’l in constant time and word-size O(log2 m), for any natural number c > 1. 

Proof: Use p teams of processors, where p > r@l. Team i, 0 6 i < p, checks to 
see whether i= rt@l. It does this by computing i” (using c - 1 multiplications). 
For this purpose, each team has 2°(‘og2m) processors (by Lemma 4.3). If i’ 2 m, yet 
1 “-‘cm, then i=rm’l’]. 1 

For our purposes, it will be sufficient to show that a WRAM with linear word- 
size can add n constant-bit integers in constant time. However, a much stronger 
result is possible without much extra effort. 

LEMMA 4.5. For every 0 < ,I < f there exists p > 0 such that a WRAM with word- 
size O(n’-“) can add n n’-“-bit integers in constant time. 

ProoJ: Suppose we have as input n positive integers, each of n1 -‘jc bits, for 
some positive integer c>, 2. Since the technique used is elementary, for a cleaner 
presentation of this proof we will omit the floor and ceiling operators necessary to 
ensure that all values are integers. The sum of these integers (and every partial sum) 
has at most O(n’-I”) bits. 

The WRAM first determines n, and computes m = n’/@+ ‘! After this pre-com- 
putation, the summation is performed in two phases. 

Phase 1. Divide the input into n/m groups of m numbers, and sum each 
group. After c iterations of this process, we are left with n/m’ partial sums. 

Phase 2. Add the n/m’ partial sums. 

By Lemma 4.4, the pre-computation takes constant time and negligible word-size 
(for large enough n). By Lemma 4.2, Phases 1 and 2 can be performed in constant 
time. The word-size required for the former is proportional to mnl - ‘I’ = n1 - ‘lCc2 + ‘) 
and, for the latter, is proportional to 

rn 
mc 

1 - I/c = nl - l/(c2 + c) 

Thus n n’- ‘/‘-bit integers can be summed in constant time with word-size 
qnl-‘l(~+d)* 1 
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Suppose x, EN, 1 6 xi d n for 1 d i < n. Deline prev: 2” + Z” by 
prev(x,, . . . . x,) = <yl, . . . . y,),wherey,=jifxj=x,,j<i,andx,#xjforj<k<i 
(and 0 if no such j exists). Define last: Z” + Z” by last(x,, . . . . x,) = (yl, . . . . y,), 
where yj = j if xj = i and xk # i for j < k 6 n (and 0 if no such j exists). 

LEMMA 4.6. A WRAM can compute prev(x,, . . . . xn) and last(x,, . . . . x,) in con- 
stant time with word-size O(log n). 

ProoJ We will prove the result for prev (the algorithm used for last is similar). 
The values y,, . . . . y, described above are computed as follows. Divide the 
processors into n2 teams, one for each ordered pair (i, j), 1 < i, j< n. Each team 
has II processors, one for each k, 1 < k < n. The kth processor of each team, 
j < k < i, remains active; the rest do not participate in the following. We reserve a 
shared-memory location for each team, initialized to zero. The kth processor of 
each team, j < k -C i, verifies that xk #xi. If it finds that xk = xi, it writes a one into 
the shared-memory location reserved for its team. All team members do this 
simultaneously. The lowest-numbered member of its team then reads that value, 
verifies that it is still zero, and checks that xj = xi. If so, then it writes the value j to 
the ith shared memory cell, for output. 1 

5. THRESHOLD TURING MACHINES ' 

It is possible to define threshold quantifiers based on the threshold functions 
introduced in Section 2. Let 2 be a finite alphabet, and F: C* + B. Then 
(# ;w: F(w)) E B, denoting the predicate “exactly k strings of size n satisfy F,” is 
defined as follows: (# ;w: F(w)) = 1 if ) { w E z” 1 F(w)}1 = k (and 0 otherwise). 
Threshold quantifiers are at least as powerful as existential and universal quan- 
tifiers, since # 1” w: F(w) is true iff F(w) holds for all w E F’, and # ,(( # ;w : F(w)), 
(# ;w: F(w)), . . . . (# ;n w: F(w))) is true iff F(w) holds for some w E JC”. We will write 
( # kw F(w)) for ( # ;w: F(w)), where the domain of the quantification is obvious 
from context. 

A k-tape threshold Turing machine (abbreviated TTM) is similar to the popular 
alternating Turing machine (abbreviated ATM) [S, 7, 9, 321. It has k read/write 
work-tapes, a finite-state control, and random-access to its input via a write-only 
index-tape. The latter device is necessary if we are to discuss sublinear running-time 
and will be familiar to those acquainted with alternating Turing machines. It also 
has a read-only guess-tape and a write-only threshold-tape. All tapes are infinite in 
one direction and have cell numbered 1, 2, . . . . each of which can hold a single sym- 
bol. Each tape has a single head, which scans a single tape cell. More formally, a 
k-tape TTM is a 9-tuple (Q, r, C, 6, qO, qa, qr, q,), where: 

C is a finite input alphabet. Without loss of generality, we will take C = { 0, 1 }. 
r is a finite tape alphabet, .JC’c I: Without loss of generality, we will take 

r= (0, 1, b}, w h ere b is the distinguished blank symbol. 
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Q is a finite set of states, including four distinct distinguished states, as follows: 
qO is the initial state, qa the accept state, qr the reject state, and qt the threshold 
state. 

6 is the transition function. If d = (left, stay, right} is the set of directions in 
which a tape-head may move, then 6: Cx (Q- {q8, qr, q,}) x Tk+’ + 
Qx(~~A)~x(Cxd)*xd. 

We define a configuration of a TTM in the normal way, to be a snapshot of the 
machine at some instant in time. A configuration with state qt is called a branching 
configuration, all others are called nonbranching. A configuration with state qa or qr 
is called a halting configuration. A TTM is started with all heads in the first cell of 
their respective tapes, and all tape cells blank except for the first cell on the 
threshold and index tapes, which both contain the symbol “1.” The finite-state con- 
trol is in state qO. This is called the initial configuration. Consider an arbitrary con- 
figuration of a TTM. The action of the machine on input x,, x2, . . . . x, is similar to 
that of a deterministic Turing machine, except where the threshold state is concer- 
ned. The contents of the index tape are interpreted as the binary representation of 
some nonnegative integer i (with its least-significant bit in the first tape-cell). 

(i) Suppose the finite-state control is in state q E Q - (qa, qr, qt}, symbol 
sO E r is under the guess-head, symbols sl, s2, . . . . Sk are under the k work-tape 
heads, and 

Then tj is written in the cell under the head on the jth work-tape and the head is 
moved one cell in direction dj, 1 < j < k, tk + 1 is written in the cell under the head 
on the index tape and the index-head is moved one cell in direction dk + 1, tk+ 2 is 
written in the cell under the head on the threshold tape and the threshold-head is 
moved one cell in direction dk + *, the guess-head is moved one cell in direction 
d k+3> and the finite-state control moves into state r. The new configuration thus 
obtained is called the successor of the original. A configuration is called accepting if 
its successor is accepting. The time requirement of the original configuration is 
defined to be one plus the time requirement of its successor. The threshold 
requirement of the original conliguration is defined to be equal to the threshold 
requirement of its successor. 

(ii) If the finite-state control is in state q E { qa, qr} then the TTM halts. If 
q = qa then the configuration is called accepting. The time requirement and threshold 
requirement is defined to be zero in both cases. 

(iii) If the finite-state control is in state qt, then the contents of the threshold 
tape are interpreted as the binary encoding of a nonnegative integer m. Suppose the 
guess-head is on cell g of the guess-tape. The TTM is restarted in state qo, with its 
work-tape and index-tape unaltered, the threshold-tape returned to its initial con- 
tents, a random string of symbols from C written on cells one through g of the 
guess-tape (the remaining cells left blank), and the guess-head returned to the first 

571/36/3-2 
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cell. Each of these 2” possible new configurations are called succes.vorS of the 
original conliguration. The configuration is said to be accepting if exactly m of its 
successors are accepting. The time requirement of the original configuration is 
defined to be one plus the longest time requirement of its successors. The threshold 
requirement is defined to be one plus the largest threshold requirement of its suc- 
cessors. 
A TTM is said to accept its input if its initial configuration is accepting. The 
language recognized by a TTM is the set of accepted strings over alphabet C. A 
TTM is said to run in time T(n) if, for all input strings of length n, the initial con- 
figuration has time requirement bounded above by r(n). It is said to use thresholds 
H(n) if, for all input strings of length n, the initial conliguration has threshold 
requirement bounded above by H(n). 

Since existential and universal quantifiers are a special case of the threshold 
quantifier (see the identities given in the first paragraph of this section), it is clear 
that the standard alternating Turing machine is a special case of the threshold Tur- 
ing machine (provided we restrict the former to machines with constructible time- 
bounds). Furthermore, time on this limited threshold Turing machine is related by 
a polynomial to time on an alternating Turing machine, and the number of 
thresholds is related by a constant multiple to the number of alternations, both 
relations holding simultaneously. Therefore, without loss of generality, when we 
refer to an “alternating Turing machine” we will henceforth mean the special case of 
a limited threshold Turing machine. 

Suppose, for convenience, we reduce threshold Turing machines using upper- 
threshold and lower-threshold functions instead of #-functions. As noted in Sec- 
tion 2, this affects the time by a polynomial, and the number of thresholds by at 
most a constant multiple. Threshold Turing machines can then be used to define a 
polynomial-time threshold hierarchy, analogous to the Meyer-Stockmeyer 
polynomial-time hierarchy [38]. Let TP be the class of languages recognizable in 
polynomial time by a TTM using a single threshold, either a <-threshold or a 
2 -threshold (note that the class remains the same in either case). Then define 
O;=P, and for k>O OJ’ = TPef. By induction on k, Ok contains the class of 
languages recognizable in kp+of ynomial time by a TTM in k thresholds. It can also be 
proved using standard techniques that any language in 8, can be recognized in 
polynomial time by a TTM in 2k thresholds. However, it is not apparent that the 
2k can be reduced to k (as in the case of the polynomial-time hierarchy and alter- 
nating Turing machines, see Wrathall [42]) since it appears impossible to combine 
two consecutive polynomial-bounded threshold quantifiers of the same type. The 
polynomial-time threshold hierarchy clearly includes the polynomial-time 
hierarchy; for k 2 0, Cpk, n$ c O$. Note also that O!j contains the language class 
corresponding to Valiant’s #P [39,40], since it is possible to verify the number of 
solutions to a polynomial-time verifiable predicate using two queries to an oracle 
language in 0:. The polynomial-time threshold hierarchy has been studied in detail 
by Wagner [41] under the name of “the counting polynomial-time hierarchy.” The 
polynomial-time threshold hierarchy is contained in PSPACE. 
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6. SIMULATION OF TRAMS BY THRESHOLD TURING MACHINES 

In this section we consider the simulation of a T(n) time-bounded, W(n) word- 
size bounded TRAM on a threshold Turing machine. We say that W(n) = sZ(log n) 
is constructible if a k-tape deterministic Turing machine can, when given the binary 
representation of n, compute the binary representation of W(n) in time O(W(n)). 
Most useful functions are constructible, for example, W(n) = logo(’ W(n) = no(‘). 

THEOREM 6.1. Suppose W(n) is constructible. A threshold Turing machine can 
simulate a T(n) time-bounded, W(n) word-size TRAM with the minimal instruction- 
set using O(T(n)) thresholds and time O(T(n) . W(n)). 

Proof (Sketch). Let M be a TRAM which runs in time T(n) and uses word-size 
W(n). Let x,, x2, . . . . x, be an input to M. For the purposes of this proof, we will 
assume that each xi E B. In general, each xi will be an integer of at most W(n) bits. 
In this case, the input to the TTM will be a binary encoding of this sequence. We 
will demonstrate a threshold Turing machine which accepts this input string iff M 
does. On input x1, x2, . . . . x,, the TTM first computes w = W(n). During the 
simulation of M, the TTM represents individual registers, memory locations, and 
time-counts with a sequence of O(w) contiguous work-tape cells. The program of M 
is stored in the finite-state control. We will write Z[l] for the Ith instruction of this 
program, I> 1. 

Each of the following mutually recursive Boolean procedures returns the value of 
the quantified Boolean formula given as its statement part. Quantified variables 
range over all possible values of length w. 

function result(p, t, u) {processor p computes value 0 at time t} 
WPC( P, t, 4 A 

(case Z[Z] of 
“ri c constant”: const = u 
“yi + rj 0 rk”: 30, 30, (local(j, p, t- 1, u,) A local(k,p, t - 1, u2) A 

(” = “1 o “2)) 
“ri +- r,,“: 3u,(local(j, p, t - 1, vi) A local(u,, p, t - 1, u)) 
“r?, t r;: local(j, p, t - 1, 0) 
“ri + PID”: u = p 
“ri + s r,“: +,(local(j, p, t- 1, ui) A shared(u,, p, t- 1, u)) 
‘*s,~ +- r,“: local(j, p, t - 1, u) 

1) 
function target(p, t, h) {processor p changes register rh at time t} 

3l(pc(p, t, I) A (I[11 is of the form “r,, t . ..“. or “rr, + r,” with local (i, p, t - 1, 
h))) 
function write (p, t, h) {processor p writes into shared-memory location si at time 
t 1 

3l(pc(p, t, I) A (I[/] is “s,, t r;) A local(i, p, t - 1, h)) 
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function pc(p, t, I) {program-counter of processor p at time t is /} 
(t=OAl=l)v(pc(p, t-l,O)r\I=O)v 

WPC(P, t- 1, k) A 
(case Z[k] of 

“got0 m if ri 2 0”: 3u 2 0 local(i, p, t - 1, 21) A (m = I) 
“halt”: I= 0 
others: l=k+ 1 

)) 

function local(i, p, t, 0) {register ri of processor p gets value u at time t} 
(t=O A u=O) v (target(p, t, i) A result(p, t, 0)) v (1 target(p, t, i) A local(i, p, 

t- 1, u)) 

function shared(i, t, u) 
(shared-memory cell si gets value u at time t} 
(t=o A l<i<tl A U=Xi) V 

(t=o A i>?l A U=o) V 

(3k(shared(i, t - 1, k) A ( #kp write(i, p, t)) A 

(3p(write(i, p, t) A result(p, t, u) A i3q<p write(i, q, t))))) v 
((-I 3p write(i, p, t)) A shared(i, t - 1, u)) 

The Boolean operations A and v are computed by branching universally and 
existentially, respectively. Negations can be computed directly or pushed back to 
the final states, much in the same manner as alternating Turing machines [S]. 
Quantifiers are computed by guessing quantified values. The simulation of 
individual instructions of M is carried out deterministically. The TTM simulates M 
by computing 3t(Vp(pc(p, t, 0)) A shared(O, t, 1)). 

We claim that any call to procedures result(p, t, u), target(p, t, h), write(i, p, t), 
pc(p, t, I), local(i, p, t, u), or shared(i, t, V) requires at most 0(t) thresholds. Let 
r(t), t(t), w(t), p(t), 1(t), and s(t) denote the number of thresholds required by these 
procedures, respectively. Then 

and 

r(O) = t(0) = w(0) = p(0) = I(0) = s(0) = 0 

r(t)dmax(p(t)+2,l(t-1)+6,s(t-1)+6) 

t(t)<max(p(t)+2,l(t- 1)+4) 

w(t)<max(p(t)+2, t(t)+2) 

p(t)<max(p(t- 1)+3, I(t- 1)+7) 

l(t)<max(t(t)+3,r(t)+2,I(t-1)+2) 

s(r)<max(w(t)+6,r(t)+5,s(t-1)+3). 

Thus, in particular, s(t) < 28t + 21, and so the simulation of a T(n) time-bounded 
TRAM uses O(T(n)) thresholds. If A4 has the minimal instruction-set, then the 
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computation between each threshold takes time O(W(n)) (since it only involves 
guessing register contents, and simulating local instructions of M). This gives the 
required result. [ 

Note that if the TRAM has the general instruction-set, then the running-time of 
the TTM increases by only a polynomial. 

COROLLARY 6.2. If W(n) is constructible, a threshold Turing machine can 
simulate a reasonable T(n) time-bounded, W(n) word-size TRAM using O(T(n)) 
thresholds and time W(n)O(‘). 

7. SIMULATION OF THRESHOLD TURING MACHINES BY TRAMS 

Before we address the problem of simulating a TTM on a TRAM we first con- 
sider a much simpler problem, that of simulating a standard k-tape deterministic 
Turing machine (DTM) on a WRAM. 

LEMMA 7.1. A WRAM with the minimal instruction-set can simulate a T(n) time- 
bounded k-tape DTM in constant time and word-size O(T(n)). 

Proof (Sketch). Suppose we number the rules of the DTM in some reasonable 
fashion. We divide the processors into 2 OCTCn)) teams, one for each sequence of T(n) 
rules ro, rl, . . . . r=(n)- 1. Each team has 2°(T(n)) processors. Each processor can deter- 
mine which team it is in and its identity number within that team, in constant time 
as follows. 

First, the WRAM computes n as in the proof of Lemma 4.2. Second, the machine 
determines the number of active processors as follows. Processor i writes a one into 
shared-memory location n + i + 1. The number of processors can then be computed 
using the technique used to determine n (see the proof of Lemma 4.2). Since the 
number of processors is 2cT(n), with c a small constant dependent on the constants 
in the Turing machine, the, value of T(n) can be found efficiently using Lemma 4.1. 
This value, along with the number of bits in T(n) (found by using Lemma 4.1 
again), can be made available to all processors through the shared memory. 

Now that the value of T(n) is known to all processors, each can extract the first 
T(n) +log T(n) bits of its PID, which it treats as its identity number within its 
team. The remaining O(T(n)) bits are treated as the identity number of the team. 
These values can be extracted in constant time using shifts and subtractions, as in 
the proof of Lemma 4.2. 

Once each team has determined its team identity number, it interprets that iden- 
tity number as a sequence of T(n) rules. The ith processor of that team extracts the 
ith rule ri, 0 d i < T(n), and determines for each of the tapes the head direction 
associated with that rule; + 1 for a rightward move, - 1 for a leftward move, and 0 
for no move at all. The head position at each point in time is easily determined for 
each tape by computing a prefix-sum of these values within the team. Each prefix- 
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sum can be computed using T(n) separate additions performed in parallel using 
Lemma 4.5, using Tag’“’ processors in each team. (This is the reason for requir- 
ing T(n) + log T(n) bits for the identity number of each processor within its team.) 
Each team uses a separate part of the shared-memory for communication during 
this computation; the relevant addresses are found by multiplying the team identity 
number by the appropriate value. The latter can be taken to be a power of 2, so 
that the multiplication can be performed using a shift operation. 

It then verifies that: 

1. The sequence of states determined by the sequence of rules is a valid one. 
That is, rule r0 requires that the DTM be in its initial state, and for 1 d i < T(n) if 
rule riPI leaves the DTM in state q, then rule Y; requires that the DTM be in state 
4. 

2. For each of the k tapes, and for each time t, 0 < t < T(n): 
(i) If this is the first time that the head visits this cell, then the symbol read 

by rule r, is the symbol found in that cell in the initial configuration. 
(ii) If the last time the head visited this cell was at time s < t, then the sym- 

bol written by rule rS is the symbol read by rule rl. 

The information necessary for this verification is provided by using the algorithm 
of Lemma 4.6. Exactly one team will find that its sequence of rules is valid. It can 
then determine if the final state is accepting and set the contents of shared memory 
location 0 to 0 or 1, accordingly. By Lemmas 4.5 and 4.6 the simulation requires 
constant time and word-size O(T(n)). 1 

This result can obviously be extended to the simulation of deterministic Turing 
machines which compute results, rather than acts as acceptors for a language (the 
final configuration can be constructed from the valid sequence of rule numbers by 
use of the algorithm for function last in Lemma 4.6), and to the simulation of non- 
deterministic Turing machines. Furthermore, it can also be used to simulate 
threshold Turing machines on TRAMS. 

THEOREM 7.2. Suppose T(n) is constructible. A TRAM with the minimal instruc- 
tion-set can simulate a T(n) time-bounded, H(n) threshold-bounded k-tape TTM in 
time O(H(n)) and word-size O(T(n) . H(n)). 

Proof (Sketch). The TRAM first evaluates T(n) in constant time and word-size 
O(T(n)) (by use of Lemma 7.1) and constructs a look-up table showing, for every 
nonbranching configuration, the configuration which follows by the rules of 6 in t 
steps of the TTM, 1 d t 6 T(n) (with the convention that once the TTM enters a 
halting or branching configuration, then it remains there). The table can be con- 
structed in constant time by utilizing the technique used in the proof of Lemma 7.1. 
A slight modification is necessary to determine the input pointer. The position of 
the head on the index-tape can easily be computed from the rule sequence in the 
same manner that the work-tape head positions are computed in Lemma 7.1. The 
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input pointers can be computed in constant time using word-size T(n)‘-” for any 
real number A > 0, by using a technique similar to Lemma 4.5. 

The simulation then proceeds as follows. The TTM is simulated up to the point 
when a branching or halting configuration is entered for the first time (using the 
look-up table and Lemma 4.6). Call this new configuration C. If the accept state has 
been entered, then the computation is accepting, and this can be reported in the 
appropriate way (similarly if the reject state has been entered). Otherwise C is a 
branching configuration. The processors divide themselves into as many as 2°(T(n)) 
teams, one for each possible guess of the appropriate size (gleaned from the 
position of the guess-tape head in C), each of which continues the computation 
from the new configuration. When the teams have (recursively) completed their 
simulation, they report back by having teams which find that their configurations 
are accepting attempt to write a 1 into a reserved shared-memory location, which 
has been preset to the integer whose binary representation was found on the 
threshold tape in configuration C. 

Since the computation between branchings takes constant time, the entire 
simulation takes time O(H(n)). The word-size is dominated by O(T(n) . H(n)) for 
the recursive branching. 1 

COROLLARY 7.3. A reasonable TRAM can simulate a T(n) time-bounded, H(n) 
threshold-bounded k-tape TTM in time O(H(n)) and word-size O(T(n)*). 

Proof. The TRAM of Theorem 7.2 is reasonable since the number of thresholds 
that a TTM can perform is bounded above by its running time. 1 

Thus time and word-size on a reasonable TRAM are simultaneously equivalent 
to thresholds and time on a threshold Turing machine. The first equivalence holds 
to within a constant multiple, and the second to within a polynomial. 

8. Two PARALLEL COMPUTATION THESES FOR UNBOUNDED FAN-IN PARALLELISM 

Since WRAMs are a weaker form of TRAM it is not necessary to use the full 
power of threshold Turing machines in order to simulate them efficiently. 

THEOREM 8.1. Suppose W(n) is constructible. An alternating Turing machine can 
simulate a T(n) time-bounded, W(n) word-size WRAM with the minimal instruction- 
set using O(T(n)) alternations and time O(T)(n). W(n)). 

Proof. Similar to the proof of Theorem 6.1, replacing function shared by: 

function shared (i, t, u) 
{shared-memory cell si contains u at time t } 
(t=Or\l<i<n~u=x~)v 

(t=Or\i>nr\v=O)v 
(Yp(write(i, p, t) A result(p, t, v) A i 3q < p write(i, q, t))) v 
(( 1 3p write(p, t)) A shared(i, t - 1, u)). 1 
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COROLLARY 8.2. Suppose W(n) is constructible. An alternating Turing machine 
can simulate a reasonable T(n) time-bounded, W(n) word-size WRAM using O(T(n)) 
alternations and time W(n)O(‘). 

Similarly, it is not necessary to use the full power of TRAMS to simulate ATM’s 
efficiently. 

THEOREM 8.3. A WRAM with the minimal instruction-set can simulate a T(n) 
time-bounded, H(n) alternation-bounded k-tape ATM in time O(H(n)) and word-size 
W(n). H(n)). 

It was shown in [24] that a WRAM with minimal instruction-set can simulate a 
T(n) time-bounded nondeterministic k-tape Turing machine in constant time with 
word-size T(n)‘+‘, for any real number E > 0. Theorem 8.3 improves the word-size 
to O(T(n)), and extends the result to alternating Turing machines with bounded 
alternations. A further improvement can be shown for the simulation of k-tape 
deterministic Turing machines. 

COROLLARY 8.4. Suppose T(n) = B(n ’ log* n) is time-constructible. A WRAM 
with the minimal instruction-set can simulate a T(n) time-bounded k-tape deter- 
ministic Turing machine in constant time using word-size O(T(n)/log* T(n)). 

Proof: By Theorem 8.3 above, and Theorem 3.3 of Paul et al. [29]. l 

An improvement of the word-size to O(m) for the simulation of single-tape 
deterministic Turing machines can be made using the weaker result of Maass [22]. 
Since on an alternating Turing machine, alternations are bounded above by time, 
we have 

COROLLARY 8.5. A reasonable WRAM can simulate a T(n) time-bounded, H(n) 
alternation-bounded k-tape ATM in time O(H(n)) and word-size O(T(n)2). 

ProoJ: By Theorem 8.3. 1 

Thus time and word-size on a reasonable WRAM are simultaneously equivalent 
to alternations and time on an alternating Turing machine. The first equivalence 
holds to within a constant multiple, and the second to within a polynomial. This 
provides evidence for the third parallel computation thesis: “In a parallel machine 
with unbounded fan-in communication, time and address complexity are 
simultaneously equivalent to alternations and time on an alternating Turing 
machine, the former to within a constant, and the latter a polynomial.” Our results 
also show that, for constant parallel time, address complexity is equivalent to within 
a constant multiple to time on a constant-alternation ATM. Thus, for example, 
constant-time massively parallel computers recognize exactly the languages in the 
polynomial-time hierarchy, and constant-time polynomial-size parallel computers 
recognize exactly the languages in Sipser’s logarithmic-time hierarchy [36]. 

The third parallel computation thesis sheds some light on a dilemma raised by 
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Cook [7]: It is popular to take alternating time as a measure of “parallel time” 
since alternating time is polynomially related to sequential space. This “space is 
parallel time” characterization was proposed independently by Chandra et al. [S] 
and Goldschlager [13, 143 (the latter calling it the parallel computation thesis). 
Unfortunately, as Cook points out, the alternating Turing machine has no resource 
corresponding to “hardware.” This led Dymond to his formulation of the extended 
parallel computation thesis [S, 91, based on the seminal work by Pippenger [30]. 
Our results suggest that the reason why the alternating Turing machine appeared to 
have no resource corresponding to “hardware” was that the wrong resource had 
been chosen for “parallel, time.” Instead, number of alternations corresponds to 
“parallel time,” and alternating time is related to, not hardware, but “address com- 
plexity”; that is, the number of bits necessary to describe an individual unit of 
hardware. 

Corollary 6.2 and Corollary 7.3 provide evidence for the fourth parallel com- 
putation thesis, which seeks to characterize parallel computation based on threshold 
functions. “In a parallel machine with. unbounded fan-in communication using 
threshold functions, time and address complexity are simultaneously equivalent to 
thresholds and time on a threshold Turing machine, the former to within a con- 
stant, and the latter a polynomial.” Further evidence for the third and fourth 
parallel computation theses is provided by considering uniform unbounded fan-in 
circuits. The connection language of an unbounded fan-in threshold circuit is the set 
of 4-tuples (g,, g,, i, k, n) such that in the finite circuit with n inputs the ith input 
of gate g, is connected to the output of gate g,, and g, is a #k-gate. An unbounded 
fan-in threshold circuit is said to be uniform if its connection language can’ be 
recognized by a polynomial-time k-tape deterministic Turing machine (note that 
the running-time of the Turing machine is thus polynomial in the address com- 
plexity of the circuit). Clearly the depth and address complexity of such a circuit is 
simultaneously equivalent to time and word-size on a TRAM, the former to within 
a constant multiple and the latter a polynomial (the techniques of [37] extend 
equally well to the uniform case, with processors that can shift, and to threshold 
computations). The corresponding result holds for conventional unbounded fan-in 
circuits and WRAMs. 

9. CONCLUSION 

We have provided evidence for two parallel computation theses for unbounded 
fan-in parallelism. It appears that, for the standard unbounded fan-in models, 
parallel time and address complexity are simultaneously equivalent to alternations 
and time on an alternating Turing machine (the former to within a constant, and 
the latter a polynomial). A similar result holds for the new class of threshold 
computations, provided the alternating Turing machine is replaced by a threshold 
Turing machine, and the resource of alternations is replaced by the analogous 
resource of thresholds. 
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Many interesting open problems remain. The standard lower-bound proof techni- 
ques for unbounded fan-in circuits appear to break down completely in the case of 
threshold circuits. Is there a problem in LOGSPACE which requires super- 
polynomial size to solve in constant time? Can a depth hierarchy be shown for 
polynomial-size machines, analogous to the result for standard unbounded fan-in 
circuits [36]? The exact number of processors needed to simulate deterministic 
Turing machines on a WRAM in constant time remains unresolved. This question 
is related to the question of sequential space versus time. Since a W(n) word-size, 
T(n) time-bounded WRAM with the minimal instruction-set can be simulated by a 
deterministic Turing machine in space O(T(n). W(n)) [14], improved upper- 
bounds on the word-size required to simulate a T(n) time-bounded deterministic 
Turing machine in constant time on a WRAM may improve the results of Paterson 
[28] and Hopcroft et al. [19]. 

Finally, we have simplified the Boltzmann machine by removing probabilism and 
simplifying the termination condition. The computing power of the more general 
machine remains an open problem. 
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