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Abstract

Eiter, T. and G. Gottlob, Propositional circumscription and extended closed-world reasoning are
15-complete, Theoretical Computer Science 114 (1993) 231-245.

Circumscription and the closed-world assumption with its variants are well-known nonmonotonic
techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has
been studied in detail for fragments of propositional logic. One open problem is whether the
deduction problem for arbitrary propositional theories under the extended closed-world assumption
or under circumscription is [15-complete, i.e., complete for a class of the second level of the
polynomial hierarchy. We answer this question by proving these problems IM%-complete, and we
show how this result applies to other variants of closed-world reasoning,

1. Introduction

The nonmonotonic inference techniques of closed-world reasoning are widely used
in artificial intelligence, database theory, and logic programming [2]. Starting with
the (naive) closed-world assumption (CWA) introduced by Reiter [26], several formal-
izations of closed-world reasoning have been developed. In this paper, besides the
CWA, we consider the following well-known approaches to closed-world reasoning;: the
generalized closed-world assumption (GCWA) by Minker [23], the extended generaliz-
ed closed-world assumption (EGCWA) by Yahya and Henschen [35], the careful
closed-world assumption (CCWA) by Gelfond and Przymusinska [12], and the ex-
tended closed-world assumption (ECWA) by Gelfond et al. [13]. Circumscription
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was introduced by McCarthy in [22]. It is known that circumscription as defined in
[36] coincides with the ECWA in the case of propositional logic [13].

While much work has been devoted to the study of the logical properties of such
forms of closed-world reasoning and of their applicability in different contexts, the
interest in a complexity analysis of these methods has emerged only more recently
[2, 20, 21, 29]. Papalaskari and Weinstein [37] show that inference from infinite
propositional theories under minimal consequence (i.€. circumscription) is IT3 and not
9. For the first-order case, it was shown that a number of closed-world inference
rules have degrees of unsolvability at different levels of the arithmetical hierarchy. In
particular, Apt and Blair [3] show that the CWA is complete for I1?, Chomicki and
Subrahmanian [9] show that GCWA is [19-complete, and Schlipf [28] has proven
that relevant problems related to circumscription are X1-complete and I1}-complete.
Other complexity results concerning model checking are provided by Kolaitis and
Papadimitriou in [18].

Cadoli and Lenzerini present in [5, 6] a very careful analysis of the computational
complexity of the above-mentioned forms of closed-world reasoning for various
fragments of propositional logic. They mainly consider syntactically restricted classes
of formulas, such as Horn clauses, dual Horn formulae, Krom formulae, and various
combinations of these classes. Their work accurately elucidates the boundary between
tractability and intractability for different forms of closed-world reasoning. Other
important studies where such restrictions are considered were carried out by Apt [2]
and by Lenzerini [20, 217; for an overview, see [6].

Little has been shown concerning the computational complexity arising from the
application of closed-world inference rules to general propositional clauses or for-
mulae. Cadoli and Lenzerini note that it follows from results in [29] that performing
deduction under the CCWA or ECWA is both NP-hard and co-NP-hard [6]. They
also observe that the deduction problem under the ECWA is in the class IT§ of the
polynomial hierarchy. The question whether deduction under ECWA is complete for
1% is pointed out as an open problem.

In the present paper we deal with the complexity of closed-world reasoning applied
to general propositional theories and to unrestricted clause sets. In particular, we
study the deduction problem, i.e., given formulae F and G, does G follow from F under
a certain closed-world inference rule? We show by a surprisingly short proof that the
deduction problems under the GCWA, the EGCWA, the CCWA, and the ECWA are
all I5-hard. In particular, we show that the deduction problem under both the
EGCWA and the ECWA is [15-complete, thus solving the problem posed by Cadoli
and Lenzerini. We show that this holds also under the restriction that F is in clause
form with at most 3 literals per clause and G is a literal. This is proved to be a limit
case for [15-completeness, since if F has at most 2 literals per clause, the deduction
problem is co-NP-complete for both EGCWA and ECWA,

For the GCWA and the CCWA, we provide upper bounds by showing that the
inference problem can be solved with O(logm) calls to a X%-oracle, where m is the
number of propositional variables in the formula F., We also show that testing
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whether the closure under CWA of a formula F is consistent (a co-NP-hard problem)
can be done with O(logm) calls to an NP-oracle, where m is the number of proposi-
tional variables in F, thus providing a new upper bound for this problem.

Our results can be interpreted as follows: If the polynomial hierarchy does not
collapse, then, for all closed-world reasoning principles that we consider (except for
the simple CWA), the deduction problem is strictly harder than the deduction
problem in classical propositional logic. In particular, depending upon the chosen
closed-world principle, the deduction problem is either complete for I15 or only
“mildly” harder than I15. The deduction problem under the CWA, on the other hand,
is in AL, and, most probably, not complete for this class. Thus, deduction with the
CWA is not much harder than the deduction problem in the classical propositional
logic. It is harder, however, since we show that this problem is neither in NP nor in
co-NP unless the polynomial hierarchy collapses.

2. Preliminaries and previous results

A theory T is, unless stated otherwise, a finite set of propositional formulae. As
usual, we identify T with the conjunction of all its formulae. Closed-world reasoning
attaches to each theory T a set of formulae that are assumed to be false in lack of
deducibility. Which formulae are added to T depends on the closed-world reasoning
rule (CWR-rule) obeyed. The union of 7 and the conjoined formulae is called the
closure of T with respect to the applied CWR-rule.

We consider all the major CWR-rules proposed in the literature and follow the
notation in [6]. The more sophisticated CWR-rules require to partition the variables
into three sets, usually denoted by P, Q, and Z. The set P contains the variables to be
minimized, Z are those variables that can vary in minimizing P, and Q are all other
variables. For every set R of variables, the sets R™ and R~ denote the positive and
negative literals corresponding to R, i.e., the formulae R+={x|xeR} and R™ =
{1 x| xeR}, respectively. A clause is a disjunction of literals. A clause is positive iff it
has no negative literals. A formula is in conjunctive normal form (CNF) if it is
a conjunction of clauses. A formula in CNF is in kCNF if each clause contains at most
k literals, and it is in kXCNF if each clause contains exactly k distinct literals.

Cadoli and Lenzerini characterize the CWR-rules abstractly as follows.

Definition 2.1 (Cadoli and Lenzerini [6]). Let T be a propositional formula, {P;Q; Z>
a partition of the variables in 7, and let C be a CWR-rule. The closure of T with
respect to C is

C(T;P;Q:Z)=Tu {1 K|K is free for negation in T with respect to C}.

A formula K is called C-fin if it is free for negation in T with respect to the
CWR-rule C (given {P;Q;Z>).



234 T. Eiter, G. Gottlob

The CWR-rules differ in the formulae that are free for negation as follows. Formula
K is free for negation if and only if the following assumptions hold:

CWA (Closed-world assumption [26]). K is a positive literal and T} K.

GCWA (Generalized CWA [23]): K is a positive literal and, for every positive
clause B with T B, it holds that T+ B V K.

EGWCA (Extended GCWA [35]): K is a conjunction of positive literals and, for
every positive clause B with T B, it holds that T+ B V K.

CCWA (Careful CWA [12]): K is a positive literal from P and, for each clause
B whose literals belong to PTu Q" uQ ™~ such that T B, it holds that T|# B V K.

ECWA (Extended CWA[13]): K isan arbitrary formula not involving literals from
Z and, for each clause B whose literals belong to P* Q" wQ~ such that T B, it
holds that T|+= B V K.

Since CWA, GCWA, and EGCWA are independent of (P;Q;Z>, we write
CWA(T) for CWA(T:; P;Q:Z), etc.

The closure of 7" under naive CWA may be inconsistent, although T is consistent.
The other CWR-rules, however, preserve consistency. Note that GCWA is a restricted
version of EGCWA as well as CCWA, and both EGCWA and CCWA are restrictions
of ECWA. Recently, a weakened form of GCWA has been introduced [25] for
syntactically restricted theories, called disjunctive database rule in [27]; this CWR-
rule has a polynomial-time algorithm for deduction [6].

An alternative characterization of the CWR-rules is possible in terms of minimal
Herbrand models. Recall that, in the propositional case, a Herbrand model is the set
of propositional variables that are true in a truth-value assignment. We write M = F if
the formula F is satisfied by the model M. Let M(T) denote the set of all models of
theory T. The relation < on M(T')is defined by M <M’ iff M < M’, i.e, all variables
true in M are also true in M'. Clearly, < is a partial order. For a partition {(P;Q; Z >,
the relation <p.z is defined on M(T) by M<p M iff MnQ=M'nQ and
MnP < M ~P. Relation <p.; i1s a pre-order; note that <p.; coincides with < for
Q=Z=0. Model MeM(T) is minimal if no M'e M(T) satisfies M’ <M and M < M,
and M is called {(P; Z>-minimal if no M'e M(T ) satisfies M'<p.; M and M<Lp.z M".
The minimal models of T are denoted by MM(T') and the {P; Z >-minimal models by
MM(T; P; Z).

Now a formula K is free for negation iff the following property is satisfied (cf. [6]):

CWA: K is a positive literal and there is some MeM(T) such that M |+ K.

GCWA: K is a positive literal and, for each Me MM(T), M | K.

EGCWA: K is a conjunction of positive literals and, for each MeMM(T), M [ K.

CCWA: K is a positive literal from P and, for each MeMM(T; P, Z), M |+ K.

ECWA: K is an arbitrary formula not involving literals from Z and, for each
MeMM(T;P;Z), M|+ K.

Note that CWA, GCWA, and CCWA only add literals to 7. Thus, the closure of
T with respect to each of these CWR-rules can be written down in space linear in the
size of T if only the variables of T are considered. For the other CWR-rules, EGCWA
and ECWA, exponential space is required in the worst case.
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We refer to the standard notation in complexity theory [10, 15]. Recall that P4
(NP4) corresponds to the class of decision problems that are solved by deterministic
(nondeterministic) Turing machines with an oracle for A in polynomial time. Problem
B is polynomial-time Turing-reducible to problem A (B<¥ A4) iff Be P4, The classes
=F, TIFf, and A} of the polynomial hierarchy are defined by X§ =TI =Af =P, and, for
k>0, £F, , =NPX TP, ,=co-Xf,,, and AF,, =P In particular, 5=NP™ and
15 =co-NP™. The class of decision problems that are polynomially solvable with no
more than f(n) calls to a EF oracle is denoted by PZL/®] where f(n) is a function in
the size n of the problem instance.

To generalize the concept of NP-completeness, in [10] the notions NP-easy,
NP-hard, and NP-equivalent are introduced for search problems (Turing-computable
functions). In this spirit, we say that a search problem is }f-equivalent if it is Zf-easy
and Xf-hard, where k= 1. A search problem A is f-hard (k= 1) if B<% A for every
problem BeXf, and A is Zf-easy if 4<% B for some BeZf. [Note that, for decision
problems, polynomial-time transformability (many-one reducibility <% ) is the stan-
dard notion of hardness.]

The complexity of computing the CWA closure is an easy corollary to the following
proposition, which follows from a result in [29].

Propeosition 2.2. Deciding if variable x is CWA-ffn in T is NP-complete.

Corollary 2.3. Computing the closure of a propositional theory T with CWA is NP-
equivalent.

The next proposition is well known; cf. [6].

Proposition 2.4. For any formula F, EGCWA(T)|=F iff, for all MeMM(T), M|=F,
and ECWA(T; P;Q; Z)|=F iff, for al MeMM(T;P;Z), M|=F.

An extensive study of the complexity of closed-world reasoning for the proposi-
tional case is presented by Cadoli and Lenzerini in [5, 6]. Their work covers import-
ant propositional theories for which the deduction problem is tractable, among them
Horn and Krom theories. They point out that the analysis of Schlipf in [29] entails
that propositional deduction with CCWA is NP-hard as well as co-NP-hard, and they
also show that closed-world reasoning with the ECWA-rule for arbitrary proposi-
tional theories is in T15. It is posed as an open problem in [6] whether this problem is
IM§-complete.

One of the most powerful CWR-rules is circumscription, which was introduced by
McCarthy [22] for first-order theories. Informally, the circumscription CIRC(T; P; Z)
of a list of predicates P in a first-order theory T states that the predicates in P have
minimal extension in T if the predicates in list Z are free to vary for minimization [36].

In the propositional case, P={p,,....p,} and Z={z,,...,z, are sets of proposi-
tional variables, and the circumscription of theory 7= T'(P; Q; Z) (Q are the variables
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of Tnotin PuZ)is
CIRC(T; P;Z)=T(P;Q; Z) N [VP,Z(T(P';Q; Z') AN (P’ = P))= (P = P')],

where P'={pi,....p.}, Z'={z\,...,z,,} are disjoint sets of propositional variables,
T(P’;Q;Z’) denotes the theory obtained from T(P;Q; Z) by replacing the variables
pi,z; with p;, 2}, for 1<i<n, 1<j<m, YP',Z' stands for V¥p)...¥p,Vz}...Vz,, and
P’ = P, P= P’ stand for /\lg,‘g,,(p{ =p;) and /\|<i<n(p: = pi), respectively.

A closer look at circumscription yields the following relation (cf. [ 13, Theorem 5.1]).

Proposition 2.5. Circumscription and the ECW A-rule are equivalent for propositional
theories.

3. Complexity results

The deduction problem for CWR-rule C is as follows: Given a theory T and
aformula F, does C(T; P;Q; Z)[=F hold, where T, P,Q, Z, and F is part of the input?
Cadoli and Lenzerini conjecture that this problem is I15-complete for ECWA. We
show that this is true even if T'is in 3XCNF and F is a literal. Moreover, the deduction
problem is (even for a single literal) [15-hard for GCWA, EGCWA, and CCWA. This
result on the complexity of literal deduction entails that computing the closure of
a theory under GCWA and CCWA is at least as hard as the deduction problem.
The key lemma in our proof is the following one.

Lemma 3.1. Let T be a propositional theory and let x be a propositional variable. It is
[15-hard to decide if, for every MeMM(T), M |=—1 x. This holds even if T is in 3CNF
orin 3XCNF.

Proof. We proceed as follows. First, we give a <Z transformation of the generic
I15-complete problem into this problem, where the constructed theory is not in
3CNF, and then we show how to transform the constructed theory into an equivalent
theory in 3XCNF form.

The “generic” [1§-complete problem is to decide if a quantified Boolean formula of
the form

F=VYx, .. .Vx, 3y, ... 3y E(xy, o X0 Vi ooy Vi)

where E(X1,..., X, Y1, ---» V) 1S @ Boolean expression in variables x, ..., Xy, Vis -« Vs
is true [30].
The transformation is as follows. Let z, ..., z, and u be new variables. We define the

following theory T':

T=[ A (Xﬁézi)J ALUA Yy Ay A A ) V E(X X0 Vs oo V) )

1<ign



Propositional circumscription and extended closed-world reasoning 237

We claim that F is true if and only if, for every Me MM(T), M|="u.

First, note that 7 is consistent and that, for 7' = A\ <;<.(x; # z;), every MeM(T"') is
extendible to a model of T assigning true to u, y, ..., V., and false to all other variables;
denote this model by &,(M). It is easy to see that §,(M) is a maximal element in M (T')
under <. Moreover, arbitrary extensions of models M, M'e M(T"), M # M’, to models
of T are always incomparable under <. Since only extensions of models of T’ are
models of 7, it follows that every model MeM(T') is extendible to some minimal
model M'eMM(T).

(=): Let F be true and assume that there exists Me MM(T') such that ue M. Then
M K E, for otherwise M — {u}e M (T), which contradicts the minimality of M. There-
fore, ME=u Ay, A -« Ay, holds, that is, M =&¢(M,.), where M_.=Mn{x,,z,,
eees X, Z, ). By the minimality of M, there exists no extension M’ of M,, such that
M'#£M and M'e M(T); any such M’ would satisfy M'<M, M ¢ M'. Consequently,
F is not true, a contradiction.

(<) If, for each MeMM(T), it holds that ME—u, we have that, for all
M eM(T’), §,(M')¢MM(T). We conclude that, for each model M'e M(T’), there
exists an extension & (M')# &y (M) to T, with & (M) < &o(M’). Note that u¢ & (M’)
and that &,(M’) satisfies E. Since M(T') corresponds one by one to all truth
assignments to xy,..., x,, it follows that F is true.

Since T'is clearly computable in polynomial time from F, the first part of the lemma
is proved. For the second part of the lemma, it suffices to show that the claim holds if
T is in 3XCNF.

By the results in [30], the formula F remains I1%-complete even if E is in 3XCNF.
Thus, we assume that E=C; A C, A --- A Ci, where each clause C; contains three
literals. By simple algebraic manipulations, 7 can be transformed into the logically

equivalent theory T, =T,. A T,,, where

T..= /\ [ Vz) A(mx vV z)],

I<ign

T.,y=[ A (uvc,-)]A[ A A (ijc,-)].

I<igk Isigkl<jsm

Note that T is in 2CNF, T,, is in 4CNF, and that each clause of T, has at least
three distinct literals. Let T,,=C,...,C;,Ci1y,...,Cl+,, where C. 4, ..., Cj, , are the
clauses with a double occurrence of a literal. Let T, be the formula obtained from
1., as follows. All double literal occurrences are removed, and each clause C;, for
1<i<l, is split into two clauses C; ;,C/ , in the following way (cf. [10, p. 48]). Let
U={u,y1,....¥m}» and let r,,...,r; be new variables. For clause Ci=1I, V
Lo V63Vl 1<i<l define Ci =1, V1,V rand C;,=r; V I3 V I, 4. Note
that I; ,eU; thus, C; , A C| , is satisfied if [, ,,r; are true.

Now define a formula G=(—muVy)A - - AEuVy)A(CuVr)A- A
(muVr)and atheory T, by ,=T,. A T,;, A G.

It is straightforward to verify that, for each MeM(T'), the set &(M)=Mu
{1, ..., F1,....r1} is a model of T;. Clearly, £,(M) is maximal under <, and
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G assures that §5(M) is the only possible extension of M to a model of T, in which u
is true.

On the other hand, it is not difficult to see that each MeM(T’) is extendible to
a model of T, in which u is false iff M is extendible to a model of 7; in which u is false.
For if MeM(T') extends to M,;eM(T;) such that u¢M,, then M, is a model of
T.. N G, and, for 1 <i<[, at least one of C; |, C; , is satisfied by M, since M, satisfies
C:. Thus, a proper truth assignment to r; satisfies C; ; A C; ,. Consequently, some
M, 2= M,, with u¢ M,, is a model of 7;. Since M, 2 M, the “only if” claim holds.
Conversely, every model M of 75 restricted to the variables of 7; is a model of T;;
hence, M —{ry,....r;}eM(T}). Thus, if M,e M(T;) such that M, 2 M for MeM(T"),
then M, =M, —{r,....,r;}eM(T}), where M, 2 M. Hence, also the “if” direction is
true.

We conclude from this that there is some M,eMM(T;), with M, | —u, iff there is
some M,eMM(T}), with M, ¥ —u, iff there is some MeMM(T), with M —u.
Note that T, =T, A T, A G is in 3CNF, and T,, is already in 3XCNF, but T, and
G are only in 2XCNF. Let 7. A G=CY{,...,C;,and let sq, ..., s, be new variables. Let
H denote

H=[(CTVs) A (s VCOIA - ALCEV si) A (T8, V CR)

and define a theory T; as 73=T,, A H. Then T; is clearly in 3XCNF and, as is easily
seen, cach model of 73 induces a model of T; and each M,eM(T3) is extendible to
some M e M(T;) by assigning the s; any truth value; this entails that, for all Me M (T3),
M — {s;}e M(T3). Thus, clearly, there exists an MeMM(T;), with M | —u, iff there
exists an MeMM(T,), with M —u, iff there exists MeMM(T), with M E —u.
Obviously, 7> and T; can be constructed in polynomial time from the formula F; thus,
the proof of the lemma is complete. [

We remark that Lemma 3.1 grasps the case of the “simplest” formula type for which
the problem MM(T)=F is I}-hard. Indeed, if F is a single variable x, then
MM(T)|=F iff T|=F; hence, the problem is in co-NP.

Lemma 3.1 also marks a boundary of the complexity of deduction from the minimal
models of a theory T that is in kKCNF for constant k. Indeed, for k=2, deduction is no
longer I1%-hard, even in case of {P;Z >-minimality, as the following lemma shows.

Lemma 3.2. Let T be a propositional theory in 2CNF, and let F be a propositional
Jormula. To decide if, for all MeMM(T; P; Z), it holds that M |=F is in co-NP.

Proof. To show that for some MeMM(T; P;Z) it holds M & F, make a guess for
M and check that M |= T and M |# F. Checking {(P; Z >-minimality of M can be done
in polynomial time as follows. Join to 7, for each variable x such that x¢(PuZ) or
xeP — M, the singleton clause x if xe M and —1 x if x¢ M. Let T’ denote the resulting
theory. Then MeMM(T; P;Z) iff, for all xePn M, the theory T,=7' A T1x is
inconsistent. Note that T, is in 2CNF; consistency checking for 2CNF theories is well
known as a polynomial problem [10]. [
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3.1. ECWA, circumscription, and EGCWA

Our main result is easily proved with Lemma 3.1.

Theorem 3.3. In the propositional case, the deduction problem C(T;P;Q;Z)=F? is
ME-complete for C=EGCWA, C=ECWA, and C =CIRC. This holds even if the theory
Tisin 3XCNF and F is a single literal.

Proof. By Proposition 2.5, circumscription and ECWA are equivalent; thus, a consid-
eration of ECWA suffices.

Membership of EGCWA and ECWA in I is immediate from Proposition 2.4: To
disprove ECWA(T; P;Q; Z)|=F, guess a (P, Z >-minimal model M of T and check if
F is false in M.! Verification of the minimality of the guess can be done with a single
NP oracle call: Join to T the clause —1x; V —1x, V -+ V —1x,, where {x{,...,X,}=
P~ M, and, for each variable x such that xe P— M or x¢(Pu Z), join the clause x if
xeM and —ix if x¢ M. Let T’ be the theory obtained in this way. Then, T’ is
inconsistent if and only if MeMM(T;P;Z). If ME F, then a proof of
ECWA(T; P;Q;Z) F is found. For EGCWA, the same procedure applies with
Q=Z=0. IE-hardness of the deduction problem with EGCWA and ECWA follows
immediately from Lemma 3.1; thus, the theorem is proved. [

Note that, for 2CNF theories, we have the following resuit.

Theorem 3.4. Let T be a propositional theory in 2CNF. Then the deduction problem
C(T; P, Q;Z)=F? is co-NP-complete for C=EGCWA, C=ECWA, and C=CIRC.

Proof. Membership in co-NP is immediate from Proposition 2.3 and Lemma 3.2.
co-NP-hardness of the deduction problem under EGCWA, ECWA, and under cir-
cumscription for 2CNF theories is shown by Cadoli and Lenzerini in [6]. Thus, the
theorem follows. O

3.2. CWA

Since the “naive” CWA does not preserve consistency of T in general, checking the
consistency of the closure with CWA is an additional — although not unrelated
— problem to consider.

A semantical characterization of CWA in terms of minimal Herbrand models
appears in [32], which states that CWA(T) is consistent iff the intersection of all
Herbrand models of T is a model of T. Hence, ciearly, we have the following result.

Lemma 3.5. CWA(T) is consistent iff T has a unique minimal model M and CWA(T) is
logically equivalent to M.

'In [6] a proof of membership of ECWA in I} is already sketched.
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CWA consistency checking turns out to be the unique solution variant (cf. [14] for
uniqueness questions) of the following problem MINSAT: Has 7 a minimal model?
Note that the latter is simply the NP-complete SATISFIABILITY (SAT) problem,
since every consistent theory has a minimal model. The uniqueness variant UMIN-
SAT is to decide if T has exactly one minimal model. Note that this problem is similar
to the well-studied USAT problem, which asks if a Boolean expression E has a unique
satisfying assignment [4]. Another similar problem is UOASAT, which asks if the
truth assignment that satisfies the maximum number of a set of clauses is unique [16].
As for USAT and UOASAT, UMINSAT is casily proved co-NP-hard, but it is not
clear how to reduce SAT to it. USAT is complete for the class DY [24] under the
randomized reduction <, of Valiant and Vazirani [31] and, as recently proved,
USAT is not in co-DP, which contains NP Uco-NP, unless the polynomial hierarchy
collapses [8, 7].

We now show that UMINSAT and, thus, CWA consistency checking is at least as
hard as USAT.

Lemma 3.6. USAT <7 UMINSAT.

Proof. Let E(x,,...,x,) be a Boolean expression in variables x,...,x,. Let y,..., ¥,
be new variables. Define a theory T by

T:E(Xl, -“’Xn) A (Xl ?_éyl) A A (xn:/‘_éyn)'

It is easy to see that the truth assignments to x, ..., x, satisfying E correspond one
to one with the models of 7 on variables xy, yy, ..., x,, y, and that all models of T are
minimal. Thus, E has a unique satisfying truth assignment iff 7 has a unique minimal
model. O

We, thus, have the following resuit.

Theorem 3.7. Consistency checking for propositional theories with CWA is co-NP-
hard, and this problem is not in co-DF unless the polynomial hierarchy collapses.

Proof. By Lemmas 3.5 and 3.6. [J

The deduction problem with CWA is close to the consistency-checking problem. It
1s important to note that deciding if a variable x is CWA-fin in theory T is different
from deciding if CWA(T')|= 71 x. The former problem is NP-complete, while the latter
turns out to be more difficult. It is easy to show by conjoining a new variable z to
theory T in the proof of Lemma 3.6 that CWA(T A z) =1z iff CWA(T) is inconsist-
ent iff 7 has not a unique minimal model. Thus, co-USAT is <Z -reducible to
CWA(T) deduction, and we get the following result.

Theorem 3.8. The deduction problem for propositional theories with CW A is NP-hard,
and this problem is not in DY unless the polynomial hierarchy collapses.
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Note that both CWA consistency checking and deduction can be done in poly-
nomial time with O(m) calls to an NP oracle, where m is the number of distinct
variables in 7. This upper bound can be considerably improved as follows.

Theorem 3.9. Let m be the number of distinct variables in T. CW A consistency checking
and CWA deduction can be done with Ologm) calls to an NP oracle; hence, the
problems are in PNFIOUoen]

Proof. If Tis consistent, first the size k of a model of minimal cardinality is computed
with binary search, which takes O(log m) oracle calls. Then it is checked by another
oracle call if there is a unique minimal model; this is true iff there are no models
M #M'eM(T) such that [M|=k and M & M’. Recall that CWA(T) is consistent iff
T has a unique minimal model. If CWA(T) is consistent, testing CWA(T) |= F is poss-
ible with one additional oracle call asking if every model MeM(T) of size k
satisfies F. [

Since CWA consistency checking is in PNPIOUegml thig problem is unlikely to be
<?-complete in AL, although it is unknown if this would imply NP =co-NP; cf. [15].
It is tempting to assume that CWA consistency checking is <F}-complete for
PNPIOUogm] Gince it seems difficult, however, to show how to solve SAT with it, we
think this will be, as UOASAT, rather difficult to prove.

3.3. GCWA and CCWA
For GCWA and CCWA, we get the following resuits.

Theorem 3.10. It is I15-complete to check if a variable is GCWA-ffn or CCWA-ffn in
a propositional theory T, even if T is in 3XCNF.

Proof. Immediate from the model characterization of ffn and by Lemma 3.1. O

Corollary 3.11. In the propositional case, the deduction problem C(T;P;Q;Z)=F?is
MNE-hard for C=GCWA and C=CCWA, evenif Tisin 3XCNF and F is a single literal.

Corollary 3.12. The computation of the closure for a propositional theory with GCW A
or CCWA is Z8-equivalent.

Proof. Polynomial-time algorithms to compute the closures with an oracle for free-
ness for negation in T are straightforward; thus, the problems are f-easy. By Lemma
3.1, it follows that the problems are X%-hard under <% reductions; thus, the result
follows. [

Note that, for the deduction problem with GCWA and CCWA, I1%-hardness is
a lower bound. It is not clear, however, whether these problems are in T15. Both
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problems are clearly in P¥O™] since the problem is solved with one call to
a SATISFIABILITY oracle once the closure of T is computed. This algorithm makes
m+ 1 calls to a 5 oracle, where m is the number of distinct variables in 7.

We can improve this straightforward upper bound drastically to only O(logm)
calls, as shown in the proof of the next theorem.

Theorem 3.13. Let m be the number of distinct variables in T. Deduction under GCW A

or CCWA can be done with O(logm) calls to a ¥ oracle; hence, these problems are in
pZ:[Odogn]

Proof. We outline a polynomial-time algorithm that makes only O(logm) calls to
a X¥ oracle for CCWA. Since GCWA is CCWA, with 0=7Z=0, we need no extra
argument for GCWA.

The basic idea is to proceed in two steps. Given 7 and F, first the number of
variables that are not CCWA-fin in T is computed, which will take O(logm) oracle
calls. Then one additional oracle call will suffice to check if CCWA(T;P;Q;Z)
implies F.

Let V,in= UMEMM(T:p;Z) M. Then V,,;, are the variables that are not CCWA-fin in
T; clearly, | V| <m, where m is the number of different variables in 7. We note that
the following problem is in Z%: Does | V.| =k hold, given T, {(P;Q;Z >, and k for
input? The answer to this question is, as is easily seen, “yes” ifl there exist
M,,....M,eMM(T;P;Z) such that |Ul<i<k M=k On a guess for the M;s and
polynomial-time verification of the minimality of the guess with an NP oracle (this
can be done for each M, as described in the proof of Theorem 3.3), testing
| U1 <i<k M| =k is easy; so, the problem | V,;,| > k? is in 8. This implies that | V.1 is
computable under binary search with O(log m) calls to a ¥ oracle.

Now let r=|V,,|. Disproving CCWA(T;P;Q;Z)|=F reduces to determining
whether there exists a structure . of the following form:

‘¢=<{pls"'»pr}’{M1,---sMr}aM>s

where p,,...,p, are pairwise-distinct variables, M, ..., M,e MM(T; P; Z) satisfying
pieM,; for 1<i<r, and MeM(T) such that M = {p,,...,p,} and M F.

It is clear that CCWA(T; P; Q; Z) K F iff such an & exists. Indeed, for every such
structure &, all variables except p1, ..., p, are CCWA-ffn in T; thus, M is truly a model
of CCWA(T: P;Q: Z). Since M | F holds, CCWA(T; P;Q; Z) does not entail F. On
the other hand, it is easy to see that such a structure ¥ must exist if CCWA(T; P; Q; Z)
does not entail F.

The existence of such a structure & can be enquired by one call to a X% oracle, as
this problem is certainly in £5: Upon guessing ., the guess can be verified with an
NP-oracle in polynomial time, as is easily seen. [In fact, this goes through with only
one oracle call to check simultaneously if My, ..., M, are in MM(T; P;Z).]

Altogether, deciding CCWA(T;P;Q:Z)|=F is possible with O(logm)+1=
O(log m) oracle calls; from this, the claim follows immediately. [
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This result suggests that the deduction problem under GCWA and CCWA is not
<?-complete for A%, since, it seems rather unlikely that a problem in PZ:[Ctogn]
is <Z-complete for A%; cf. [16, 34].

4. Conclusion

Our main results are summarized in Table 1.

Answering the question in [6], we have shown that the deduction problem with
ECWA and with circumscription is [15-complete for propositional theories, even for
theories in 3XCNF and a single literal. Moreover, we proved the same result for
EGCWA, and we gave fairly close bounds for CWA, GCWA, and CCWA. It remains
an issue for further research whether CWA deduction is <Z-complete in PNFLO (g
and whether GCWA and CCWA are <’-complete in PZi[Otogn],

Another question to investigate is a refined complexity classification of closure
computation. f-equivalence does not precisely indicate “how much” Zf-complete-
ness is in a problem; cf. [19, 34]. This may be measured by the number of necessary
calls to a Zf oracle [19, 17, 33]. Closure computation with O(n) oracle calls is
straightforward for CWA, GCWA, and CCWA. For CWA, it is not difficult to show
that closure computation is (under suitable polynomial transformability) equivalent
to the following problem QUERY [11]: Given Boolean expressions E,,...,E,,
compute by, ..., b,, where b;=1 if E; is satisfiable and b; =0 if E; is unsatisfiable. This
problem requires at most m oracle calls; by the results of [ 1], sufficiency of fewer calls
is unlikely. It is unknown, however, whether QUERY is complete for FP™F, the
functions computable in deterministic polynomial time with unrestricted NP oracle
access. Similarly, computing the GCWA and the CCWA closure can be shown to be
equivalent to QUERY generalized to 3V-quantified Boolean formulas (that is, deter-
mining the outcome of m independent calls to a =¥ oracle) and, hence, has a complex-
ity characterization analogous to QUERY. The exact complexity classification of
closure computation under polynomial reductions is, anyway, interesting for identify-
ing “harder” and “easier” NP-equivalent or Z{-equivalent problems.

Table 1
Complexity results for propositional closed-world deduction

CWR-rule Lower bound  Upper bound
CWA(T)=F NP-hard PpNP(Otlogn]
GCWA(T)=F I1%-hard pEi[Ologm]
EGCWA(T)=F M§-complete
CCWA(T; P.Q;Z)=F 5-hard pEE[Otozn]
ECWA(T;P;Q;Z)=F

<> M§-complete

CIRC(T;Q; P,Z)=F




244 T. Eiter, G. Gottlob
Acknowledgment

The authors are grateful to the referees for suggesting improvements to the draft of
this paper.

References

[1] A. Amir and W. Gasarch, Polynomial terse sets, Inform. Comput. 77 (1988) 37-56.

[2] K.R. Apt, Introduction to logical programming, Tech. report, Dept. of Computer Science, Univ. of
Texas, 1987.

[3] K.R. Apt and H.A. Blair, Arithmetic classification of perfect models of stratified programs, in:
R. Kowalski and K.A. Bouwen, eds., Proc. 5th Internat. Conf. and Symp. on Logic Programming (MIT
Press, Cambridge, 1988) 766-779.

[4] A. Blass and Y. Gurevich, On the unique satisfiability problem, Inform. and Control 55 (1982) 80-88.

[5] M. Cadoli and M. Lenzerini, The complexity of closed world reasoning and circumscription, Tech.
report, Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”, 1991.

[61 M. Cadoli and M. Lenzerini, The complexity of closed world reasoning and circumscription, in: Proc.
AAAI-90 (1990) 550-555.

[7] R.Chang and J. Kadin, On the structure of uniquely satisfiable formulas, Tech. Report 90-1124, Dept.
of Computer Science, Cornell University, 1990.

[8] R.Changand P. Rohatgi, On unique satisfiability and randomized reductions, Bull. EATCS 47 (1990)
151-159.

{91 J. Chomicki and V.S. Subrahmanian, Generalized closed world assumption is [19-complete, Inform.
Process. Lett. 34 (1990) 289-291.

[10] M. Garey and D.S. Johnson, Computers and Intractability — A Guide to the Theory of NP-Complete-
ness (W.H. Freeman, New York, 1979).

[11] W. Gasarch, The complexity of optimization functions, Tech. Report 1652, Dept. of Computer
Science, Univ. of Maryland, 1986.

[12] M. Gelfond and H. Przymusinska, Negation as failure: careful closure procedure, Artificial Intelli-
gence 30 (1986) 273-287.

[13] M. Gelfond, H. Przymusinska and T. Przymusinski, On the relationship between circumscription and
negation as failure, Artificial Intelligence 38 (1989) 75-94.

[14] D.S. Johnson, The NP-completeness column — an ongoing guide, J. Algorithms 6(2) (1985) 291-305.
{Column 15: Uniqueness.)

[15] D.S. Johnson, A catalog of complexity classes, in: J. van Leeuwen, ed.. Handbook of Theoretical
Computer Science, Vol. A (Elsevier, Amsterdam, 1990) 67-161.

[16] J. Kadin, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM J.
Comput. 17(6) (1988) 1262—1283.

[17] J. Kadin, PN¥IOUeeml and sparse Turing-complete sets for NP, J. Comput. System Sci. 39 (1989)
282-298.

[18] P. Kolaitis and C.H. Papadimitriou, Some computational aspects of circumscription, J. ACM 37(1)
(1990) 1-15.

[19] M. Krentel, The complexity of optimization problems, J. Comput. System Sci. 36 (1988) 490-509.

[20] M. Lenzerini, Covering and disjointness relationships in hierarchy networks, Tech. Report
RAP.17.88, Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”, 1988.

[21] M. Lenzerini, Reasoning about inheritance networks, Tech. Report RAP.22.88, Dipartimento di
Informatica e Sistemistica, Universita di Roma “La Sapienza”, 1988.

[22] J. McCarthy, Circumscription - a form of nonmonotonic reasoning, Artificial Intelligence 13 (1980)
27-39.

[23] J. Minker, On indefinite data bases and the closed world assumption, in: Proc. 6th Conf. on Automated
Deduction (CADE) (1982) 292-308.

[24] C.H. Papadimitriou and M. Yannakakis, The complexity of facets (and some facets of complexity),
J. Comput. System Sci. 28 (1984) 244-259.



Propositional circumscription and extended closed-world reasoning 245

[25] A.Rajasekar, J. Lobo and J. Minker, Weak generalized closed world assumption, J. Automat. Reason.
5 (1989) 293-307.

[26] R. Reiter, On closed-world databases, in: H. Gallaire and J. Minker, eds., Logic and Data Bases
(Plenum, New York, 1978) 55-76.

[27] K.A. Ross and R.W. Topor, Inferring negative information from disjunctive databases, J. Automat.
Reason. 4(2) (1988) 397-424.

[28] J.S. Schlipf, Decidability and definability with circumscription, Ann. Pure Appl. Logic 35 (1987)
173-191.

[29] J.S. Schlipf, When is closed world reasoning tractable? in: Z.W. Ras and L. Saitta, eds., Proc. 3rd
Internat. Symp. on Methodologies for Intelligent Systems, Turin, Italy, October 12-15, 1988. (Elsevier,
New York, 1988) 485-494.

[30) LJ. Stockmeyer and A.R. Meyer, Word problems requiring exponential time, in: Proc. 5th ACM
Symp. on the Theory of Computing (1973) 1-9.

[31] L.G. Valiant and V.V. Vazirani, NP is as easy as detecting unique solutions, Theoret. Comput. Sci.
47(1) (1986) 85-93.

[32] M.H. van Emden and R. Kowalski, The semantics of logic as a programming language, J. ACM
3(1976) 733-742.

[33] K.W. Wagner, More complicated questions about maxima and minima, and some closures of NP, in:
G. Goos and J. Hartmanis, eds., Automata, Languages and Programming, 13th Internat. Coll., Lecture
Notes in Computer Science, Vol. 226 (Springer, Berlin, 1986) 434—443; Theoret. Comput. Sci. 51 (1987)
53-80.

[34] K.W. Wagner, Bounded query classes, SIAM J. Comput. 19(5) (1990) 833-846.

[35] A. Yahya and L. Henschen, Deduction in non-Horn databases, J. Automat. Reason. 1(2) (1985)
141-160.



