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Circumscription and the closed-world assumption with its variants are well-known nonmonotonic 

techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has 

been studied in detail for fragments of propositional logic. One open problem is whether the 

deduction problem for arbitrary propositional theories under the extended closed-world assumption 

or under circumscription is n!-complete, i.e., complete for a class of the second level of the 

polynomial hierarchy. We answer this question by proving these problems FIT-complete, and we 

show how this result applies to other variants of closed-world reasoning. 

1. Introduction 

The nonmonotonic inference techniques of closed-world reasoning are widely used 

in artificial intelligence, database theory, and logic programming [2]. Starting with 

the (naive) closed-world assumption (CWA) introduced by Reiter [26], several formal- 

izations of closed-world reasoning have been developed. In this paper, besides the 

CWA, we consider the following well-known approaches to closed-world reasoning: the 

generalized closed-world assumption (GCWA) by Minker [23], the extended generaliz- 

ed closed-world assumption (EGCWA) by Yahya and Henschen [35], the careful 

closed-world assumption (CCWA) by Gelfond and Przymusinska [12], and the ex- 

tended closed-world assumption (ECWA) by Gelfond et al. [13]. Circumscription 
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was introduced by McCarthy in [22]. It is known that circumscription as defined in 

[36] coincides with the ECWA in the case of propositional logic [13]. 

While much work has been devoted to the study of the logical properties of such 

forms of closed-world reasoning and of their applicability in different contexts, the 

interest in a complexity analysis of these methods has emerged only more recently 

12, 20, 21, 291. Papalaskari and Weinstein [37] show that inference from infinite 

propositional theories under minimal consequence (i.e. circumscription) is II; and not 

C!j. For the first-order case, it was shown that a number of closed-world inference 

rules have degrees of unsolvability at different levels of the arithmetical hierarchy. In 

particular, Apt and Blair [3] show that the CWA is complete for II:, Chomicki and 

Subrahmanian [9] show that GCWA is II:-complete, and Schlipf 1281 has proven 

that relevant problems related to circumscription are X:-complete and II: -complete. 

Other complexity results concerning model checking are provided by Kolaitis and 

Papadimitriou in [ 181. 

Cadoli and Lenzerini present in [S, 61 a very careful analysis of the computational 

complexity ‘of the above-mentioned forms of closed-world reasoning for various 

fragments of propositional logic. They mainly consider syntactically restricted classes 

of formulas, such as Horn clauses, dual Horn formulae, Krom formulae, and various 

combinations of these classes. Their work accurately elucidates the boundary between 

tractability and intractability for different forms of closed-world reasoning. Other 

important studies where such restrictions are considered were carried out by Apt [2] 

and by Lenzerini [20, 211; for an overview, see [6]. 

Little has been shown concerning the computational complexity arising from the 

application of closed-world inference rules to general propositional clauses or for- 

mulae. Cadoli and Lenzerini note that it follows from results in [29] that performing 

deduction under the CCWA or ECWA is both NP-hard and co-NP-hard [6]. They 

also observe that the deduction problem under the ECWA is in the class II; of the 

polynomial hierarchy. The question whether deduction under ECWA is complete for 

II: is pointed out as an open problem. 

In the present paper we deal with the complexity of closed-world reasoning applied 

to general propositional theories and to unrestricted clause sets. In particular, we 

study the deduction problem, i.e., given formulae F and G, does G follow from F under 

a certain closed-world inference rule? We show by a surprisingly short proof that the 

deduction problems under the GCWA, the EGCWA, the CCWA, and the ECWA are 

all II;-hard. In particular, we show that the deduction problem under both the 

EGCWA and the ECWA is II;-complete, thus solving the problem posed by Cadoli 

and Lenzerini. We show that this holds also under the restriction that F is in clause 

form with at most 3 literals per clause and G is a literal. This is proved to be a limit 

case for II;-completeness, since if F has at most 2 literals per clause, the deduction 

problem is co-NP-complete for both EGCWA and ECWA. 

For the GCWA and the CCWA, we provide upper bounds by showing that the 

inference problem can be solved with O(logm) calls to a C;-oracle, where m is the 

number of propositional variables in the formula F. We also show that testing 
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whether the closure under CWA of a formula F is consistent (a co-NP-hard problem) 

can be done with O(logm) calls to an NP-oracle, where m is the number of proposi- 

tional variables in F, thus providing a new upper bound for this problem. 

Our results can be interpreted as follows: If the polynomial hierarchy does not 

collapse, then, for all closed-world reasoning principles that we consider (except for 

the simple CWA), the deduction problem is strictly harder than the deduction 

problem in classical propositional logic. In particular, depending upon the chosen 

closed-world principle, the deduction problem is either complete for If! or only 

“mildly” harder than f’f;. The deduction problem under the CWA, on the other hand, 

is in A;, and, most probably, not complete for this class. Thus, deduction with the 

CWA is not much harder than the deduction problem in the classical propositional 

logic. It is harder, however, since we show that this problem is neither in NP nor in 

co-NP unless the polynomial hierarchy collapses. 

2. Preliminaries and previous results 

A theory T is, unless stated otherwise, a finite set of propositional formulae. As 

usual, we identify T with the conjunction of all its formulae. Closed-world reasoning 

attaches to each theory T a set of formulae that are assumed to be false in lack of 

deducibility. Which formulae are added to T depends on the closed-world reasoning 

rule (CWR-rule) obeyed. The union of T and the conjoined formulae is called the 

closure of T with respect to the applied CWR-rule. 

We consider all the major CWR-rules proposed in the literature and follow the 

notation in [6]. The more sophisticated CWR-rules require to partition the variables 

into three sets, usually denoted by P, Q, and Z. The set P contains the variables to be 

minimized, Z are those variables that can vary in minimizing P, and Q are all other 

variables. For every set R of variables, the sets R+ and R- denote the positive and 

negative literals corresponding to R, i.e., the formulae R’={xlx~R} and R-= 

(1 x 1 XER}, respectively. A 1 c ause is a disjunction of literals. A clause is positive iff it 

has no negative literals. A formula is in conjunctive normal form (CNF) if it is 

a conjunction of clauses. A formula in CNF is in kCNF if each clause contains at most 

k literals, and it is in kXCNF if each clause contains exactly k distinct literals. 

Cadoli and Lenzerini characterize the CWR-rules abstractly as follows. 

Definition 2.1 (Cadoli and Lenzerini [6]). Let T be a propositional formula, (P; Q; Z) 

a partition of the variables in T, and let C be a CWR-rule. The closure of T with 

respect to C is 

C( T; P; Q; Z) = TV { 1 K ) K is free for negation in T with respect to C>. 

A formula K is called C-ffn if it is free for negation in T with respect to the 

CWR-rule C (given (P; Q; Z)). 
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The CWR-rules in the that are for negation follows. Formula 

is free negation if only if following assumptions 

CWA (Closed-ti!orld ussumption [26]): K is a positive literal and Tl# K. 

CC WA (Generalized CWA [23]): K is a positive literal and, for every positive 

clause B with Tl# B, it holds that Tl# B V K. 

EC WCA (Extended CC WA [35]): K is a conjunction of positive literals and, for 

every positive clause B with Tl# B, it holds that T/# B V K. 

CC WA (Car@ C WA [12]): K is a positive literal from P and, for each clause 

B whose literals belong to P+ u Q’ u Q- such that Tl# B, it holds that Tl# B V K. 

EC WA (Extended C WA [ 131): K is an arbitrary formula not involving literals from 

Z and, for each clause B whose literals belong to P+ u Q’ uQ- such that Tl# B, it 

holds that Tl# B V K. 

Since CWA, GCWA, and EGCWA are independent of (P; Q;Z), we write 

CWA(T) for CWA(T; P;Q;Z), etc. 

The closure of T under naive CWA may be inconsistent, although T is consistent. 

The other CWR-rules, however, preserve consistency. Note that GCWA is a restricted 

version of EGCWA as well as CCWA, and both EGCWA and CCWA are restrictions 

of ECWA. Recently, a weakened form of GCWA has been introduced [25] for 

syntactically restricted theories, called disjunctive database rule in [27]; this CWR- 

rule has a polynomial-time algorithm for deduction [6]. 

An alternative characterization of the CWR-rules is possible in terms of minimal 

Herbrand models. Recall that, in the propositional case, a Herbrand model is the set 

of propositional variables that are true in a truth-value assignment. We write M I= F if 

the formula F is satisfied by the model M. Let M(T) denote the set of all models of 

theory T. The relation < on M(T) is defined by M 6 M’ iff M L M’, i.e., all variables 

true in M are also true in M’. Clearly, < is a partial order. For a partition (P; Q; Z), 

the relation <p;z is defined on M(T) by M <p:z M’ iff M nQ = M’nQ and 

M nP G M’nP. Relation <p:z is a pre-order; note that Gpiz coincides with < for 

Q=Z=@. Model MEM(T) is minimal ifno M’EM(T) satisfies M’<M and M$M’, 

and M is called (P;Z)-minimal if no M’gM(T) satisfies M’gpiZ M and M $p:z M’. 

The minimal models of Tare denoted by MM(T) and the (P; Z)-minimal models by 

MM(T;P;Z). 

Now a formula K is free for negation iff the following property is satisfied (cf. [6]): 

C WA: K is a positive literal and there is some MEM( T) such that M I# K. 

GCWA: K is a positive literal and, for each MEMM(T), M I# K. 

EGC WA: K is a conjunction of positive literals and, for each McMM(T), M I# K. 

CC WA: K is a positive literal from P and, for each MEMM(T; P;Z), M I# K. 

ECWA: K is an arbitrary formula not involving literals from Z and, for each 

MEMM(T; P;Z), M I# K. 

Note that CWA, GCWA, and CCWA only add literals to T. Thus, the closure of 

T with respect to each of these CWR-rules can be written down in space linear in the 

size of T if only the variables of Tare considered. For the other CWR-rules, EGCWA 

and ECWA, exponential space is required in the worst case. 
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We refer to the standard notation in complexity theory [lo, 151. Recall that PA 

(NPA) corresponds to the class of decision problems that are solved by deterministic 

(nondeterministic) Turing machines with an oracle for A in polynomial time. Problem 

B is polynomial-time Turing-reducible to problem A (B<F A) iff BgPA. The classes 

C,‘, II,‘, and A: of the polynomial hierarchy are defined by Xg = II; = A: = P, and, for 

k>O, C,P+i=NP’.P Hkp+l=co-Ckp+l, and A,‘, 1 = P”! In particular, C!=NPNP and 

III = co-NPNP. The class of decision problems that are polynomially solvable with no 

more thanf(n) calls to a CE oracle is denoted by Pz,PcJ(n)l, wheref(n) is a function in 

the size n of the problem instance. 

To generalize the concept of NP-completeness, in [lo] the notions NP-easy, 

NP-hard, and NP-equivalent are introduced for search problems (Turing-computable 

functions). In this spirit, we say that a search problem is XI-equivalent if it is zC,P-easy 

and CL-hard, where k3 1. A search problem A is X:-hard (k>, 1) if BdT A for every 

problem BEC!, and A is XI-easy if A <T B for some BEXI. [Note that, for decision 

problems, polynomial-time transformability (many-one reducibility <“,) is the stan- 

dard notion of hardness.] 

The complexity of computing the CWA closure is an easy corollary to the following 

proposition, which follows from a result in [29]. 

Proposition 2.2. Deciding if variable x is C WA-j@ in T is NP-complete. 

Corollary 2.3. Computing the closure of a propositional theory T with CWA is NP- 

equivalent. 

The next proposition is well known; cf. [6]. 

Proposition 2.4. For any formula F, EGCWA(T) I= F if, for all MEMM(T), MI= F, 

and ECWA(T;P;Q;Z)I=F i’,.for all MgMM(T;P;Z), M/=F. 

An extensive study of the complexity of closed-world reasoning for the proposi- 

tional case is presented by Cadoli and Lenzerini in [S, 63. Their work covers import- 

ant propositional theories for which the deduction problem is tractable, among them 

Horn and Krom theories. They point out that the analysis of Schlipf in [29] entails 

that propositional deduction with CCWA is NP-hard as well as co-NP-hard, and they 

also show that closed-world reasoning with the ECWA-rule for arbitrary proposi- 

tional theories is in HI. It is posed as an open problem in [6] whether this problem is 

H,P-complete. 

One of the most powerful CWR-rules is circumscription, which was introduced by 

McCarthy [22] for first-order theories. Informally, the circumscription CIRC(T; P; Z) 

of a list of predicates P in a first-order theory T states that the predicates in P have 

minimal extension in T if the predicates in list Z are free to vary for minimization [36]. 

In the propositional case, P= {pl,. ..,p,} and Z = {zi, ., z,} are sets of proposi- 

tional variables, and the circumscription of theory T= T(P; Q; Z) (Q are the variables 
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of T not in P u Z) is 

CIRC( T; P; Z) = T(P; Q; Z) A [VP’, Z’( T(P’; Q; Z’) A (P’ =S P)) => (P S= P’)], 

where P’={p; ,..., p;}, Z’={z; ,..., zh} are disjoint sets of propositional variables, 

T(P’; Q; Z’) denotes the theory obtained from T(P; Q; Z) by replacing the variables 

Pi,Zj with PI,zJ, for 1 didn, 1 <jdm, VP’,Z’ stands for V’p’i...VpiVz’i...Vzk, and 

P’~P,P~P’standfor~\l,i~n(~!j~i)and/I, <jGn (Pi *pi), respectively. 

A closer look at circumscription yields the following relation (cf. [ 13, Theorem 5.11). 

Proposition 2.5. Circumscription and the EC WA-rule are equivalent for propositional 

theories. 

3. Complexity results 

The deduction problem for CWR-rule C is as follows: Given a theory T and 

a formula F, does C( T; P; Q; Z) /= F hold, where T, P, Q, Z, and F is part of the input? 

Cadoli and Lenzerini conjecture that this problem is III-complete for ECWA. We 

show that this is true even if T is in 3XCNF and F is a literal. Moreover, the deduction 

problem is (even for a single literal) II!-hard for GCWA, EGCWA, and CCWA. This 

result on the complexity of literal deduction entails that computing the closure of 

a theory under GCWA and CCWA is at least as hard as the deduction problem. 

The key lemma in our proof is the following one. 

Lemma 3.1. Let The a propositional theory and let x he a propositional variable. It is 

Hg-hard to decide if for every MeMM(T), M I=1 x. This holds even if T is in 3CNF 

or in 3XCNF. 

Proof. We proceed as follows. First, we give a < ,I transformation of the generic 

TI!-complete problem into this problem, where the constructed theory is not in 

3CNF, and then we show how to transform the constructed theory into an equivalent 

theory in 3XCNF form. 

The “generic” IIr$complete problem is to decide if a quantified Boolean formula of 

the form 

F=Vx1...Vx,34,,...3~,E(x, ,..., x,,y, ,..., y,), 

where E(x,, . . . . x,,y,, . . . . ym) is a Boolean expression in variables xi, .., x,,y,, . ,y,, 

is true [30]. 

The transformation is as follows. Let zi , . . , z, and u be new variables. We define the 

following theory T: 

T= ,<b<,I(.yi$zi) A C(U A ~1 A 4’2 A ... A Y,) V E(xlr...rxn,yl,...,~(m)l. 
,, 1 
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We claim that F is true if and only if, for every MEMM(T), M I=1 u. 

First, note that T is consistent and that, for T’ = Al <i<n (Xi f Zi), every MEM(T’) is 

extendible to a model of T assigning true to U, yl , . . . , y, andfalse to all other variables; 

denote this model by B,(M). It is easy to see that b,(M) is a maximal element in M(T) 

under Q . Moreover, arbitrary extensions of models M, M’E M (T’), M # M’, to models 

of T are always incomparable under f. Since only extensions of models of T’ are 

models of T, it follows that every model MEM(T’) is extendible to some minimal 

model M’EMM(T). 

(a): Let F be true and assume that there exists MEMM(T) such that ueM. Then 

M w E, for otherwise M - {u} EM(T), which contradicts the minimality of M. There- 

fore, M+u A y, A ... A y, holds, that is, M=&o(M,,), where M,Z=Mn{x,,z,, 

. ..) x,,z,}. By the minimality of M, there exists no extension M’ of M,, such that 

M' # M and M’EM(T); any such M’ would satisfy M’d M, M Q M’. Consequently, 

F is not true, a contradiction. 

(e): If, for each MeMM(T), it holds that M +l u, we have that, for all 

M’EM(T’), I,(M’)#MM(T). We conclude that, for each model M’EM(T’), there 

exists an extension b,(M’)#B,(M’) to T, with B,(M’)6B,,(M’). Note that u#8,(M’) 

and that Q,(M’) satisfies E. Since M(T’) corresponds one by one to all truth 

assignments to x1, . . . , x,, it follows that F is true. 

Since T is clearly computable in polynomial time from F, the first part of the lemma 

is proved. For the second part of the lemma, it suffices to show that the claim holds if 

T is in 3XCNF. 

By the results in [30], the formula F remains II;-complete even if E is in 3XCNF. 

Thus, we assume that E =C1 A C2 A ... A Ck, where each clause Ci contains three 

literals. By simple algebraic manipulations, T can be transformed into the logically 

equivalent theory Tl = TX;, A Tuy, where 

T,== A [(Xi V Zi) A (1Xi V lZi)], 

I<i<n 

Tuy= [ ,<+ck(u v ci) I[ A A /j (Yjv ci) . . l<i<k l<j$m 1 
Note that TX, is in 2CNF, T,, is in 4CNF, and that each clause of i’& has at least 

three distinct literals. Let I$,= C;, . . ., C;, C;, 1, . . ., C;,,, where C;, r, . . . . C;+, are the 

clauses with a double occurrence of a literal. Let T:, be the formula obtained from 

T,, as follows. All double literal occurrences are removed, and each clause Cl, for 

1 <i < I, is split into two clauses Cl, 1, Cl.z in the following way (cf. [lo, p. 481). Let 

U={u,y, ,..., ym}, and let y1 ,... ,ri be new variables. For clause Ci =li,r V 

li, 2 V Ii, 3 V Ii, 4, 1 d id 1, define C’i. 1 = Ii, 1 V Ii. 2 V 1 vi and Cl, 2 = Ti V Ii, 3 V li,4. Note 

that Ii, 1 E CJ; thus, Ci, 1 A Cl, 2 is satisfied if Ii, 1, ri are true. 

Now define a formula G=(lu V yr) A .‘. A (lu V ym) A (lu V rr) A . . . A 

(1 u V r,) and a theory T2 by T2 = TX, A T,,!, A G. 

It is straightforward to verify that, for each MEM(T’), the set ah(M)= M u 

{4Y I, . . . . y,, rl, . , rl) is a model of T2. Clearly, &b(M) is maximal under 6, and 
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G assures that &b(M) is the only possible extension of M to a model of T2 in which u 

is true. 

On the other hand, it is not difficult to see that each MEM(T’) is extendible to 

a model of Tz in which u is false iff M is extendible to a model of T, in which u is false. 

For if MEM(T’) extends to M,EM(T,) such that u$M,, then M, is a model of 

cz A G, and, for 1 < i < 1, at least one of Ci, 1, C’i, 2 is satisfied by M 1 since M 1 satisfies 

Cl. Thus, a proper truth assignment to Yi satisfies Cl,, A C’i, 2. Consequently, some 

Mz 2 MI, with uq!Mz, is a model of T,. Since MZ 3 M, the “only if” claim holds. 

Conversely, every model M of T2 restricted to the variables of c is a model of T,; 

hence, M - (rl ,...,rl)~M(TI). Thus, if MzEM(Tz) such that M, 3 M for MEM(T’), 

then M, =M,-(r,, . . ..rl)~M(TI). where M, 2 M. Hence, also the “if” direction is 

true. 

We conclude from this that there is some M2~MM(&), with Mz I# 1 u, iff there is 

some Ml~MM(T1), with MI # iti, iff there is some MEMM(T), with Ml# 1~. 

Note that T, = r,, A Ti, A G is in 3CNF, and T& is already in 3XCNF, but TX, and 

G are only in 2XCNF. Let Tr3 A G = Cy , . , Ci, and let s1 , . . . , s,, be new variables. Let 

H denote 

H=[(C; V sl) A (1~~ V C;)] A ... A [(C;: V s/J A (ls,, V CL)], 

and define a theory T, as T3 = T& A H. Then T, is clearly in 3XCNF and, as is easily 

seen, each model of T3 induces a model of T, and each M,EM(T,) is extendible to 

some M3~ M( T3) by assigning the Si any truth value; this entails that, for all ME M( T3), 

M - {sijEM(T,). Thus, clearly, there exists an MEMM(T,), with M I# 1 u, iff there 

exists an MEMM(T,), with M I# 1 u, iff there exists MEMM(T), with M I# 1 u. 

Obviously, Tz and T3 can be constructed in polynomial time from the formula F; thus, 

the proof of the lemma is complete. 0 

We remark that Lemma 3.1 grasps the case of the “simplest” formula type for which 

the problem MM(T) I= F is II;-hard. Indeed, if F is a single variable x, then 

MM(T)I=F iff Tl=F; hence, the problem is in co-NP. 

Lemma 3.1 also marks a boundary of the complexity of deduction from the minimal 

models of a theory T that is in KNF for constant k. Indeed, for k = 2, deduction is no 

longer II!-hard, even in case of (P; Z)-minimality, as the following lemma shows. 

Lemma 3.2. Let T he a propositionul theory in ZCNF, and let F he a propositional 

formula. To decide if; for all MEMM(T; P;Z), it holds that M /= F is in co-NP. 

Proof. To show that for some MEMM( T; P; Z) it holds M # F, make a guess for 

M and check that M I= T and M I# F. Checking (P; Z)-minimality of M can be done 

in polynomial time as follows. Join to T, for each variable x such that x#(PuZ) or 

XEP- M, the singleton clause x if XEM and 1 .x if x$M. Let T’ denote the resulting 

theory. Then MEMM(T;P;Z) iff, for all XEP~M, the theory TX= T’ A 1 x is 

inconsistent. Note that TX is in 2CNF; consistency checking for 2CNF theories is well 

known as a polynomial problem [IO]. 0 
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3.1. ECWA, circumscription, and EGCWA 

Our main result is easily proved with Lemma 3.1 

Theorem 3.3. In the propositional case, the deduction problem C(T; P; Q; Z) + F? is 

KI!-complete for C = EGCWA, C = ECWA, and C = CIRC. This holds even ifthe theory 

T is in 3XCNF and F is u single literal. 

Proof. By Proposition 2.5, circumscription and ECWA are equivalent; thus, a consid- 

eration of ECWA suffices. 

Membership of EGCWA and ECWA in II; is immediate from Proposition 2.4: To 

disprove ECWA(T; P; Q; Z) I= F, guess a (P, Z)-minimal model M of T and check if 

F is false in M.’ Verification of the minimality of the guess can be done with a single 

NP oracle call: Join to T the clause 1 x1 V 1 x2 V ... V 1 x,, where {x1, . . . , x,} = 

Pn M, and, for each variable x such that xcP- M or x$(PuZ), join the clause x if 

XEM and -IX if x$M. Let T’ be the theory obtained in this way. Then, T’ is 

inconsistent if and only if MeMM(T;P;Z). If M # F, then a proof of 

ECWA(T;P; Q;Z) I# F is found. For EGCWA, the same procedure applies with 

Q=Z=@. H;-h ar ness of the deduction problem with EGCWA and ECWA follows d 

immediately from Lemma 3.1; thus, the theorem is proved. 0 

Note that, for 2CNF theories, we have the following result. 

Theorem 3.4. Let T be a propositional theory in ZCNF. Then the deduction problem 

C(T; P; Q; Z) k F? is co-NP-complete for C = EGCWA, C = ECWA, and C = CIRC. 

Proof. Membership in co-NP is immediate from Proposition 2.3 and Lemma 3.2. 

co-NP-hardness of the deduction problem under EGCWA, ECWA, and under cir- 

cumscription for 2CNF theories is shown by Cadoli and Lenzerini in [6]. Thus, the 

theorem follows. 0 

3.2. CWA 

Since the “naive” CWA does not preserve consistency of Tin general, checking the 

consistency of the closure with CWA is an additional ~ although not unrelated 

- problem to consider. 

A semantical characterization of CWA in terms of minimal Herbrand models 

appears in [32], which states that CWA(T) is consistent 8 the intersection of all 

Herbrand models of T is a model of T. Hence, clearly, we have the following result. 

Lemma 3.5. CWA( T) is consistent ifST has a unique minimal model M and CWA( T) is 

logically equivalent to M. 

1 In [6] a proof of membership of ECWA in IIT is already sketched. 



CWA consistency checking turns out to be the unique solution variant (cf. [14] for 

uniqueness questions) of the following problem MINSAT: Has T a minimal model? 

Note that the latter is simply the NP-complete SATISFIABILITY (SAT) problem, 

since every consistent theory has a minimal model. The uniqueness variant UMIN- 

SAT is to decide if T has exactly one minimal model. Note that this problem is similar 

to the well-studied USAT problem, which asks if a Boolean expression E has a unique 

satisfying assignment [4]. Another similar problem is UOASAT, which asks if the 

truth assignment that satisfies the maximum number of a set of clauses is unique [16]. 

As for USAT and UOASAT, UMINSAT is easily proved co-NP-hard, but it is not 

clear how to reduce SAT to it. USAT is complete for the class DP [24] under the 

randomized reduction <z of Valiant and Vazirani [31] and, as recently proved, 

USAT is not in co-DP, which contains NP uco-NP, unless the polynomial hierarchy 

collapses [S, 71. 

We now show that UMINSAT and, thus, CWA consistency checking is at least as 

hard as USAT. 

Lemma 3.6. USAT < I U M I NSAT. 

Proof. Let E(x, , . , x,,) be a Boolean expression in variables xi, . . . , x,. Let yi, . , yn 

be new variables. Define a theory T by 

T=E(u,, . . . . x,) A (Y, $yl) A ... A (x,,$y,,). 

It is easy to see that the truth assignments to .Y 1, . . . , x, satisfying E correspond one 

to one with the models of Ton variables .x1, J 1, , x,,, J,~ and that all models of Tare 

minimal. Thus, E has a unique satisfying truth assignment iff T has a unique minimal 

model. 2 

We, thus, have the following result. 

Theorem 3.1. Consistency checking .ftir propositioml theories with C WA is co-NP- 

hurd, uml this problem is not in co-DP unless the polynomial hierurchy collapses. 

Proof. By Lemmas 3.5 and 3.6. U 

The deduction problem with CWA is close to the consistency-checking problem. It 

is important to note that deciding if a variable x is CWA-ffn in theory T is different 

from deciding if CWA( T) /= 1 .x. The former problem is NP-complete, while the latter 

turns out to be more difficult. It is easy to show by conjoining a new variable z to 

theory Tin the proof of Lemma 3.6 that CWA( T A z) + 1 z iff CWA(T) is inconsist- 

ent iff T has not a unique minimal model. Thus, co-USAT is <g-reducible to 

CWA(T) deduction, and we get the following result. 

Theorem 3.8. The deduction prohlem,fbr propositionul theories with C WA is NP-hard, 

and this problem is not in DP unless the polynomial hierurchy collupses. 
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Note that both CWA consistency checking and deduction can be done in poly- 

nomial time with O(m) calls to an NP oracle, where m is the number of distinct 

variables in T. This upper bound can be considerably improved as follows. 

Theorem 3.9. Let m be the number of distinct variables in T. C WA consistency checking 

and CWA deduction can be done with O(logm) calls to an NP oracle; hence, the 

problems are in PNPto(‘og “‘I. 

Proof. If T is consistent, first the size k of a model of minimal cardinality is computed 

with binary search, which takes O(logm) oracle calls. Then it is checked by another 

oracle call if there is a unique minimal model; this is true iff there are no models 

M #M’EM(T) such that IMI = k and A4# M’. Recall that CWA(T) is consistent iff 

T has a unique minimal model. If CWA(T) is consistent, testing CWA(T) +F is poss- 

ible with one additional oracle call asking if every model MEM(T) of size k 

satisfies F. 0 

Since CWA consistency checking is in P NPto(‘ogn)l, this problem is unlikely to be 

<K-complete in A;, although it is unknown if this would imply NP = co-NP; cf. [15]. 

It is tempting to assume that CWA consistency checking is <:-complete for 

PNPto(‘ogn)l. Since it seems difficult, however, to show how to solve SAT with it, we 

think this will be, as UOASAT, rather difficult to prove. 

3.3. GC WA and CC WA 

For GCWA and CCWA, we get the following results. 

Theorem 3.10. It is rI;-complete to check if a variable is CC WA-j& or CCWA-ffn in 

a propositional theory, T, even if T is in 3XCNF. 

Proof. Immediate from the model characterization of ffn and by Lemma 3.1. Cl 

Corollary 3.11. In the propositional case, the deduction problem C(T; P; Q; 2) + F? is 

rI;-hardfor C = GCWA and C = CCWA, even ifT is in 3XCNF and F is a single literal. 

Corollary 3.12. The computation qf the closure for a propositional theory with CC WA 

or CC WA is C;-equivalent. 

Proof. Polynomial-time algorithms to compute the closures with an oracle for free- 

ness for negation in Tare straightforward; thus, the problems are XI-easy. By Lemma 

3.1, it follows that the problems are C,P-hard under <f reductions; thus, the result 

follows. 0 

Note that, for the deduction problem with GCWA and CCWA, II;-hardness is 

a lower bound. It is not clear, however, whether these problems are in II;. Both 
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problems are clearly in Pz~[Oc’l)l, since the problem is solved with one call to 

a SATISFIABILITY oracle once the closure of T is computed. This algorithm makes 

m+ 1 calls to a C; oracle, where m is the number of distinct variables in T. 

We can improve this straightforward upper bound drastically to only O(logm) 

calls, as shown in the proof of the next theorem. 

Theorem 3.13. Let m he the number of distinct variables in T. Deduction under GC WA 

or CC WA can he done with O(log m) calls to a z; oracle; hence, these problems are in 
pzxo(lo~J~)l 

Proof. We outline a polynomial-time algorithm that makes only O(logm) calls to 

a C; oracle for CCWA. Since GCWA is CCWA, with Q =Z =@, we need no extra 

argument for GCWA. 

The basic idea is to proceed in two steps. Given T and F, first the number of 

variables that are not CCWA-ffn in T is computed, which will take O(logm) oracle 

calls. Then one additional oracle call will suffice to check if CCWA(T; P;Q;Z) 

implies F. 

Let Vmin=~MeMM(T:P:Z) M. Then Vmin are the variables that are not CCWA-ffn in 

T; clearly, 1 VminI <m, where m is the number of different variables in T. We note that 

the following problem is in C;: Does / V,i” 1 >k hold, given T, (P; Q; Z), and k for 

input? The answer to this question is, as is easily seen, “yes” iff there exist 

M,,...,M,gMM(T;P;Z) such that Iu 1 <;<k Mil >k. On a guess for the Mi’S and 

polynomial-time verification of the minimality of the guess with an NP oracle (this 

can be done for each Mi as described in the proof of Theorem 3.3), testing 

I u~<i</c Mil ,k > IS easy; so, the problem / Vmin I> k? is in C;. This implies that 1 VminI is 

computable under binary search with O(logm) calls to a C,’ oracle. 

Now let r = j Vmin /. Disproving CCWA( T; P; Q; Z) I= F reduces to determining 

whether there exists a structure .Y of the following form: 

where pl, . , pr are pairwise-distinct variables, M 1, . , M,E MM( T; P; Z) satisfying 

pi~Mi for 1 <i<r, and MEM(T) such that M c {p,, . . ..p.} and M k F. 

It is clear that CCWA( T; P; Q; Z) I# F iff such an .4p exists. Indeed, for every such 

structure 9, all variables except pl, . , pr are CCWA-ffn in T; thus, M is truly a model 

of CCWA( T; P; Q; Z). Since M I# F holds, CCWA( T; P; Q; Z) does not entail F. On 

the other hand, it is easy to see that such a structure ,Y must exist if CCWA(T; P; Q; Z) 

does not entail F. 

The existence of such a structure .Y can be enquired by one call to a C; oracle, as 

this problem is certainly in X;: Upon guessing 9, the guess can be verified with an 

NP-oracle in polynomial time, as is easily seen. [In fact, this goes through with only 

one oracle call to check simultaneously if Ml, . . . . M, are in MM(T; P; Z).] 

Altogether, deciding CCWA( T; P; Q; Z) I= F is possible with O(log m) + 1 = 

O(logm) oracle calls; from this, the claim follows immediately. 0 
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This result suggests that the deduction problem under GCWA and CCWA is not 

<&-complete for A;, since, it seems rather unlikely that a problem in Pz~[“(‘osn)l 

is <$-complete for A:; cf. [ 16, 341. 

4. Conclusion 

Our main results are summarized in Table 1. 

Answering the question in [6], we have shown that the deduction problem with 

ECWA and with circumscription is TIF-complete for propositional theories, even for 

theories in 3XCNF and a single literal. Moreover, we proved the same result for 

EGCWA, and we gave fairly close bounds for CWA, GCWA, and CCWA. It remains 

an issue for further research whether CWA deduction is <g-complete in PNPto(‘ogn)l 

and whether GCWA and CCWA are <;-complete in PZ~Cot’osn)l. 

Another question to investigate is a refined complexity classification of closure 

computation. CL-equivalence does not precisely indicate “how much” C[-complete- 

ness is in a problem; cf. [19, 341. This may be measured by the number of necessary 

calls to a C,’ oracle [19, 17, 331. Closure computation with O(n) oracle calls is 

straightforward for CWA, GCWA, and CCWA. For CWA, it is not difficult to show 

that closure computation is (under suitable polynomial transformability) equivalent 

to the following problem QUERY [l 11: Given Boolean expressions El, . . . . E,, 

compute b, , . . . , b,, where bi = 1 if Ei is satisfiable and bi = 0 if Ei is unsatisfiable. This 

problem requires at most m oracle calls; by the results of [I], sufficiency of fewer calls 

is unlikely. It is unknown, however, whether QUERY is complete for FPNP, the 

functions computable in deterministic polynomial time with unrestricted NP oracle 

access. Similarly, computing the GCWA and the CCWA closure can be shown to be 

equivalent to QUERY generalized to 3V-quantified Boolean formulas (that is, deter- 

mining the outcome of m independent calls to a C,’ oracle) and, hence, has a complex- 

ity characterization analogous to QUERY. The exact complexity classification of 

closure computation under polynomial reductions is, anyway, interesting for identify- 

ing “harder” and “easier” NP-equivalent or CI-equivalent problems. 

Table 1 

Complexity results for propositional closed-world deduction 

CWR-rule Lower bound Upper bound 

CWA(T)I=F NP-hard pNPrOlloanl1 

GCWA(T)+F rI,P-hard pZ:[0l!OSnll 

EGCWA(T)(=F n;-complete 

CCWA(r; P; Q; Z) + F rI,P-hard pr:rolIoru,l 

ECWA(T;P;Q;Z)+F 

CIRC(T:Q;;Z)+F 
rI,P-complete 
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