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An index for an r.e. class of languages (by definition) is a procedure
which generates a sequence of grammars defining the class. An index for
an indexed family of languages (by definition) is a procedure which
generates a sequence of decision procedures defining the family. Studied
is the metaproblem of synthesizing from indices for r.e. classes and for
indexed families of languages various kinds of language learners for the
corresponding classes or families indexed. Many positive results, as well
as some negative results, are presented regarding the existence of such
synthesizers. The negative results essentially provide lower bounds for the
positive results. The proofs of some of the positive results yield, as plea-
sant corollaries, subset-principle or tell-tale style characterizations for the
learnability of the corresponding classes or families indexed. For example,
the indexed families of recursive languages that can be behaviorally
correctly identified from positive data are surprisingly characterized
by Angluin's condition 2 (the subset principle for circumventing over-
generalization). ] 1999 Academic Press

1. INTRODUCTION

Ex-learners, when successful on an object input (by definition) find a final correct
program for that object after at most finitely many trial and error attempts (cf., e.g.
Gold, 1967; Blum and Blum, 1975; Case and Smith, 1983; Case and Lynes, 1982).1
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1 Ex is short for explanatory.
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For function learning, there is a learner-synthesizer algorithm lsyn so that, if lsyn
is fed any procedure that lists programs for some (possibly infinite) class S of total
functions, then lsyn outputs an Ex-learner successful on S (Gold, 1967). The
learners so synthesized are called enumeration techniques (cf., e.g. Gold, 1967; Blum
and Blum, 1975; Fulk, 1990b). These enumeration techniques yield many positive
learnability results, for example, that the class of all functions computable in time
polynomial in the length of input is Ex-learnable. The reader is referred to Jantke
(1979) for a discussion of synthesizing learners for classes of recursive functions that
are not necessarily recursively enumerable.

Ex language learning from positive data and with learners outputting grammars is
called TxtEx-learning. Osherson, Stob, and Weinstein (1988) provide an amazingly
negative result: there is no learner-synthesizer algorithm lsyn so that, if lsyn is fed
a pair of grammars g1 , g2 for a language class L=[L1 , L2], then lsyn outputs an
TxtEx-learner successful on L.2 Of course, it follows from this negative result that
there is also no synthesizer algorithm lsyn so that, if lsyn is fed instead a procedure
listing a pair of grammars g1 , g2 for a language class L=[L1 , L2], then lsyn out-
puts a TxtEx-learner successful on L.

In the present paper we show how to circumvent some of the sting of this
negative result by resorting to more general learners than TxtEx. An example of
more general learners are TxtBc-learners which take positive data about a
language, and, when successful on that language (by definition), find a final
(possibly infinite) sequence of correct grammars for that object after at most finitely
many trial and error attempts (cf., e.g. Ba� rzdin� s� , 1974; Case and Smith, 1983; Case
and Lynes, 1982, Osherson and Weinstein, 1982a).3

If a suitable learner-synthesizer algorithm lsyn is fed procedures for listing decision
procedures (instead of mere grammars), one also has more success at synthesizing
learners. An indexed family is a language class defined by an r.e. listing of decision
procedures for the languages in the class, and an index for an indexed family is a
procedure for listing decision procedures defining it. Even for synthesis from indices
for indexed families, one has negative results. For example, Kapur (1991) shows
that one cannot algorithmically find an TxtEx-learning machine for an arbitrary
TxtEx-learnable indexed family of recursive languages from an index of that family.
This is a bit weaker than a closely related negative result below (Theorem 12 in
Section 3.2 below).

The computational learning theory community has shown considerable interest
(spanning from Gold, 1967 to Zeugmann and Lange, 1995, to the present) in
indexed families (sometimes called uniformly decidable classes). As is essentially
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2 The problem is not that correct grammars for finite classes of languages cannot be learned in the
limit; they can (Osherson, Stob, and Weinstein, 1986a) by an obvious enumeration technique. The
problem is how to pass algorithmically from a list of grammars to a machine which so learns the
corresponding languages. A study of the proof of the result shows that, intuitively, the difficulty, given
a pair of grammars g1 , g2 for a language class L=[L1 , L2], to synthesize a TxtEx-learner successful
on L is in deciding from g1 , g2 whether or not L1=L2 . This equivalence problem is well known to be
algorithmically unsolvable (Rogers, 1967).

3 Bc is short for behaviorally correct.



pointed out in Angluin (1980b), all of the formal language style example classes are
indexed families.4

One of our main results (Theorem 11 in Section 3.2 below) implies that there is
a learner-synthesizer algorithm lsyn so that, if lsyn is fed any index for any indexed
family L of languages which can be TxtBc-learned, then lsyn outputs a TxtBc-
learner successful on L.

The proof of this positive result yields the surprising characterization
(Corollary 3 in Section 3.2 below): if L is an indexed family, then L can be TxtBc-
learned iff

(\L # L)(_S�L | S is finite)(\L$ # L | S�L$)[L$/3 L].

Nicely, whether or not the just above displayed condition holds for an indexed
family, L is easily checkable! Furthermore, this condition turns out to be Angluin's
important Condition 2 from Angluin (1980b), and it is referred to as the subset
principle, in general a necessary condition for preventing overgeneralization in
learning from positive data (cf., e.g., Angluin, 1980b; Berwick, 1985; Zeugmann,
Lange, and Kapur, 1995, Kapur and Bilardi, 1992; Case, 1998). Angluin's Condition 1,
also from Angluin (1980b), is a constructive version of her Condition 2, addi-
tionally requiring that a sufficient collection of finite sets S for the displayed condition
above is defined by an r.e. set of grammars. She shows that there are indexed
families satisfying her Condition 2, but not her Condition 1. She also shows that her
Condition 1 characterizes the indexed families in TxtEx! Hence, we have that an
indexed family is TxtBc-learnable but not TxtEx-learnable � it satisfies Angluin's
Condition 2 but not her Condition 1! Discussion following the proof of Theorem 12
below clarifies the connection between our learning machine synthesizing algorithm
from the proof of Theorem 11 and one implicit in Angluin's proof (Angluin, 1980b)
of her characterization theorem.

Suppose a is a nonnegative integer or a V. TxtBca-learning (Case and Lynes,
1982; Case and Smith, 1983) is a variant of TxtBc-learning in which the final gram-
mars are each allowed to be incorrect on no more than a words.5 Theorem 11
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4 Many example indexed families are known to be learnable (cf., e.g., Angluin, 1980a, 1980b, 1982;
Shinohara, 1983; Wright, 1989). Particularly influential have been pattern languages (Angluin, 1980a)
and finite unions thereof (Shinohara, 1983; Wright, 1989). Nix (1983), as well as Shinohara and Arikawa
(1995) outline interesting applications of pattern inference algorithms. For example, pattern language
learning algorithms have been successfully applied for solving problems in molecular biology (see
Shimozono et al., 1994, Shinohara and Arikawa, 1995). Pattern languages and finite unions of pattern
languages turn out to be subclasses of Smullyan's (1961) elementary formal systems (EFSs). Arikawa,
Shinohara, and Yamamoto (1992) show that the EFSs can also be treated as a logic programming
language over strings. The techniques for learning finite unions of pattern languages have been extended
to show the learnability of various subclasses of EFSs (Shinohara, 1991). Investigations of the
learnability of subclasses of EFSs are important because they yield corresponding results about the
learnability of subclasses of logic programs. Arimura and Shinohara (1994) use the insight gained from
the learnability of EFSs' subclasses to show that a class of linearly covering logic programs with local
variables is TxtEx-learnable. These results have consequences for inductive logic programming (cf., e.g.
Muggleton and Raedt, 1994; Lavarac� and Dz� eroski, 1994).

5 This is where, no more than V words means at most finitely many words. Also, by convention 2V=V.



below shows more generally that, for each a, there is a learner-synthesizer algo-
rithm lsyn so that, if lsyn is fed any index for any indexed family L of languages
which can be TxtBca-learned, then lsyn outputs a TxtBca-learner successful on L.
Corollary 4 in Section 3.2 below characterizes the TxtBca-learnable indexed families
as exactly those satisfying

(\L # L)(_S�L | S is finite)(\L$ | S�L$ # L 7 L$�L)[card(L&L$)�2a],

another easily checkable condition.
We outline next the principle additional results of the present paper.
Let card(S) denote the cardinality of a set S. We show (Theorem 1 in Section 3.1

below) that there is an algorithm for translating any listing procedure for a finite
set P of grammars into a learning procedure MP which, given any listing of a
language L generated by grammars in P, eventually converges to outputting over
and over no more than card(P) grammars each of which is correct for L. The
requirement for successful learning, in this case, is loosened from requiring that MP

TxtEx-learn L to merely requiring MP to output eventually �card(P) grammars
correct for L.6 Furthermore, MP does involve an enumeration technique, a procedure
which does matching and elimination based on the grammars in P. Interestingly,
too, MP , in this case, outputs conjectures from the ``hypothesis space'' P itself
(Lange and Zeugmann, 1993).

Suppose x is a procedure for listing an r.e. (possibly infinite) set of grammars P.
Let Cx be the set of languages generated by the grammars in P. In Section 3.1 we
explore the problem of synthesizing learning machines for learnable Cx 's from the
corresponding x's.

One shot language identification (called TxtEx0 -identification below7) is just the
important case of TxtEx-identification where the learning procedure makes but one
conjecture (which must, then, be correct). The proof of Theorem 3 below (in
Section 3.1) presents an algorithm for transforming any x such that Cx is TxtEx0 -
identifiable into a TxtBc-learner for Cx .

For this, as well as for our other results providing the synthesis of a learning
machine, each synthesized learning machine can be construed as implementing a
(perhaps complicated) enumeration technique; however, of necessity, in most cases
the conjectures of the synthesized machines go beyond the original hypothesis space
(Lange and Zeugmann, 1993).

Regarding the positive results about Cx 's, we also present corresponding lower
bound results showing, in many cases, the positive results to be best possible. For
example, Theorem 4 below shows the necessity of the cost, from Theorem 3, of
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6 The criterion requiring a machine, on positive data for a language L, to output eventually no
more than n distinct grammars each of which is correct is called TextFexn -learning (Case, 1998).
TextFex1 -learning is just TxtEx-learning, but one can learn strictly larger classes of languages with
TextFexn+1 -learners than with TextFexn -learners (Case, 1998). One can learn larger classes of
languages with TxtBc-learners than with TextFexn -learners for any n (Case, 1998); of course this is,
then, at a cost of outputting infinitely many distinct grammars in the limit.

7 The 0 in ``TxtEx0 '' has a totally different meaning from the n in ``TextFexn ''; the former is a bound
on mind changes for convergence to a single final program; the latter is a bound on the number of
different programs an associated machine eventually vacillates between in the limit.



passing from no mind changes for the input classes to infinitely many in the
synthesized learning machines.

One might hope to obtain synthesized learning machines with better mind
change complexity if one provided indices for listing decision procedures in place of
grammars for the languages to be learned from positive data. In Section 3.2 below,
we see that this is indeed the case. For example, the proof of Theorem 9 below (in
Section 3.2) presents an algorithm for transforming any index of any indexed family
for a class of recursive languages L that is TxtEx0 -identifiable into a learning pro-
cedure which TxtEx-identifies L. Theorem 10 shows the necessity of the cost, from
Theorem 9, of passing from no mind changes for the input classes to finitely many
in the synthesized learning machines. However, the last theorem of Section 3.2
(Theorem 12) shows that the cost of passing from even one mind change in the
input indexed family to infinitely many in the synthesized learning machines is
necessary.

2. PRELIMINARIES

2.1. Notation

N is the set of natural numbers, [0, 1, 2, 3, ...]. Unless otherwise specified, e, i, j,
k, m, n, p, s, w, x, y, z, with or without decorations (decorations are subscripts,
superscripts, and the like), range over N. V is a nonmember of N and is assumed
to satisfy (\n)[n<V<�]. Furthermore, 2V =

def
V } a, b, and c, with or without

decorations, ranges over N _ [V]. By <, #, �, /, $, # we mean the empty set,
element of, subset, proper subset, superset, and proper superset, respectively. P and
S, with or without decorations, range over sets. We sometimes write card(S)�V to
mean S is finite. We use S1 2 S2 to denote the symmetric difference of the sets S1

and S2 . S1=a S2 means that card([x | x # S1 2 S2)�a. ODD=[2x+1 | x # N],
and EVEN=[2x | x # N].

The maximum and minimum of a set are denoted by max( } ) and min( } ), respectively,
where max(<)=0 and min(<) is undefined. Fix a recursive canonical indexing of
the finite sets (Rogers, 1967). The min( } ) of a collection of finite sets is, then, the
finite set in the collection with minimal canonical index. Also, when we compare
finite sets by < we are comparing their corresponding canonical indices.

We use the symbol a to mean that a computation converges. f, g, and h, with or
without decorations, range over total functions with arguments and values from N ;
( } , } ) stands for an arbitrary, computable, one-to-one encoding of all pairs of
natural numbers onto N (Rogers, 1967).

We fix an acceptable programming system . for the partial computable functions:
N � N (cf., e.g., Rogers, 1958; Machtey and Young, 1978; Royer, 1987). .i is the
partial computable function computed by program i in the .-system. R represents
the class of all (total) recursive functions of one variable. R0, 1 denotes the class of
all (total) recursive 0�1 valued functions.

Wi is domain(.i). Wi is, then, the r.e. set�language (�N ) accepted (or
equivalently, generated (Hopcroft and Ullman, 1979)) by the .-program i.
W s

i =
def [x�s | x appears in Wi in �s steps]. For a language L�N, L[x] is
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[w�x | x # L], and we use /L to denote the characteristic function of L ; L� is the
complement of L. L, with or without decorations, ranges over set of subsets of the
r.e. sets.

We sometimes consider partial recursive functions with two arguments in the .
system. In such cases we implicitly assume that ( } , } ) is used to code the
arguments, so, for example, .i (x, y) stands for .i ((x, y) ).

The quantifiers ``\�'' and ``_�'' (essentially from Blum, 1967), mean ``for all but
finitely many'' and ``there exist infinitely many,'' respectively.

f : N � N is limiting recursive �
def

(_ recursive g : (N_N ) � N )(\x)[ f (x)=
limt � � g(x, t)]. Intuitively, g(x, t) is the output at discrete time t of a mind-chang-
ing algorithm for f (acting on input x); hence, for f limiting recursive as just above,
for all x, for all but finitely many times t, the output of the mind changing algo-
rithm on input x is f (x). It is easy to show that there is a limiting recursive function
h such that (\ recursive g)(\�x)[h(x)>g(x)]. Hence, the limiting recursive func-
tions go way beyond the recursive ones; in fact, they have been known since Post
(Shapiro, 1971) to characterize the functions recursive in an oracle for the halting
problem. The set of all (total) limiting recursive functions of one variable is LR.

We sometimes use the symbol ``c'' for negation.

2.2. Learning Machines

We now consider language learning machines. We first introduce a notion that
facilitates discussion about elements of a language being fed to a learning machine.
A sequence _ is a mapping from an initial segment of N into (N _ [*]). The con-
tent of a sequence _, denoted content(_), is the set of natural numbers in the range
of _. The length of _, written |_|, is the number of elements in _. 4 denotes the
empty sequence. Intuitively, *'s represent pauses in the presentation of data. We
let _ and {, with or without decorations, range over finite sequences. SEQ is the set
of all finite sequences. The set of all finite sequences of natural numbers and *'s,
SEQ, can be coded onto N. This latter fact will be used implicitly in some of our
proofs.

A language learning machine is an algorithmic device which computes a mapping
from SEQ into N _ [?]. Intuitively the outputted ?s represent the machine not yet
committing to an output program. The reason we want the ?s is so we can avoid
biasing the number of program mind changes before a learning machine converges;
if we allow initial outputs of ?s before, if ever, the first program is output, then we
can learn more things within n mind changes than if we had to begin with a
program (numerical) output. In this paper we assume, without loss of generality,
that for all _�{, [M(_){?] O [M({){?]. M ranges over language learning
machines.

2.3. Fundamental Language Identification Paradigms

A text T for a language L is a mapping from N into (N _ [*]) such that L is
the set of natural numbers in the range of T. The content of a text T, denoted
content(T ), is the set of natural numbers in the range of T.
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Intuitively, a text for a language is an enumeration or sequential presentation of
all the objects in the language with the *'s representing pauses in the listing or
presentation of such objects. For example, the only text for the empty language is
just the infinite sequence of *'s.

We let T, with or without superscripts, range over texts. T[n] is the finite initial
sequence of T with length n. Hence, domain(T[n])=[x | x<n].

2.3.1. Explanatory Language Identification

Suppose M is a learning machine and T is a text. M(T ) a (read: M(T)
converges) �

def
(_i)(\�n) [M(T[n])=i]. If M(T ) a , then M(T) is defined = the

unique i such that (\�n)[M(T[n])=i].
We now introduce criteria for a learning machine to be considered successful on

languages.

Definition 1. Recall that a and b range over N _ [V]:

(1) M TxtExa-identifies L (written: L # TxtExa(M)) �
def

(\ texts T for L)
(_i | Wi=

a L)[M(T ) a =i].

(2) M TxtExa
b -identifies L (written: L # TxtExa

b(M)) �
def

[L # TxtExa(M) 7

(\ texts T for L)[card(x | ?{M(T[x]) 7 M(T[x]){M(T[x+1])])�b]].

(3) TxtExa
b=[L | (_M)[L�TxtExa

b(M)]].

Gold (1967) introduced the criteria we call TxtEx0

*
. The generalization to the

a>0 cases in Definition 1 is motivated by the observation that humans rarely learn
a language perfectly, where the a represents an upper bound on the number of
anomalies permitted in final grammars. The a>0 case is from Case and Lynes
(1982), but Osherson and Weinstein (1982a), independently, introduced the a=V
case. For these and the other success criteria of this paper, we have that tolerating
more anomalies leads to being able to learn larger classes of languages (Case and
Lynes, 1982; Case, 1998; Baliga and Case, 1993). Gold's model of language learning
from text (positive information) and by machine (Gold, 1967) has been very
influential in contemporary theories of natural language and in mathematical work
motivated by its possible connection to human language learning (cf., e.g., Pinker,
1979; Wexler and Culicover, 1980; Wexler, 1982; Osherson, Stob and Weinstein,
1982, Osherson, Stob, and Weinstein, 1984; Berwick, 1985; Gleitman, 1986; Case,
1986; Osherson, Stob, and Weinstein, 1986b; Osherson, Stob, and Weinstein,
1986a; Fulk, 1985; Fulk, 1990a; Kirsh, 1992; Baliga, Case and Jain, 1995).

We sometimes write TxtEx for TxtEx0

*
and TxtExa for TxtExa

*
.

2.3.2. Vacillatory and Behaviorally Correct Language Identification

Definition 2. We say M(T) finitely-converges (written M(T) - ) �
def

[M({) | {/T ] is a nonempty finite subset of N. If M(T ) - , then M(T ) is defined
=[ p | (_�{/T )[M({)= p]]; otherwise, M(T) is undefined.
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Definition 3. M, TextFexa
b -identifies an r.e. language L (written L #

TextFexa
b(M)) �

def
(\ texts T for L)[M(T ) - =a nonempty set of cardinality �b and

(\p # M(T ))[Wp=a L]]. TextFexa
b denotes the set of all classes L of languages

such that some learning machine TextFexa
b -identifies each language in L.

In TextFexa
b -identification the b is a ``bound'' on the number of final grammars

and the a a ``bound'' on the number of anomalies allowed in these final grammars.
In general a ``bound'' of V just means unbounded, but finite. Intuitively, L #
TextFexa

b �
def

there is an algorithmic procedure p such that, if p is given any listing
of any language L # L, it outputs a sequence of grammars converging in a non-
empty set of no more than b grammars, and each of these grammars makes no
more than a mistakes in generating L.

Note. The b in ``TxtExa
b '' has a totally different meaning from the b in

``TextFexa
b ''; the former is a bound on mind changes for convergence to a single

final program, the latter is a bound on the number of different programs an
associated machine eventually vacillates between in the limit.

We sometimes write TextFexb for TextFex0
b .

TextFexa
1-identification is clearly equivalent to TxtExa

*
. Osherson and Weinstein

(1982a) were the first to define the notions of TextFex0

*
and TextFex*

*
, and the

other cases of TextFexa
b -identification are from Case (1986, 1998).

Definition 4. (1) M, TxtBca-identifies L (written L # TxtBca(M)) �
def

(\ texts T
for L)(\�n)[WM(T[n])=

a L].

(2) TxtBca=[L | (_M)[L�TxtBca(M)]].

In a completely computable universe all texts must be recursive (synonym: com-
putable). This motivates the following.

Definition 5. (1) M RecTxtBca-identifies L (written L # RecTxtBca(M)) �
def

(\ recursive texts T for L)(\�n)[WM(T[n])=
a L].

(2) RecTxtBca=[L | (_M)[L�RecTxtBca(M)]].

Definition 4 is from Case and Lynes, (1982). The a # [0, V] cases were independ-
ently introduced in Osherson and Weinstein (1982a, 1982b). RecTxtBca{TxtBca

(Case and Lynes, 1982; Freivalds, 1985); however, the restriction to recursive texts
does not affect learning power for TextFexa

b -identification (Case, 1998). We some-
times write TxtBc for TxtBc0, etc.

Definition 6. _ is called a TxtExa-locking sequence for M on L,
�
def

content(_)�L, WM(_)=
a L, and (\{ | _�{ 7 content({)�L)[M(_)=M({)].

_ is called a TxtBca-locking sequence for M on L, iff content(_)�L and
(\{ | _�{ 7 content({)�L)[WM({)=

a L].

It can be shown (cf., e.g., Blum and Blum, 1975; Osherson and Weinstein, 1982a;
Osherson, Stob, and Weinstein, 1986a; Case, 1998) that if M TxtExa-identifies L,
then there exists a TxtExa-locking sequence for M on L. Similarly, it can be shown
that if M TxtBca-identifies L, then there exists a TxtBca-locking sequence for M
on L.
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Lemma 4.2.2B in Osherson, Stob, and Weinstein (1986a) easily generalizes to
cover all learning criteria considered in this paper, thereby providing a recursive
enumeration M0 , M1 , ... of (total) language learning machines such that, for any
inference criteria I, every L # I is I-identified by some machine in this enumeration.
Moreover, this enumeration satisfies the s-m-n property, i.e., given a description,
algorithmic in x, of a behavior of a machine M, one can algorithmically find a
machine Mf (x) whose learning behavior is at least as good as that of M. In the
following we fix such an arbitrary enumeration M0 , M1 , ... .

3. RESULTS

In Section 3.1 we present our positive and negative results on synthesizing learn-
ing machines from grammars. In Section 3.2 we present such results on synthesizing
learning machines from decision procedures.

3.1. Synthesizing from Uniform Grammars

We can formally define the classes Cx from Section 1 as follows.

Definition 7. Cx =
def [Wp | p # Wx].

One can think of the x in ``Cx '' as representing a uniform grammar for generating
(accepting) the languages in Cx .

The following theorem removes some of the sting from the negative result
(Osherson, Stob, and Weinstein, 1988) motivating the present paper. It does this by
relaxation of the criterion for successful learning.

Theorem 1. (_ recursive f )(\x | Wx is finite) [Cx �TextFexcard(Wx)(Mf (x))].

Proof. Let match(i, T [n])=min([n] _ (W n
i 2 content(T[n]))). Intuitively

match finds the minimum point of disagreement between Wi and T[n]. Note that
[i is a grammar for content(T ) � limn � � match(i, T[n])=�].

If W n
x=<, then let Mf (x)(T[n])=?. Otherwise, let

Mf (x)(T[n])=the least i # W n
x which maximizes match(i, T[n]).

Fix x such that Wx is finite. Let L # Cx and let T be a text for L. Since Wx is
finite, it is easy to verify that, for all but finitely many n, Mf (x)(T[n]) is in Wx and
it is a grammar for L=content(T ). The theorem follows. K

The above proof also demonstrates that

Corollary 1. (_ recursive f )(\n, x | Wx is finite and max[card([i # Wx |
Wi=L]) | L # Cx])=n)[Cx �TextFexn(Mf (x))].

This nicely generalizes the special case from Osherson, Stob, and Weinstein
(1988) presented as Corollary 2 below.

Corollary 2 (Osheron, Stob, and Weinstein, 1988). (_ recursive f )(\x | Wx is
finite 7 (\ distinct i, j # Wx)[Wi {Wj])[Cx �TxtEx(Mf (x))].

24 BALIGA, CASE, AND JAIN



That the bound in Theorem 1 above is tight is witnessed by the following strong
lower bound.

Theorem 2. For all n�1, c(_f # LR)(\i0 , i1 , ..., in) [[Wi0
, Wi1

, ...W in
]�

TextFexn*(Mf (i0, i1, ..., in))].

The n=1 case of Theorem 2 just above, with ``limiting recursive'' replaced by
``recursive'' and with the V removed, is just the negative result from Osherson, Stob,
and Weinstein (1988) that inspired the present paper, but, of course, Theorem 2 is
stronger and more general. Theorem 2 follows by a direct (n+1)-ary recursion
theorem argument and also quickly but indirectly from the fact from Case (1998)
that (TextFexn+1&TextFexn*){<.

The following theorem implies that it is possible to synthesize algorithmically,
from uniform grammars, behaviorally correct learners for classes which can be
learned in one-shot (i.e., without any mind changes). As Theorem 4 further below
shows, the cost of passing from no mind changes in the input classes to infinitely
many in the synthesized learning machines is in some cases necessary (but see the
second paragraph in Section 4 below). Recall that 2V =

def
V.

Theorem 3. (_ recursive f )(\x)[Cx # TxtExa
0 O Cx �TxtBc2a(Mf (x))].

Proof. Fix x such that Cx # TxtExa
0 .

Claim 1. (\L # Cx)(_S�L)(\L$ | S�L$)[L$ # Cx O L$=2a L].

Proof. Suppose M TxtExa
0 -identifies Cx . Suppose by way of contradiction that

L # Cx is such that (\S�L)(_L$ | S�L$)[(L$ # Cx) 7 (L${2a L)]. Let _ be a
TxtExa locking sequence for M on L. Let L$ # Cx be such that L$$content(_) and
L${2a L. Since WM(_)=

a L, it follows that WM(_) {a L$. Therefore, L$ � TxtExa
0(M),

a contradiction. K

Let g be a recursive function such that for all x and _, Wg(x, _)=Wy , where
y # Wx is an integer satisfying content(_)�Wy , if such an integer exists; otherwise,
Wg(x, _)=<. Let f be a recursive function such that for all x, Mf (x)(_)= g(x, _).

Fix L # Cx and a text T for L. Let S�L witness that L satisfies the above claim.
Let n0 be such that content(T[n0])$S. It follows using Claim 1 that for all n�n0 ,
WMf (x)(T[n])=

2a L. K

It is open whether, for a>0, the 2a in Theorem 3 just above is also a lower
bound; however, we do know the following.

Theorem 4. c(_f # LR)(\x)[Cx # TxtEx0 O Cx �TextFex*
*

(Mf (x))].

Proof. Suppose by way of contradiction that f # LR is such that (\x | Cx #
TxtEx0)[Cx �TextFex*

*
(Mf (x))]. Let g be a recursive function such that, for all x,

f (x)=limt � � g(x, t). By the Operator Recursion Theorem (Case, 1974), there
exists a recursive function p such that the languages Wp(i ) , i�0, are defined in
stages as follows. Initially, the Wp(i ) 's are empty and _1 is the empty sequence. Go
to stage 1.
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Stage s.

1. For each i such that 1�i�s, enumerate p(i ) into Wp(0) and enumerate
content(_s) into Wp(i ) .

2. Let xs=1+max[x | content(_s) & [(x, i ) | i�0]{<]).

3. Dovetail steps 4, 5, and 6. If step 4 succeeds (before step 5, if ever) then
go to step 7. If step 5 succeeds (before step 4, if ever) then go to step 8.

4. Search for _$#_s such that card([Mg( p(0), s)(_") | _"�_$])�s.

5. Search for a s$>s, such that g( p(0), s){ g( p(0), s$).

6. For each i such that 1�i�s, enumerate more and more elements of
[(xs+i&1, j ) | j�0] into Wp(i ) .

7. Let _s+1 #_$ be the least sequence such that content(_s+1)$[ j | j�
1+max(�1�i�s Wp(i ) enumerated until now)].
Go to stage s+1.

8. Let _s+1 #_s be the least sequence such that content(_s+1) $[ j | j�1+
max(�1�i�s Wp(i ) enumerated until now)].

Go to stage s+1.
End stage s.

We consider two cases:

Case 1. All stages terminate. In this case, it can be verified that Wp(0)=
[ p(i ) | i�1] and for all i�1, Wp(i )=N. Thus, Cp(0) # TxtEx0 . Since step 5 can
succeed in only finitely many stages, step 4 succeeds in almost every stage. Thus,
Mf ( p(0)) outputs infinitely many distinct grammars on ��

s=1 _s , a text for N. Hence
Cp(0) �3 TextFex*

*
(Mf ( p(0))).

Case 2. Stage s starts but does not terminate. In this case, Wp(0)=
[ p(i ) | 1�i�s]. From step 6 it is clear that, for all i such that 1�i�s,
Wp(i )=* [(xs+i&1, j ) | j�0]. Hence, (\i�s, j�s | i{ j )[Wp(i ) {* Wp( j )].
Also, since step 5 did not succeed in stage s, f ( p(0))= g( p(0), s). Thus, since step
4 did not succeed in stage s, Cp(0) �3 TextFex*

*
(Mf ( p(0))). Furthermore, it is clear

that Cp(0) is finite and the languages in it are pairwise incomparable (by /). Hence,
Cp(0) # TxtEx0 . K

In most of the diagonalization results below, we will prove the theorem only for
recursive f. Generalization to limiting recursive f can be obtained by using a trick
similar to use of step 5 in the construction above.

It is interesting to generalize Theorem 3 above about synthesis from one-shot
learnable Cx 's to the case of two-shot learnable Cx 's. The next two theorems
(Theorems 5 and 6) provide our best to date upper and lower bounds, respectively,
for the two-shot cases. Other possibilities are open.

Theorem 5. (_f # R)(\x)[[Cx # TxtEx1 7 (\ distinct i, j # Wx)[Wi {Wj]] O
Cx �TxtBc*(Mf (x))].
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Proof. Suppose Cx # TxtEx1 and (\i, j # Wx)[Wi=Wj O i= j]. We say that
L # Cx satisfies property Prop0 �

def
there exists a finite subset SL of L such that

(\L$ # Cx)[SL �L$ O L=L$]. Intuitively all L satisfying Prop0 have a finite subset
which uniquely determines L (from Cx).

We say that L # Cx satisfies property Prop1 �
def

there exists a finite subset SL of L
such that (\L$ # Cx | L${L)[SL �L$ O L$ satisfies Prop0].

Note that if L satisfies Prop0 , then, trivially, L satisfies Prop1 .

Claim 2. All languages L # Cx satisfy Prop1 .

Proof. Suppose by way of contradiction L # Cx does not satisfy Prop1 . Suppose
M TxtEx1 -identifies Cx . Let _ be a TxtEx-locking sequence for M on L. Let L$ # Cx

be such that L${L, L$ does not satisfy Prop0 , and content(_)�L$ (such an L$
exists, since L does not satisfy Prop1). Let _$ be an extension of _ such that _$ is
a TxtEx-locking sequence for M on L$. Let L" # Cx be such that L"{L$ and
content(_$)�L". Such an L" exists since L$ does not satisfy Prop0 .

Now it is easy to see that M does not TxtEx1 -identify at least one language in
[L, L$, L"] since, if M TxtEx1 identifies L and L$, then on a text for L" which
extends _$ it needs at least two mind changes. K

Thus, all languages in Cx satisfy Prop1 . We will utilize this property in algo-
rithmically synthesizing a machine for TxtBc*-identifying Cx . Let f be a recursive
function such that for all x and _, WMf (x)(_) is defined in stages as follows.

Stage s.

1. Let n=|_|, X=W n
x and Y=[i # X | content(_)�W s

i ].

2. For i # Y, let Zi=W s
i [n].

3. Let p1=min(Y ) and let p2=min([i # Y | Zi /Zp1
]). Intuitively Wp2

is the
first language in Cx which ``looks like'' a proper subset of Wp1

.

4. If p2 A (recall that min(<) A ) then enumerate all the elements of W s
p1

into
WMf (x)(_) and go to stage s+1.

5. Otherwise,
5.1. Let Sp1

=min([S$ | (S$�W s
p1

) and (\i # W s
x | i{ p1)[S$�3 W s

i ]]).
(* Note that according to our convention, the minimum over a
collection of finite sets, is the set in the collection with the least
canonical index. *)

5.2. Let Sp2
=min([S$ | (S$�W s

p2
) and (\i # W s

x | i{ p2)[S$�3 W s
i ]]).

5.3. If Sp1
<Sp2

, then enumerate W s
p2

into WMf (x)(_) . Otherwise enumerate
W s

p1
into WMf (x)(_) .

(* Here, if Sp2
(respectively, Sp1

) is undefined but Sp1
(respectively,

Sp2
) is defined, then we assume Sp1

<Sp2
(respectively, Sp2

<Sp1
). *)

5.4. Go to stage s+1
End stage s

Fix L # Cx and T, a text for L. Let i1 # Wx be the unique grammar such that
Wi1

=L. We consider two cases.
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Case 1. L satisfies Prop0 . Let SL witness that L satisfies Prop0 . Let n0�
max(SL) be the least value such that SL �content(T[n0]) and i1 # W n0

x . Fix n such
that n�n0 . We claim that WMf (x)(T[n])=* L. Let s0 be the least number such that
content(T[n])�W s0

i1
. It is clear that for all stages s�s0 , the set Y computed in

step 1 (of stage s) is the singleton set [i1] (since L satisfies Prop0). Thus, for all
stages s�s0 , step 4 will be executed and WMf (x)(T[n])=* L.

Case 2. L satisfies Prop1 but not Prop0 . Let SL witness that L satisfies Prop1 .
Let n0 be so large so that the following are satisfied: (i) SL �content(T[n0]);
(ii) for i�i1 , if content(T[n0])�Wi , then L�Wi ; (iii) for i, j�i1 , if Wi $3 Wj ,
then Wi [n0]$3 Wj [n0]; (iv) W n0

x $Wx[i1].
Fix n�n0 . We claim that WMf (x)(T[n])=* L. Let s0 be so large that

(\i # W n
x)[W s0

i $Wi [max([n] _ content(T[n]))]]. Thus, values of Y, Zi , p1 , p2 as
defined in steps 1, 2, 3 do not change beyond stage s0 . Below, let Y, Zi , p1 , p2 be
as computed in stage s0 and beyond. There are two possibilities.

Suppose p2 is not defined. In this case, for all stages s$�s0 , step 4 will be
executed. Note that i1 # Y and for any i<i1 , if i # Y, then (by (ii) above) L=
Wi1

�Wi . Thus p1=i1 and WMf (x)(T[n])=* Wi1
=L.

Now suppose p2 is defined. Then in stage s�s0 , step 4 will not be executed;
instead, step 5 will be executed. Clearly, i1 # [ p1 , p2] (otherwise Wi1

/Wp2
/Wp1

��
by conditions (ii) and (iii) for the choice of n0��which implies Cx � TxtEx1).
Suppose i1= p1 (the argument is similar if i1= p2). Since SL �Wp2

, it follows that
L$=Wp2

satisfies Prop0 . Now since Wp2
satisfies Prop0 but Wp1

does not, it follows
that for all but finitely many stages s, Sp1

>Sp2
. It thus follows, due to step 5.3, that

WMf (x)(T[n])=* Wp1
=L. K

Theorem 6. (\f # LR)(\n)(_x | Cx # TxtEx1)[Cx �3 RecTxtBcn(Mf (x))].

Proof. We prove here the following restricted version of the theorem only:

(\f # R)(\n)(_x | Cx # TxtEx1)[Cx�3 RecTxtBcn(Mf (x))].

The lift from R to LR is straightforward.
Fix f # R and n. By the Operator Recursion Theorem there exists a 1�1 increasing

recursive function p such that the languages Wp(i ) , i�0, are defined as follows.
Enumerate p(1) in Wp(0) . Wp(1) will be a subset of ODD. The construction will use
a set O. Initially, let O=<. Informally, O is the set of odd numbers we have
decided to keep out of Wp(1) . Let _2 be the empty sequence. Go to stage 2.

Stage s.

1. Enumerate p(s) into Wp(0) . Dovetail the execution of steps 2 and 3. If and
when step 3 succeeds, go to step 4.

2. Enumerate one-by-one, in increasing order, the elements of ODD&O into
Wp(s) .

3. Search for _s+1 #_s and set Ps containing exactly n+1 distinct odd
numbers such that content(_s+1) �ODD&O and Ps �(WMf (p(0))(_s+1)&
content(_s+1)).
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4.

4.1. Enumerate content(_s+1) into Wp(1) .

4.2. Enumerate the (even) number 2s into Wp(s) .

4.3. Let O=O _ Ps , where Ps is the set found above in step 3.

4.5. Go to stage s+1.
End stage s.

We consider two cases:

Case 1. Stage s starts but does not terminate. In this case Wp(0)=
[ p(i ) | 1�i�s]. Observe that for each i such that 2�i�s&1, 2i is the only even
number in Wp(i ) . Wp(1) is a finite subset of ODD and Wp(s)=ODD&O is an
infinite subset of ODD. It is then easy to verify that Cp(0) # TxtEx1 .

Let T#_s be a recursive text for Wp(s) . It is clear that for all
(_ | _s /_/T )[WMf (p(0))(_) & ODD is finite]. Thus, M does not RecTxtBcn-identify
Wp(s) .

Case 2. All stages terminate. In this case, clearly, for all i>1, Wp(i ) is finite and
contains exactly one even number, namely 2i. Also, Wp(1) contains only odd num-
bers. Thus, Cp(0) belongs to TxtEx1 .

We claim that M does not RecTxtBcn-identify Wp(1) . Let T=�s�2 _s . Clearly,
T is a recursive text with content exactly Wp(1) . Consider any stage s�2. It is clear
by steps 3 and 4 that, for all s, card(WMf (p(0))(_s)

&Wp(1))�n+1. Thus, T is a recur-
sive text witnessing that M does not RecTxtBcn-identify Wp(1) . K

3.2. Synthesizing from Uniform Decision Procedures

Definition 8. (1) We say that x is a uniform decision procedure for a class L

of recursive languages �
def

[.x # R0, 1 7 L=[L | (_i )[/L( } )=.x(i, } )]]].

(2) Suppose x is a uniform decision procedure. Then Ux is (by definition) the
class of languages for which x is a uniform decision procedure.

(3) L is a uniformly decidable class of languages �
def

(_x, a uniform decision
procedure)[L=Ux].

(4) When a fixed uniform decision procedure x is understood, we sometimes
then write Ui for the language whose characteristic function is .x(i, } ).

(5) By Ui[s] we mean [x # Ui | x�s].

It is straightforward to show that uniform decision procedures and indexes of
indexed families are intercompilable and, hence, that the uniformly decidable classes
of languages formally defined just above (Definition 8) are exactly the indexed
families of languages. In the formal statements and proofs of our results we will
employ the terminology from Definition 8.

As noted in detail in Section 1, there has been considerable interest in the
computational learning theory community in learnability, from positive data, of
uniformly decidable classes of recursive languages (indexed families) (Angluin,
1980b; Zeugmann and Lange, 1995).
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Angluin (1980b) deals with so-called exact (Lange and Zeugmann, 1993) learning
in which, for each learnable class, the programs learned derive naturally from
the defining uniform decision procedure for that class.8 Herein, we will synthesize
learning machines whose hypothesis spaces in many cases of necessity go beyond
hypothesis spaces naturally associated with the defining uniform decision proce-
dures for the classes (Lange and Zeugmann, 1993).9

The next two theorems (Theorems 7 and 8) deal with the special case, where the
uniformly decidable classes are finite. The first is an even more positive result than
its analog for uniformly r.e. classes (Theorem 1 in Section 3.1 above). Its proof is
straightforward; hence, it is omitted. The second shows the first is best possible.

Theorem 7. (\n�1)(_ recursive f )(\x | x is a uniform decision procedure and
card(Ux)=n)[Ux �TxtExn&1(Mf (x))].

Theorem 8. For all n�1, there exists a uniformly decidable class L such that
card(L)=n+1 and L � TxtEx*n&1 .

Proof. Let Lj=[(x, y) | y # N7 x� j]. It is easy to verify that [Lj | j�n] is
uniformly decidable but not in TxtEx*n&1 . K

The next two theorems (Theorems 9 and 10) concern synthesis from one-shot
learnable uniformly decidable classes, and the first provides a much more positive
result than its analog for uniformly r.e. classes (Theorem 3 in Section 3.1 above).
The second shows the first is best possible and that the cost of passing from no
mind changes in the input classes to finitely many in the synthesized learning
machines is necessary.

Theorem 9. (\a # N _ [V])(_ f # R)(\x | x is a uniform decision procedure)
[Ux # TxtExa

0 O Ux �TxtExa(Mf (x))].

Proof. Fix a. Let Ux # TxtExa
0 be given. We first show the following claim.

Claim 3. For all L # Ux , there exist finite sets SL , S 1
L , and S 2

L :

(a) SL �L, and

(b) for the least i such that SL �Ui :

(\L$ # Ux | SL �L$)[(U i&S 1
L) _ S 2

L=a L$].

Proof. Suppose Ux # TxtExa
0(M). Suppose L # Ux . Then there exists a sequence

_, such that content(_)�L and WM(_) {?. This implies that for all L$ # Ux such
that content(_)�L$, WM(_)=

a L$. Let SL=content(_). Let i be the least number
such that SL �Ui . Let S 1

L=Ui&WM(_) and S 2
L=WM(_)&U i . It is easy to verify

that (a) and (b) are satisfied. K
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Claim 4. Suppose T is a text for L # Ux . Let S 1
T , S 2

T and ST be such that

(a) ST �content(T ), and

(b) for the least i such that ST �Ui :

(\L$ # Ux | ST �L$)[(U i&S 1
T ) _ S 2

T=a L$].

Then, for the least i such that ST �U i :

[(Ui&S 1
T ) _ S 2

T ]=a L.

Proof. Since, ST �L, it follows from clause (b) that [(Ui&S 1
T ) _ S 2

T ]=a L. K

Since one can verify in the limit, for given S 1
T , S 2

T , and ST , whether clauses (a)
and (b) in Claim 4 above are satisfied, one can algorithmically search for (some
lexicographically least) such S 1

T , S 2
T , ST . This is what gives us Mf (x) below.

Let Gram(i, S1 , S2) be a grammar obtained algorithmically from i and finite sets
S1 and S2 , such that WGram(i, S1 , S2)=(Ui&S1) _ S2 .

Mf (x)(T[n]).

1. Let Sn , S 1
n , S 2

n �[x�n] be (lexicographically least (if any)) finite sets
such that

(a) Sn �content(T[n])

(b) for the least i such that Sn �Ui :

(\j�n | Sn �Uj)[(U i [n]&S 1
n ) _ S 2

n =a Uj [n]]

2. If no such Sn , S 1
n , S 2

n is found in the search above, then output 0. Else let
Sn , S 1

n , S 2
n be the lexicographically least such set. For the least i such that

Sn �U i , output Gram(i, S 1
n , S 2

n ).
End Mf (x)

Using Claim 3, it is easy to verify that, for any T for L # Ux , Sn , S 1
n , S 2

n as found
in step 1 above converges to ST , S 1

T , S 2
T , which satisfy (a) and (b) in Claim 4. It

thus follows that Mf (x) TxtExa-identifies Ux . K

Theorem 10. (\n) c (_ f # LR)(\x | x is a uniform decision procedure)[Ux #
TxtEx0 O Ux �TxtExn*(Mf (x))].

Proof. Fix n. For simplicity of presentation, we give the proof only for recursive
f. The proof can be straightforwardly generalized to limiting recursive f. By implicit
use of the recursion theorem there exists an x such that Ux may be described as
follows.

Let _0 be a sequence, if any, such that Mf (x)(_0){?. For i�n, if _ i is defined,
then try to define _i+1 as follows: let _i+1 be a sequence, if any, such that _i �_ i+1

and Mf (x)(_i){Mf (x)(_i+1).
Let L0=[(0, y) | y # N ]. For i such that _ i is defined in the process above,

define L2i+1 , L2i+2 as follows: L2i+1=content(_i) _ [(2i+1, y) | y # N ]. L2i+2=
content(_i) _ [(2i+2, y) | y # N ].
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Let Ux=[L0] _ [L2i+1 , L2i+2 | _ i is defined in the process above]. Since Ux is
finite and all languages in Ux are pairwise incomparable (by /), it follows that
Ux # TxtEx0 . We claim that Ux�3 TxtExn*(Mf (x)).

If _n+1 is defined then, Mf (x) makes at least n+1 mind changes on _n+1 and
thus does not TxtExn*-identify L2n+3 , L2n+4 # Ux .

If _0 is not defined, then L0 # Ux , but Mf (x) does not TxtEx*-identify L0 .
If, for some i�n, _i is defined but _i+1 is not defined, then L2i+1 , L2i+2

# Ux , but Mf (x) does not TxtEx*-identify at least one of L2i+1 , L2i+2 (since
content(_i) �L2i+1 & L2i+2 , L2i+1 {* L2i+2 and Mf (x) on any extension of _ i

outputs Mf (x)(_i)).
The theorem follows. K

Next we present our two main corollaries (Corollaries 3 and 4) which completely
characterize the uniformly decidable classes in TxtBca and are easy consequences of
Lemmas 1 and 3 following them.10 The first corollary is a very important case of the
second which we have separated out for special attention.

As we noted in Section 1 above, Angluin (1980b) completely characterized the
uniformly decidable classes in TxtEx.11 Essentially she showed that, for any fixed
uniform decision procedure x, Ux # TxtEx � Condition 1 holds, where Condition 1
states12:

There is an r.e. sequence of (r.e. indices of ) finite sets S0 , S1 , ... (called tell
tales) such that

(\i )[S i �Ui 7 (\j | Si �Uj)[Uj /3 Ui]]. (1)

As noted in Section 1 above, she also considered a Condition 2 just like Condi-
tion 1, except that the sequence of finite sets (tell tales) is not required to be r.e., and
showed that Condition 2 is not sufficient. Our characterization of uniformly
decidable classes in TxtBc is, surprisingly, just Angluin's Condition 2! As mentioned
above, it is referred to as the subset principle, a necessary condition preventing over-
generalization in learning from positive data (cf., e.g., Angluin, 1980b; Berwick,
1985; Zeugmann, Lange, and Kapur, 1995; Kapur and Bilardi, 1992; Case, 1998).13

Corollary 3. Ux # TxtBc � (\U # Ux)(_S�U | S is finite)(\U$ # Ux | S�U$)
[U$/3 U].

It is surprising and important that the subset principle alone (Angluin's Condition 2)
without the added constructivity conditions of Angluin's Condition 1 characterizes the
uniformly decidable classes Ux # TxtBc.
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10 It seems pedagogically useful to present the results in this order.
11 Mukouchi (1992) and Lange and Zeugmann (1992) characterized the uniformly decidable classes

in TxtEx0 . de Jongh and Kanazawa (1996) surprisingly characterize the r.e. classes in TxtEx and
presents other interesting results.

12 Recall that the Ui 's are defined in Definition 8 above.
13 See Kapur, Lust, Harbert, and Martohardjono (1993) and Wexler (1993) for discussion regarding

the possible connection between this subset principle and a more traditionally linguistically oriented one
in Manzini and Wexler (1987).



Osherson, Stob, and Weinstein (1986a) notes that a class of r.e. languages U can
be learned in the limit from positive data by a not necessarily algorithmic procedure
iff Angluin's Condition 2 holds for U. Hence, Corollary 3 together with this obser-
vation, entails that for uniformly decidable classes U, U can be learned in the limit
from positive data by a not necessarily algorithmic procedure iff U # TxtBc. There-
fore, for uniformly decidable classes, algorithmicity of the learning procedure does
not matter for behaviorally correct identification! It is open whether there are other
types of classes U (besides uniformly decidable) for which algorithmicity of the
learning procedure does not matter for behaviorally correct identification.

Suppose x is a uniform decision procedure. Corollary 3, immediately above also
provides the characterization

Ux # (TxtBc&TxtEx) � Ux satisfies Condition 2 but not Condition 1.

Hence, since Angluin (1980b) provided an example Ux satisfying Condition 2 and
not Condition 1, her example is a uniformly decidable class witnessing that
(TxtBc&TxtEx){<.

Our characterization for TxtBca is next.14

Corollary 4. Ux # TxtBca � (\U # Ux)(_S�U | S is finite)(\U$ | S�U$ # Ux

7 U$�U )[card(U&U$)�2a].

As we will see, our Main Theorem (Theorem 11) below is an immediate conse-
quence of Lemmas 1 and 3 to follow.

Lemma 1. Suppose Ux # TxtBca. Then (\L # Ux)(_XL �L | XL is finite)
(\L$ # Ux | XL �L$)[L$�3 L 6 card(L&L$)�2a].

Proof. Suppose Ux # TxtBca(M). Suppose L # Ux . Then there exists a TxtBca-
locking sequence _ for M on L. Let XL=content(_). Let Z=[_$ | _�_$ and
content(_$)�L]. Now, for all _$ # Z, WM(_$)=

a L. For any L$ # Ux such that
XL �L$�L, there must exist _$ # Z such that WM(_)=

a L$ (otherwise, M does not
TxtBca-identify L$). It follows that L=2a L$. K

Before presenting our Main Lemma (Lemma 3), we present a slightly weaker
version of it; in Lemma 3 the TxtBc2a in Lemma 2 is replaced by just TxtBca.

Lemma 2. There exists an f # R such that the following is satisfied: Suppose x is a
uniform decision procedure. Further suppose (\L # Ux)(_XL �L | XL is finite)(\L$ #
Ux | XL �L$)[L$�3 L 6 card(L&L$)�2a]. Then, [Ux �TxtBc2a(Mf (x))].

Proof. Suppose x is a uniform decision procedure satisfying the hypothesis of
the theorem. We describe the construction of Mf (x) . It is easy to see that the
construction is algorithmic in x.
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14 The characterizing condition is a variant of Angluin's Condition 2. We also have a variant of
Angluin's characterization above, but for TxtEx*, in place of TxtEx, which characterization is just like
hers, except that (1) above is replaced by

(\i)[S i �U i 7 (\j | S i �U j �U i)[Uj=* Ui]]. (2)



Mf (x)(T[n])=Proc(T[n]), where WProc(T[n]) is defined as follows.

WProc(T[n]) .

1. Let Pn=[i�n | content(T[n])�U i].

2. Go to stage 0.
Begin Stage s

3. Let DelS s
n=[i # Pn | (_i $ # Pn | i $<i )[Ui[s]�3 U i $[s]]].

(* Note that DelS s
n �DelS s+1

n . Intuitively DelS s
n consists of grammars we

want to delete from Pn , since they seem to be bad (see analysis below) *).

4. Let S s
n=Pn&DelS s

n

(* Note that (\i, i $ # S s
n | i $<i )[U i[s]�Ui $[s]] *)

5. Let is
n=max(S s

n). Enumerate Uis
n
[s].

6. Go to stage s+1.
End stage s
End WProc(T[n])

Suppose L # Ux and T is a text for L. We claim that for all but finitely many n,
WProc(T[n])=

2a L. This will prove the theorem. Let XL be as given in the hypothesis.
It follows that for all L$ # Ux , [XL �L$] O [L$/% L 6 L$=2a L]. Let j be the mini-
mal number such that Uj=L.

Let n be large enough so that

(i) For all i< j such that Ui $3 Uj , content(T[n])�3 Ui .

( ii) j<n.

(iii) XL �content(T[n]).

We claim that WProc(T[n])=
2a Uj=L. Let Pn , S s

n , DelS s
n , is

n be as defined in
Proc(T[n]) above. They satisfy the properties:

(a) j # Pn .

(b) (\i< j)[i # Pn O Ui #L].

(c) (\i> j )[i # Pn O [Ui /% L 6 U i=
2a L]].

(d) for all s: j � DelS s
n ; thus j # S s

n .

It immediately follows from (d) above and the comment after step (4) that
WProc(T[n]) �U j .

Now note that, since DelS s
n �DelS s+1

n , we have S s
n $S s+1

n . Thus lims � � is
n is

defined. Let this limiting value be in . It follows that Uin
�WProc(T[n]) �Uj=L. Now

since, Uin
�Uj , property (c) above implies that Uin

=2a Uj . Thus, WProc(T[n])=
2a L.

It follows that Mf (x) TxtBc2a-identifies L. K

Lemma 3. There exists a recursive f satisfying the following. Suppose x is a
uniform decision procedure. Further suppose (\L # Ux)(_XL �L | XL is finite)
(\L$ # Ux | XL �L$)[L$�3 L 6 card(L&L$)�2a]. Then, [Ux �TxtBca(Mf (x))].

Proof. The proof of the lemma is a careful modification of the proof of
Lemma 2 to reduce the errors. The weaker version, Lemma 2, above suffices to
obtain the a # [0, V] cases. So suppose a # N.
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Consider the following machine Mf (x) for Ux . Mf (x)(T[n])=Proc(T[n]), where
WProc(T[n]) is as defined below.

WProc(T[n]) .

Let Pn=[i�n | content(T[n])�U i].
Go to stage n (* we start from stage n just for ease of writing the proof. *)
Begin stage s

1. Let DelS s
n=[i # Pn | (_i $ # Pn | i $<i )[Ui[s]�3 U i $[s]]].

(* Note that DelS s
n �DelS s+1

n *).
(* Intuitively DelS s

n consists of grammars we want to delete from Pn , since
they seem to be bad (see analysis below) *).

2. Let S s
n=Pn&DelS s

n .
(* Note that after the above deletion, we have the following property:

(\i>i $ # S s
n)[Ui[s]�Ui $[s]]. Thus the members of S s

n form a reverse
subset chain (for elements �s) *)

3. Let ks
n=max(S s

n) . (* Note: ks
n is a nonincreasing function of s *).

4. Let Cancels
n=[i # S s

n | card(Ui[n]&Uk s
n
[n])>2a].

(* Note: We form Cancels
n looking at enumeration of elements �n. This

Cancel set may become smaller as stages go on! Intuitively Cancel just
tries to delete sets which are too big, compared to the input. *)

5. Let Qs
n=S s

n&Cancels
n .

Let is
n=min(Qs

n).
(* Note: since ks

n was a nonincreasing function of s; it is easy to see that
max(Cancel s

n) will be a nonincreasing function of s. It does not
necessarily follow that is

n is nonincreasing function of s. However, it is
nearly so��what ``nearly'' means will be clearer in the proof after the
construction *).

Let Ds
n=Ui s

n
[n]&Uk s

n
[n]. Let A s

n �Ds
n be a set of min(card(D s

n) , a)
elements such that the following property is satisfied:
if z1 # As

n and z2 # Ds
n&As

n , then
(A) max([i # Qs

n | z2 # Ui])<max[i # Q s
n | z1 # Ui]) OR

(B) max([i # Qs
n | z2 # Ui])=max([i # Qs

n | z1 # Ui]) and [z2 # As&1
n O

z1 # As&1
n ].

(* Intuitively we select an As
n in the following form: select the a elements

of As
n so that elements which are enumerated by more decision proce-

dures in Qs
n get priority. Breaking of ties is done in a manner consistent

with earlier priority settings. *)
Enumerate (Ui s

n
[s]&D s

n) _ A s
n .

6. Go to stage s+1.
End stage s
End

Now fix L # Ux . Let j be the minimal number such that Uj=L.
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Let XL be as given in the hypothesis of the lemma. Fix a text T for L. Assume
that n> j is so large that the following properties (a) to (d) are satisfied. For these
big enough n, we will claim below that WProc(T[n])=

a L:

(a) XL �content(T[n]).

(b) (\i< j )[Ui $3 L O content(T[n])�3 Ui].

(c) (\i, i $ # Wx | i<i $< j)[Ui $�3 Ui O Ui $[n]�3 Ui[n]]. Intuitively, (c) ensures
that if i< j, is in �s DelS s

n , then it is in DelS n
n (note that we started in stage n).

(d) (\i< j | Ui $L) [card([y<n | y # Ui&L])�min([2a+1, card(Ui&L)])].
Intuitively (d) says that either all elements of Ui&L are below n, or there are at
least 2a+1 elements of Ui&L below n; this second part ensures that if Ui is too
big then i will be in Cancels

n for every stage s. The earlier part makes sure that all
the elements which are in Ui&L have been already noticed and thus would not be
enumerated in step 5, except as part of As

n .
For all of the following we assume that n> j is big enough so that (a) to (d) are

satisfied. We will consider what Proc(T[n]) enumerates. So let all the variables
below be as in Proc(T[n]).

Let Big=[i< j | Ui $L 7 card(U i &L) �2a 7 (\i $ | i $<i < j 7 Ui $ $L)[Ui �
Ui $]].

Note that for all i< j, if i � Big, then i � Qs
n for any s (each i< j in Wx&Big

would be either in DelS n
n (note that we started at stage n) or in Cancels

n for
each s). So i< j which are not in Big are never in Qs

n .
Note the following properties of DelS s

n and Cancels
n :

(e) j � DelS s
n for all s (thus j # S s

n for every s). Note that for finitely many
stages s, j maybe in Cancels

n but that will not hurt us.

(f ) DelS s
n �DelS s+1

n (and thus S s+1
n �S s

n).

(g) Since elements of S s
n form a reverse subset chain (for elements �s), mem-

bers of Cancels
n have the initial segment property within S s

n ; i.e., if i, i $ # S s
n , i<i $,

and i $ # Cancels
n , then i # Cancels

n .

(h) Cancels+1
n �Cancels

n (this follows since ks
n is a nonincreasing function

of s). Thus max(Cancels
n) is nonincreasing function of s.

Let D=[ y | (_i # Big)[ y # Ui&L]]. What we will first show is that Proc(T [n])
enumerates a subset of L _ D. We will then show that what is enumerated within
D has cardinality appropriately bounded; this will complete the proof.

Now consider any stage s. If in stage s, is
n� j, then clearly, whatever is

enumerated in stage s is contained in L (since Ui s
n
[s]�Uj[s]; otherwise is

n would
be in DelS s

n). If is
n< j, then clearly, Ui s

n
�L _ D since is

n must be in Big.
We now consider what exactly the difference is between L and the set enumerated

by Proc(T[n]). Clearly, DelS s
n , Cancels

n , and Ds
n , i s

n , ks
n , As

n , etc. must achieve a
limiting value (as s goes to �). Let the limiting values of these variable be DelSn ,
Canceln , Dn , in , kn , An , etc.

Consider the first stage when i s
n achieves a value �j. (There must exist such a

stage; note that XL �Ukn
�L. Thus, by hypothesis, card(L&Ukn

)�2a.) Since
max(Cancels

n) is a nonincreasing function of s and S s
n & [i� j]=Sn & [i� j] for

all s, we have that, if i s
n achieves a value �j, it is nonincreasing from that point
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onwards (this is what we meant by nearly nonincreasing in step 5 of the construc-
tion above). Furthermore, since ks

n� j, for all s, it follows that D & Ds
n �D & D s+1

n .
(To see this note that all elements of D are �n. Moreover, the elements of Qs

n form
a reverse subset chain with respect to elements �n. Thus, since min([ j, i s+1

n ])�i s
n ,

any elements of D which were in Ds
n would also be in Ds+1

n .) Thus, As
n & D�As+1

n

(from the way As
n was chosen, since if i s

n� j, then D & As
n is empty. On the other

hand if i s
n< j, then i s

n�i s+1
n (due to nonincreasing property of i s

n once it becomes
� j ) and thus, based on the subset chain property, the above holds (the priority
ordering among the elements of Dn does not change!)).

We now have property WProc(T[n])&L�An (due to the fact that D & A s+1
n �An).

Also L&WProc(T[n]) �Dn&An , since all other elements of L are enumerated in the
stages beyond the point where An , Dn , and in get their limiting values. Now
suppose An �L. In this case, the difference between L and WProc(T[n]) is the subset
of Dn&An which is of size �a.

If An�3 L. Then by the priority ordering selected for chosing elements of An , we
know that elements of Dn&An do not belong to L. Thus, the difference in L and
WProc(T[n]) is a subset of An which is of size �a. K

Next we have our Main Theorem (Theorem 11) which follows immediately from
Lemmas 1 and 3 above. It says that we can synthesize, from uniform decision pro-
cedures for classes in TxtBca, TxtBca-learning machines! Hence, in passing from
learnable uniformly decidable classes to algorithmically synthesized learning
machines for them, we get a fixed point, for each a, at TxtBca-identification!

Theorem 11. (\a # N _ [V])(_ f # R)(\x | x is a uniform decision procedure)
[Ux # TxtBca O Ux �TxtBca(Mf (x))].

The next and last theorem of this section contrasts nicely with Theorems 9 and
11 above. It also shows that the cost of passing from one mind change in the input
classes to infinitely many in the synthesized learning machines is necessary. This is
so, as in our other lower bound results above, even if we employed the stronger
limiting recursive procedures for synthesis of learning machines from algorithmic
descriptions of the class to be learned!

Theorem 12. c(_ f # LR)(\x | x is a uniform decision procedure)[Ux # TxtEx1 O
Ux �TextFex*

*
(Mf (x))].

Proof. We prove a simpler version of the theorem:

c(_ f # R)(\x | x is a uniform decision procedure)

[Ux # TxtEx1 O Ux �TxtEx*(Mf (x))].

The proof can be straightforwardly generalized to take care of TextFex*
*

and limiting
recursive f.

Suppose by way of contradiction otherwise. Let f be given. By the Operator
Recursion Theorem there exists a 1�1 increasing p, such that the following holds.

We let L=[L | (_i�1)[/L=.p(i )]].

37THE SYNTHESIS OF LANGUAGE LEARNERS



It will be easily seen that, for i>0, .p(i ) is either a characteristic function or an
empty function. Hence, it follows that a uniform decision procedure for L (defined
just above) exists and can be found algorithmically. Let p(0) be the uniform deci-
sion procedure for L.

We note that all .p(i ) , i�1, which are considered in the construction below will be
characteristic functions. If .p(i ) is a characteristic function, we will abuse notation
slightly and refer to the language for which it is a characteristic function as Up(i ) .
We will have that Up(0) # TxtEx1 . Thus Mf ( p(0)) TxtEx* identifies Up(0) . We let
Up(1)=ODD.

Furthermore, for all i>1, Up(i ) will be finite. In addition, the construction will
ensure that at least one of the properties (A) and (B) is satisfied:

(A) For i>1, Up(i) contains exactly one even number. Moreover, for all
i>i $>1, Up(i ) & Up(i $) & EVEN=<.

(B) There exists a j>1 such that, B.1, B.2, and B.3 are satisfied.

(B.1) for all i> j, .p(i )(0) A .

(B.2) for all i such that 1<i< j, Up(i ) contains exactly one even number.
Moreover, for all i, i $ such that 1<i<i $< j : Wp(i ) & Wp(i $) & EVEN=<.

(B.3) Wp( j ) is finite, does not contain any even number, and for all i such that
1<i< j : Wp( j )�3 Wp(i ) .

Note that the above properties imply that Cp(0) # TxtEx1 . In case (A), clearly, a
machine can first output a grammar for ODD. Then if it sees an even number it
can output a grammar for the corresponding finite set using appropriate p(i ). In
case (B) Cp(0) is finite and a machine can TxtEx1 -identify by first waiting until it
gets an even number or sees Wp( j ) in the input and then output the corresponding
grammar. The machine now needs to change its conjecture only if the input is for
ODD, requiring at most one mind change.

We now proceed to define Wp(i ) for i>1. Let _0 be a sequence such that
content(_)=[1]. Go to stage 0.

Stage s.

0. Dovetail steps 1 and 2 until, if ever, step 2 succeeds. If and when step 2
succeeds, go to step 3.

1. Start defining p(s+2) so that it will be a characteristic function for
content(_s) , unless step 2 below succeeds.

2. Search for an extension _ of _s such that content(_)�ODD and
Mf ( p(0))(_){Mf ( p(0))(_s).

3. If and when such a _ (in step 2) is found,
Let e be an even number large enough so that .p(s+2)(e) has not yet

been defined and e is bigger than all the even numbers considered
in previous stages.

Let .p(s+2) be characteristic function for content(_s) _ [e].

Let _s+1 be an extension of _ such that content(_s+1) #content(_s)
_ [2x+1 | x�max(content(_s))].
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4. Go to stage s+1.
End stage s

Now consider the following cases:

Case 1. All stages terminate. In this case, clearly, for all i>1, Up(i ) is finite and
p(i ) satisfy the property (A) above. Moreover, Mf ( p(0)) makes infinitely many mind
changes on �s _s which is a text for ODD.

Case 2. Stage s starts but does not terminate. In this case clearly, property (B)
above is satisfied with j=s+2. Moreover, Mf ( p(0)) can TxtEx*-identify at most one
of Up(s+2) and Up(1)=ODD, since step 2 does not succeed.

This proves the theorem. K

Note. Angluin's proof of her characterization (by Condition 1) of uniformly
decidable classes in TxtEx essentially provides an algorithm for transforming two
things into a learning machine which TxtEx-identifies L15:

1. a uniform decision procedure for a class of recursive languages L that is
TxtEx-identifiable and

2. a program for generating an associated r.e. sequence of tell tale sets
S0 , S1 , ... as featured in Eq. (1) above.

The additional input information of a program for generating the tell tales therefore
makes a huge difference in the mind-change complexity of the synthesized learning
machine!

4. FUTURE DIRECTIONS

Ba� rzdin� s� and Freivalds (1972) first considered improvements of archetypal
enumeration techniques, involving a majority vote strategy which has better mind-
change complexity. It would be interesting to look into variants of our algorithms
above for synthesizing learning machines with improved mind-change complexity,
at least for interesting special cases.

Corollaries 1 and 2 above suggest to us ones exploring the relevance to our
paper's topics of r.e. classes of languages which can be enumerated with �n+1
duplications but not with �n (Pour-El and Howard, 1964; Pour-El and Putnam,
1965). In this interest we have a preliminary result complementing Theorem 3
above (Section 3.1).

Theorem 13. (_ recursive f )(\x | Cx # TxtEx0 7 (\ distinct i, j # Wx)[Wi {Wj])
[Cx �TxtEx(Mf (x))].

We also know that in this result TxtEx(Mf (x)) cannot be improved to
TxtExn(Mf (x)).
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15 Actually Angluin's synthesized machine learns decision procedures rather than grammars, and, for
TxtEx-identification of uniformly decidable classes of languages, one can learn grammars � one can
learn decision procedures. We can prove this latter is not the case for TxtBc-identification (of uniformly
decidable classes of languages).



It would be interesting to explore extensions of the present paper for the cases of
adding small amounts of negative information to the input data (Baliga, Case, and
Jain, 1995). In the light of Theorem 22 in Baliga, Case, and Jain (1995) and the
discussion following the proof of Theorem 12 above, it is reasonable to hope for
some resultant improvements in mind-change complexity for synthesized machines.

Case, Jain, and Sharma (1997) present positive and negative results regarding
synthesizers of language learners which tolerate noisy data, where noise is modeled
as in Stephan (1995) and Case, Jain, and Stephan (1996). Furthermore, the proofs
of the positive results provide characterizations of corresponding noise-tolerantly
learnable language classes. It would be interesting to extend the results of Case,
Jain, and Sharma (1997) and of this paper to probablistically correct inference (cf.,
e.g., Freivalds, 1979b; Freivalds, 1979a; Pitt, 1984; Valiant, 1984; Wiehagen,
Freivalds, and Kinber, 1984; Daley, 1985; Pitt, 1989; Pitt and Smith, 1988; Daley,
(1988), Kinber and Zeugmann (1991), Viksna (1991), Daley, Pitt, Velauthapillai
and Will (1991), Schapire (1992), Daley, Kalyanasundaram, and Velauthapillai,
1992; Kearns and Vazirani, 1994; Ambainis, 1996; Case, Kaufmann, Kinber, and
Kummer, 1997; Mitchell, 1997).
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