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A technique for approximating uniformly the solutions for a class of
ordinary linear differential equations with variable coefficients is
developed. The coeflicients are taken to contain a small or large param-~
eter in a simple way. In particular, the coefficients vary on a single scale
and are small and rapidly varying or large and slowly varying. The
method employed is the following (“extension”). The ordinary differen~
tial equation is replaced by a set of partial differential equations that
determine the unknown function in terms of a set of independent
“scales.” The partial differential equations, in conjunction with the
requirement of uniformity of the approximation in an interval, help us
establish the functional dependence of the scales in terms of the original
independent variable (‘“scale functions™).

With the use of two scales, we obtain an approximation to the am-
plitude and phase of each of the independent solutions of nth-order
equations that improves perturbative and frozen approximations. In
particular, “whipping tail” effects are eliminated. Under appropriate
conditions, for second-order equations, the Liouville~Green (or WKB])
approximation is readily recovered as a special case of our method.
Several examples are given. It is essential, for the success of the approxi-
mation, that the scale functions be nonlinear as well as, in general,
complex. Thus, the present approach generalizes earlier “‘time scale”
analyses in several respects.
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340 RAMNATH AND SANDRI

1. INTRODUCTION

This paper is concerned with a technique for approximating the solutions
for a class of ordinary linear differential equations with variable coeficients.

While the linear equation of the first order can be solved explicitly in the
form of a quadrature over the coefficient, higher-order equations cannot be
handled in this way.! For example, the second-order equations of Bessel and
Mathieu yield transcendental functions which cannot be expressed in terms of
quadratures over the coefficients of the defining equation. Approximate
solutions in this form are, however, very desirable; for example, when it is of
interest to study the effect of arbitrary variations in the coeflicients.

In this paper we assume that a small (or Jarge) parameter appears in the
coeflicients. We then develop a method, based on the concept of extension,
for obtaining asymptotic approximations in the form of simply calculable
functions of the coefficients. We will show that for second-order equations,
the Liouville-Green (or WKB]) approximation is recovered as a special
case of our method. The technique is then extended to higher-order equa-
tions. Our main results are (3.3.10) and (3.3.18).

Direct expansion in powers of the parameter often leads to a serious
misrepresentation of the true function for a certain range of the independent
variable. This occurrence is termed a nonuniformity in the perturbation
expansion. Techniques have been devised to overcome this difficulty and
render the approximations uniformly valid, as, for example, an expansion [1]
of the independent variable (developed by Lighthill), the method of matched
asymptotic expansions [2], and the method of extension [3]. We shall mainly
follow the method of extension and study a class of ordinary linear differential
equations with variable coefficients. We shall see that the failure of the direct
perturbation expansion has as its raison d’etre an inappropriate scale on
which the function is observed. The natural scales can be interpreted as
“clocks” which permit us to give a uniform description of the phenomenon
and are determined by knowing the precise nature of the breakdown of the
direct expansion.

We recall what is meant by a uniformly valid approximation. We will denote
by € a ““small”’ parameter (i.e., | € | <€ 1) and the one-dimensional independent
variable will be called the time. Given a function y(¢, €} of arbitrary shape
(Fig. 1), ¥4(t, €) 1s said to be a uniformly valid approximation to y(Z, €) to
order ¢, in a specific interval, if and only if for all # in that interval:

Yt €) = yo(t, €) + O(e). (L.1)
More generally we could have

L y(t1 E) :yo(t, ) -+ O(l)

! We do not consider time-ordered exponentials of integrals over matrices “explicit”.
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The Function y
——-—— Nonuniform Approximation

~————Uniform Approximation

Fic. 1. Approximations to y.

That is, the relation (1.1) holds if and only if the error between the function
and its approximation is uniformly small within the domain of interest.
Precise definitions are given by Erdelyi [4] and Wasow [3].

2. Tue CoNcepT OF EXTENSION

The origin of the concept can be traced to the work of Poincaré on the
secular expansion in celestial mechanics, and to the works of Krylov,
Bogoliubov, and Mitropolsky [6] who allowed a slow variation in the constants
arising in lowest-order perturbation theory. The technique of multiple scales
was applied to certain nonlinear differential equations by Cole and
Kevorkian [7]. Some problems in celestial mechanics have also been treated
in this manner by Kevorkian [8]. Frieman [9] and Sandri [3] have developed
it in the context of the theory of irreversible processes [10]. These applications
employ linear time scales. Also, one of us has considered a general technique
(method of extension) of uniformization and has discussed the relations of
this method to the others mentioned [3].

The fundamental idea of the method of extension is to enlarge the domain
of the independent variable to a space of higher dimension. Thinking of the
independent variable as time, we introduce a set of new independent ““clocks”.
A complete reparameterization of the lowest-order term in the perturbation
expansion can thus be achieved. The clock variables, in general, will not be
restricted to be real. The “clocks” are so chosen as to eliminate the non-
uniformities of direct perturbation theory. In the extended domain, uniform
approximations to the unknown function may then be obtained. The simplest
extension introduces a set of linear scales.

There are many problems, however, for which linear scales are inadequate.
It is the aim of this paper to demonstrate the need for, and the usefulness of,
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nonlinear scales. This will be accomplished by studying a class of linear
ordinary differential equations with variable coefficients. In general, the scales
may turn out to be complex quantities. Thus, the present paper generalizes
earlier time scales analyses in several respects.

We illustrate the idea of extension with a very simple example. This
example is treated in Section 3.1 from the point of view of differential equa-
tions. Consider a slow exponential decay

y = exp(— et). 2.hH
Direct expansion of y in powers of € yields
212
y:1~6t+7+--'. 2.2)
A finite term representation of this exponential series fails for # > 1/e. A
physical picture comes to mind if we take y to represent an observable quantity
such as a displacement from a reference position or a temperature difference
between two bodies. An observer who measures ¥ and records it using a clock
with the units of 7, = ¢ will have to wait for a long time (the longer, the
smaller € is) before he can observe a perceptible change in y and will have
considerable difficulty in ascertaining the exponential nature of the quantity.
Instead, if our observer were to use the slow variable 7, = e, i.e., a “super”
clock which measures time in giant units of #/e, the nature of the phenomenon
would transpire clearly since then our function can be written simply as
y = exp(— 7). The method of extension aims at facilitating such a useful
change of variable. Its purpose is to enable us to perform readings on appro-
priate scales by employing a sufficient number of independent “observers”.
Thus, in a phenomenon exhibiting a mixed behavior in time, the slow and
fast motions are to be extracted individually. Figure 2 shows a schematic of
the concept.

Slower Motions
T2

Extension
f’ .
Slow Motions

+
Mixed Behavior

0
Fast Motions

Fi1c. 2. Extension of the Domain,
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A geometric interpretation can be given as follows. Consider a three-
dimensional space (Fig. 3) with orthogonal axes, 7, 7, , and y. Readings on
“fast” and “slow” clocks are represented, respectively, by points along 7,
and 7, coordinates and y is defined to be the function

¥(7o, 71) = exp(— 7). (2.3)
¥izg,12)
&l surface
.
N 3
P e ™
> 7 -
— lar
7N cs
. Lo // \
<« E /
/ L
To & o
l:. e fy (t) dr

Fi1c. 3. Function surface in extended space.

Graphically, y(7,, 7;) is represented by the cylindrical surface in Fig. 3
which is constant in 74, but decays exponentially in =, . To relate y(ry , 7;)
to y(t), substitute 7, = ¢ and =, = et into (2.3), then

(&, €t) = ¥(2). (2.4)

The function y(rq , 7,) is said to be an extension of y(z). We are now prepared
to give a formal definition of the concept of extension.

Given a function y(t, €) where ¢ is, in general, an n-dimensional vector,
and a function y(ry , 74 5-.-, Tv_y) of the N-independent variables 7, , 7y ,..., 74
(each of which is an n-dimensional vector), y is said to be an extension of y if
and only if there exists a set of IV - z functions

Tp = Tk(t, G) k= Ov 1; 21'"1 N —1 (25)
which, when inserted into y, give:

Y(”'o(t» E)a Tl(t’ 6),..., 7N~1(t, E)) = y(t’ E)‘ (26)

409/28/2-8
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The space of N-tuplets 7 == {7y, 7 ,..., Ty_1} 18 called the extension of the
domain, and the locus defined by the equations 7, = 7,(¢, €) is called the
“trajectory’’ in the extended domain. The result of substituting the trajectory
in the extended function is the “restriction” of y and is denoted by y(7) i, .
We shall denote the mappings described above by the following notation:

E—> {70, Ty seers TN-1}s VY.

It is evident that there are infinitely many extensions which correspond to a
given function. In particular, if y is an extension of y, the result of multiplica-
tion by an arbitrary extension of the unit function and addition of an arbitrary
extension of the zero function is also an extension. Simple examples of these
extensions for the trajectory 7, = ¢ and , = et are:

1 — exp(r, — ery), 0— 1 — exp(r; — ery)- (2.7)

Two types of freedom are available: the choice of the trajectory and the
choice of the extension of y itself. Both are utilized in obtaining a y with a
simpler and smoother dependence on the parameter than that offered by y.
Such a dependence should clearly facilitate the determination of uniformly
valid approximations in the domain of interest. It is clear that “in general” the
concept of extension can be applied to the range as well as to the domain of the
function y.

The derivatives, and indeed entire differential expressions, can be treated
as functions on ¢ and can be extended with the above definition. Derivatives
of y are, of course, functionals on y but functions on t. Consider, for example,

40 =2 1 cut) 2.8)

An extension of ¢ corresponding to the trajectory 7, = £, 7, = et is
_ % oy
b= Brg € 8_7-; + ew(ry) y- (2.9)

Extensions similar to the one given in (2.9) are readily constructed for a
general trajectory. Note that we have extended

s(t) > a(ry). (2.10)

This particularly simple choice will be maintained throughout the rest of
this paper. Clearly, the extension (2.10) can be used only if the variable
coefficient depends on a single time scale and does not containe independently.
Quite generally, for a linear differential equation for y(#) with nonconstant
coeficients w(t) '

L{[w],y) =0 .11)
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the freedom available in extension corresponds to the choice of the trajectory
and to the extension of w;. We shall study below the nonlinear trajectory
7o = t, 7, = €k(t) (where % is to be determined) in conjunction with the
extension (2.10).

3. Linear DirrereNTIAL EQUATIONS

We will now apply these ideas to some linear differential equations. We use
the first-order equation to illustrate the mechanics of our approximation
scheme. The class of equations discussed below can be characterized qualita-
tively by the following restrictions on the coefficients:

(i) all coefficients vary on a single scale,

(ii) the coefficients are either large and slowly-varying or small and
rapidly-varying.

3.1. First-order Equations

Consider, first, the linear equation of the first order with constant coefficient,
dy -
E+Ey*0' (3.1.1)

Direct Taylor expansion in powers of e yields, with y(0) = 1,

w©

y=Y eml) = (-1po

n=0

which corresponds to (2.2). As shown in the discussion following (2.2),
this expansion is not uniformly valid. Our method readily uniformizes this
simple case. Take the extension ¢ — {r, , 7;} with linear trajectory

T4 = ¢, T =¢t (3.1.2)
The time derivative operator is extended as

d 0 0

a7 B T

Now, we extend the dependent variable as y(t)— y(7y, ) and obtain,
equating powers of e:

9y _
=0 (3.1.3)
gx +y=0. (3.1.4)
T1
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From (3.1.3) and (3.1.4) y(ry, 7¢) = A(r)) = c exp(— 7;). We now restrict
the extended function along the trajectory (3.1.2) and obtain

Y(t) = ¢ exp(— et) (3.1.5

which is the exact solution of (3.1.1) with y(0) = ¢, and independent of «.
It is clear that the treatment is independent of whether ¢ is small or large.
This situation will hold for the case with variable coefficient also. For higher-
order equations, however, it will be important to distinguish the two cases.

We now consider equations with a variable coeflicient. We first show that
the extension with linear scales (3.1.2) is inadequate. We will then use non-
linear time scales. Consider, in fact, the linear equation:

dy
it + eot)y =0 (3.1.6)

with a coefficient that depends on a single time scale. Taylor expansion (i.e.,
the direct perturbation expansion) expresses y in terms of powers of [w dt,
while the correct result is the exponential function of [ w d¢ given by (3.1.14).
Using the trajectory (3.1.2) and with the extension (2.10) for w, we have,
equating powers of ¢,

oy o

=0 (.1.7)
8
% + a(rg)y = 0 (3.1.8)

ie, y(rg, ) = A(ry) and A'(7) + w(ry) A(ry) =0, which leads to a
contradiction unless w is a constant. A uniform approximation to y can there-
fore not be obtained with the linear scales of (3.1.2).

Consider now the extension t — {r,, 7} with the nonlinear trajectory

=1 74 = ek(t) (3.1.9)

where k(t) is as yet an undetermined “clock’ (or “scale”) function. The
derivative operator now is extended as

d 7 . 0

leading to the equations:

& _y (.1.11)

ory

N
K(ro) 3—3’1 + w(rg) y = 0. (3.1.12)
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We obtain, on integrating, y(r, , 7,) = A(7y) and
AI
= % (rg) = s (3.1.13)

where s is a constant. Thus, y = ¢ exp(sr;), where ¢ is a constant and
1 = — (¢/s) [wdry. Clearly, s can be set equal to unity without loss of
generality. Upon restriction, the solution is given by

() = ¢ exp (— ¢ [ () dt) (3.1.14)

which is the exact solution of (3.1.6).

We note that our method “simplifies” the problem reducing the original
variable coefficient case to the constant coefficient case plus an explicit
quadrature (see Eqgs. (3.1.13)). In other words, the method yields a suitable
change of either the dependent or of the independent variable.

It can be verified that the trajectory represents the characteristics of the
partial differential equation obtained by the extension of the given ordinary
differential equation. The partial differential equations (3.1.11) and (3.1.12)
are compatible with each other as can be readily shown by cross differentia-
tion. The compatibility conditions will be obtained only approximately for
higher-order equations. The compatibility conditions play a particularly
important role in the matrix formulation of the problem (see, e.g., Ref. 5).
This approach will be discussed elsewhere.

The clock function (scale function) k(z) can be highly nonlinear. Some
simple examples are shown in Fig. 3. Further, with first-order equations, a
uniformly valid (in fact, exact) solution can be obtained in any .interval
(although not necessarily through a clock). This is not possible for higher-
order equations.

The analysis is extended without difficulty to the case in which ew in
(3.1.6) is preplaced by 3, ¢,(¢) w,(t), where ¢, is an asymptotic sequence [4],
by means of the trajectory =, = é,(€) k,(2).

The necessity of using nonlinear scales is appreciated by treating (3.1.1)
after the change of variable ¢ = 1/z.

For both small and large ¢ the extension (3.1.10) is appropriate. This will
be seen not to be the case for higher-order equations.

3.2. Second-Order Egquations.

Consider the second-order equation in “‘canonical” form; that is, the first
derivative has been eliminated. We shall assume, as in Section 3.1, that the
frequency function depends on a single time scale. We can then write

¥ + ew(t) y = 0. (3.2.1)
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We shall study this equation both for small and large values of the parameter e.
We will see that in both cases the partial differential equation that will be left
unsatisfied contains derivatives with respect to the slowest time scale. It can be
readily verified, in view of the choice (2.10), that the class of second-order
equations considered below corresponds to either rapidly-varying, low fre-
quency (Case (1)) or slowly-varying, high frequency (Case (2)). The derivative
will be extended differently in the two cases.

Case (1)—Coefficient with Small Parameter: 0 <]e|<€ 1. The direct
perturbation expansion may be nonuniform for values of ¢ which depend on
the nature of w(?). To study the low frequency with rapid variation we invoke
the extension (3.1.10) and (2.10) and are led to the set of equations:

oty
arE =0 (3.2.2)
. 6): Y Bzy o
-81-1 + 2k Bry om, + oty =0 (3.2.3)
. O%y
2 _
B = 0. (3.2.4)

We have chosen &y/0¢ =0 which is adequate for first-order theory.
Higher-order theory requires that either y be expanded or that additional
scales be used. From (3.2.2) we find

V(7o , 71) = A(my) 7o + B(ry). (3.2.5)

Two solutions are generated by using (3.2.3) and (3.2.5). These give rise to
two clock functions that can be written as:

by = LO [ ot dry — [ 7 drg (3.2.6)

Ry == f Tow dTg — T, f w dry . (3.2.7)

Upon restriction along the trajectory (3.1.9), the approximate solutions to
first order can be written as:

$; = ¢, exp 35 (% f t2w dt — f tw dt); (3.2.8)

Je2 = ¢y €xp

+e(jtwdt~tfwdt)$. (3.2.9)

The constants of integration associated with (3.2.8) and (3.2.9) require
careful consideration in applications.
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A sufficient condition for the approximation to break down is that the term
in (3.2.4) which is neglected attains the same order of magnitude as any term
in (3.2.2). This leads to the following criterion (Appendix B): the approxima-
tions (3.2.8) and (3.2.9) will fail when
e L (3.2.10)

€

wt

It can also be noticed that the constancy of the Wronskian of the approximat-
ing functions is destroyed when wt? ~ 1/e and (3.2.3) and (3.2.4) are then
no longer linearly independent. For example, for the Airy equation
(" + ety = 0) the failure of the approximations (3.2.8) and (3.2.9),
(t = <13} is correctly given by the above criterion.

One obtains the correct solution for the constant frequency case with the
extension of the derivative (3.2.14) and (2.10). Application of the extension
(3.1.10) yields an approximation that avoids the “whipping tail” defects of
direct Taylor expansion but may not extend the interval over which the
Taylor expansion is valid.

For the choice

w(t) = tl—z (32.11)

it is readily verified that our approximation formulae (3.2.8) and (3.2.9)
substantially improve the Taylor expansion in €. For ¢ < 1 the WKB approx-
imation is clearly at fault in this case [12].

Case (2)—Coefficient with Large Parameter. We will now change our
point of view and consider (3.2.1) in the form

Y+ Naw(t)y =0 (3.2.12)

where | A | > 1, and by comparison with (3.2.1) A = ¢!/2. We now choose the
trajectory

To = 1, T = AR(?) (3.2.13)
with the derivative extended as
0 . 0 7 . 0
5_;+Akg;:a-7_;+\/§k5_: (3.2.14)
and have the set of equations:
.2 %y
R¥(rq) 5r.2 + o)y =0 (3.2.15)
71
O o Y
k o, + 2% Brotr 0 (3.2.16)
2
% _o. (3.2.17)

==
o7,
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We seek solutions of (3.2.15) in the form:
y(7o, 71) == a(rg) Blry) = o7y) exp(ry) (3.2.18)
whence the clock % satisfies the equation:
R w =0 (3.2.19)

Substitution into (3.2.16) yields «(ry) == w™1/4(7y). Restriction along (3.2.13)
yields the approximations

$,(t) = cyw14 exp (i,\ j W/ dt) (3.2.20)
Folt) = cxo 1t exp (- iA f wl/2 dt) (3.2.21)

which are recognized as the Liouville-Green (or WKBJ) formulae. Thus, with
our method, the frequency and the amplitude variation are associated with
the fast and slow time scales, respectively.

Analogous approximation formulae can be obtained directly for second-
order equations in which the first derivative appears explicitly. The precise
condition for the asymptotic validity of (3.2.20) and (3.2.21) is that
~1/4 ~1/4

dt <M

dZ
ar

/]
[ w
v

where M is a constant and (&, b) is the interval considered. We can express
this condition in terms of the characteristic roots x for the equations
(*%2 + w =0) as

2
dii x+1/2
t

dt << M.

b
f w12
a

This latter form lends itself to analyzing higher-order equations. In particular,
in Ref. 11 the corresponding criterion has been developed for third-order
equations.

Third- and higher-order equations can be treated similarly. Therefore, we
will now consider the nth-order case.

3.3. Equations of nth Order

We discuss some cases of equations of the nth order. Again, a small or a
large parameter enters the coefficients in a simple way.

Case (1)—Coefficients with Small Parameter: 0 <<|e|<<1. We shall
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first study the parameterized canonical (i.e., (# — 1)th derivative term is
absent) equation,

P 4 a0 3"+ - w£)3] = 0 (33.)

in the limit as | € | — 0. Direct perturbation can be shown to be nonuniform,
depending on the nature of the coefficients. The extension 7y = #; 7, = €k(#)
leads to a set of (7 + 1) partial differential equations. Using the results of
Appendix A, the two leading equations are written as:

oy
Brg" (3.3.2)
6y ovtly o2y
(n) 7
k +')’§ ( )k(n ‘},) 8702 871 '11—2 a n 2 + + w()y (3'3.3)
Integration gives:
¥(7o, 1) = Apa(r1) 7'0_1 + A, o(r1) "'0_2 + - Aulry) o -+ Ao(Ty)-
(3.3.4)

The terms on the right side are linearly independent with respect to 7, and
thus generate corrections to the lowest-order result. For example, substituting
A, 4(m) 781 into (3.3.3) and choosing an exponential =, dependence of
A, _, results in the following equation for the clock:

A b s D - na D

= — (Wn_s70 + WngTo” + g7 ) (3.3.5)

Even though this equation has variable coefficients, it can be recognized as
the inhomogeneous Euler-Cauchy or equidimensional equation and can be
solved exactly. The solution of the corresponding homogeneous equation can
be expressed as &,_; = 7,”, where m satisfies the algebraic equation:

m(m—l)(m—2)'"(m—n+2)+m(m——1)-"(m—n+3)(’lz)(n~1)

4 4nl =0. (3.3.6)
This can be written as

mrd g, om2 e fgmta, =0 3.3.7)
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having (z — 1) roots which are assumed to be distinct for this analysis. Let
the homogeneous solution be given by:

n~1

(Pndn == 3, i by = 7o', (3.3.8)

i=1

The particular solution can then be written as:

- 1f vzf
- ‘Il’n—l = — n—l ¢1 W( ) f W( dTO
)by f ;’;Elf; dry. (3.3.9)

We have used the notation W = W(¢, , ¢, ,..., ,_,) for the Wronskian of the
¢;, and v; for the determinant of the matrix formed by replacing the sth
column of the (n — 1) square matrix

‘51 ¢;2 T ‘l§n~1
41;1’ 952, T ‘5;;—1

(/"';n—z) $§”_2) L. ~§nn:12)
by the column
0
0
f

where f(7,) denotes the right-hand side of (3.3.5). One more integration of
é,-1 gives the clock function %,_;, thus obtaining the proper time scales.
After restriction along 7, = ¢, and 7, = ek(?), one approximate solution to
(3.3.1) can be written as:

Yna(t) = €pyt" " exp (6 f - dt) .

The other independent approximations are similarly obtained by determining
the clock functions ¢,,_s ,..., ¢y , ¢y . We note that £,_, satisfies an (n — 1)th
order inhomogeneous linear equation; k,_, satisfies an (n — 2)th order
equation, and so forth. Thus, %, satisfies a second- and £, a first-order equa-
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tion. The case given above is therefore the most complicated and the analysis
becomes simpler for the determination of successive clocks. The approximate
general solution of (3.3.1) to order ¢ for small € can be written as

n—1

F(t) =) cit'exp (e f ¢ dt) (3.3.10)

0

(¢; being arbitrary constants).

For any given n the breakdown of this approximation can be determined
by studying the equations that have been neglected. Higher-order corrections
can be obtained by employing slower clocks.

Case (2)—Coefficients with Large Parameter. Consider the equation:
PO L Ay (£) YD Ry o) Y2 A e 4 Ay (£) y D)
+ Mgty y =0 (3.3.11)
where | A | > 1. Equation (3.3.11) is equivalent to an equation of the form
Y @ (er) Y A w, y(er) y B 4 o fagler)y =0 (3.3.12)
with
0<ekl

for (3.3.12) can be written in the form (3.3.11) by letting e = ¢ and A == 1/e.
We now choose the extension

o =1, T3 = Ak(t) (3.3.12)
and obtain (Appendix A) the two leading equations:

an—ly

kn oy + @,k par) + w1k 3y + wyy =0 (3.3.13)
1

n
o1}

oty on
n(k)r1 ﬁ—,,: +(n — 1) 0,4 (B2 5—‘—3‘%’3 + -

—1
Qa5 +w§f;+( e ok Y

n—2

n (n — 1)2(71 — (B3 k ZY

+ wyh —g% = 0. (3.3.14)
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As before, we seek solutions of the form:
¥(ro s 71) 7= alro) B(my) = of7y) exp(my).
The derivative of the clock function satisfies the algebraic equation:
(B)" 4 @wpg (B = 5 ank + wy = 0. (3.3.15)

On substitution into (3.3.14) and simplifying, the explicit amplitude variation
is given by

d 1 oF \)
o, =y a(k) ( )$k
where
F(k, 7o) = k* + w, k"L - - ok + w, (3.3.16)
ie.,

= () e ([ () ). o)

Thus, the approximate general solution to (3.3.11) is obtained after
restriction and is given by

() = é ci (gg)_m exp ([ _a%ln (gg)” Cdn) expk)  (33.18)

where I is given by (3.3.16) and &; by (3.3.15). The ¢, are arbitrary constants.

The roots of the equation (3.3.15) are called ““characteristic’’ roots and are
assumed to be distinct. When w; , w,,... w,_; vary more slowly than w,, a
simpler expression is obtained for the approximation, viz.,

=73 ( :f )" explak). (3.3.19)

=1
We see that the results of the standard Liouville-Green theory can be recov-
ered for second-order equations.
4. EXAMPLES
We shall now consider some examples of the present approach. It will be

seen that our results hold well even in some cases for which the formal
conditions of validity of the approximation are not strictly met.
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4.1. Kummer’s Equation
Consider Kummer’s equation
B+ b—1)y —ay=0 4.1.1)

where a and b are fixed constants. As # — 0, the solutions asymptotically
behave as e%? and t~9, and so have only a finite number of zeros. This
information is obtained from the preceding theory as follows. The asymptotic
behavior of the characteristic roots is obtained from the equation

k‘2+(%—1)k'—%:0 (4.1.2)

as k ~ 1 4 (a — b)/t and k, ~ — aft. From (3.3.18) the asymptotic solu-
tions are obtained as

F1 = oy(7o) exp(ry) |¢ = ¢re’t? (4.1.3)
Fo = ot ™ (4.1.4)

4.2. A Third-order Equation

Consider
"+ 39" 4+ ty =0. 4.2.1)
The characteristic equation can be written as:
B3 1=0. (4.2.2)

For large ¢ the characteristic roots ¢ can be determined by a perturbation
expansion, yielding

E— Ryt Sk ko — — 1, LHZ:’—‘/:"; Shy — 1. (423)

Thus

=[] PR L) 4] w2

The approximation is given by
3 3

)= 2 ¢; exp(ik;) = Z ¢; explky; + Sk
i=1 =1

g Cs +14iV3 cs 1—iV3
= a0+ e (7)1 + See ()
(4.2.5)
which can be recognized as the exact solution of (4.2.1).
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4.3. “Double Awry” Fquation
Consider the equation
Vyo—4ty — 2y =0 (4.3.1)

which we call the “Double Airy” equation. The characteristic roots for large ¢
are obtained from the characteristic equation

B 4tF —2—0 @.3.2)
as ky == 21V/% ky = — 2£/%; ky == (. The approximate solutions to (4.2.1) are
given by

51 = (3k2 — dr) 12 exp(k)
e,

Fre =t exp(L §%%),  Jy=1t2 (4.3.3)

Now, (4.3.1) has the products of Airy functions as exact solutions, A#%(t),
Bi#(t), and Ai(t) Bi(t). Thus, the solutions (4.3.3) agree with the asymptotic
behavior of the exact solutions {13].

4.4. An Equation of the nth Order

We shall now consider a special equation of the nth order, viz., the Euler-
Cauchy or equidimensional equation:

s ’t\—" y=0 (4.4.1)

in the limit|A |- c0. The equation conforms to the conditions of the
approximation. The characteristic equation is

s tln =0 (4.4.2)
with the characteristic roots:
. i-+20\) (1 . . —
k= Iexpn— (—TJ); (7), i=12wni=V=T @43
The asymptotic solution of (4.4.1) as | A | —> co is given by our theory as:
yi(t, A) = (K57 7V" exp(Aki(t))

= ¢ eng ((n )),,(, + zj)g R xpB(t).  (444)
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Simplifying:
n
_)‘l(t)\) — Z c,-ti n—1/2 gAexp[li+2))/n]7, (4.4_5)
i=1
The exact solution can be determined as follows. Since (4.3.1) is a homo-
geneous equation, we look for a solution in the form y = ¢™. On substitution,
m is found to satisfy the equation:

mim — 1) (m —2) - (m—n-+ 1)+ x» =0, (4.4.6)

The asymptotic behavior of the roots of this equation can be seen rather
easily in the graphical root locus form [14]:

1 + A"G(m) 4.4.7)
where

1
(m—1)(m—n-+1)"

Glm) = —

The locus of the roots of (4.4.7) as A increases from O to co is governed by the
sign of A and whether # is odd or even. For example, when A — o, the locus
of the roots of (4.4.7) on the complex m plane as | A | increases from 0 to oo
is shown in Fig. 4. When A — -+ 0, the locus lies on the part of the real
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axis which has an odd/even number of poles of G(m) to the right of the point
considered. For the present, however, the behavior of the roots as | A | — o
s of interest. As | A|— o0, the root loci become asymptotic to the rays
emanating from the point m = (z — 1)/2 on the real axis, at angles 180%/n
or 360°/n (according as A — + o0 or — oo, respectively); i.e.,

m~(n2 1)4—/\e:xp (W(Z—:ZJL), J= L 2p,ni=v -1
Thus, the exact solution has the same asymptotic behavior for | A | — o0 as
predicted by our approximation.

The application to some other equations is given in Table 1. An application
of the small e result, viz., (3.2.8) and (3.2.9), to the problem of wave propaga-
tion in a turbulent plasma is discussed in Ref. 12. The motion of a vertical
take-off and landing aircraft during the hover-forward flight transition has
been analyzed by means of the multiple time scales technique and uniformly
valid asymptotic solutions have been obtained [11, 13].

TABLE 1

ExampLEs oF SoMEe CrassiCAL EQUATIONS

Name Equation Asymptotic Behavior
: o4 A .
1. Bessel’s eq. of 3" -+ -iy +y=0 112 exp(+ it); t—>
zeroth order
ta—b ete
2. Kummer’s ' +b—t)y —ay=0 o ; t—> w
confluent
hypergeometric
3. A third-order t1 exp(—1t)
equation ty" + 3y +ty =0 =
4 Ry 14iv3
t~texp (—-—— t) t— @
2
4. ¢ Lo
. “Double Airy” 9" — 42y’ — 2y = 0 t— ©
A G 717 exp[ £ 4/3 tw]g -
" ! ¢
A" a1 /\exp[(l-nﬂ)ﬂ] ' A I -
5. Euler’s y‘")+(7)y=0 t?t Tl p<L<n
equation i=v_1
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5. CONCLUDING REMARKS

The main theme of this paper has been to demonstrate with a class of linear
differential equations that when direct perturbation theory fails, natural
(nonlinear) scales can be found on which the solution can be described more
uniformly. The approach is mathematically straightforward and allows for
the injection of physical insight.

We have developed here first-order theory. Higher approximations can be
obtained in two ways [11]: (i) by employing more scales, and (ii) by expanding
the dependent variable. Multiplicative and additive corrections to the approx-
imate solutions are obtained, respectively. Both are of interest, as well as
combinations.

Error bounds can be found for our approximation formulae. Several
results are discussed in Ref. 11.

For the | A | >> 1 cases, the compact form of our formula (3.3.18) enables
one to write the approximation by inspection and ties in neatly with the con-
cept of variable characteristic roots. Of course, special precautions are needed
when characteristic roots coalesce and turning point problems arise [5].

It may not be amiss to remark that even though the coeflicients have been
taken to be either small and rapidly varying or large and slowly varying,
special cases of a different nature are included in our treatment. Thus, for
example, ¥” + dw(Af)y = 0 with A>> 1 is readily transformed to (3.2.1)
with € = 1/A.

ArpeNDIX A. EXTENSION OF THE nth-ORDER DERIVATIVE
With the two time scale extension
t— {79, T} 70 = 1, T, = <k(2). (A1)

An extension of the derivative operator is

d_ o  dn @ 8

dt 0—'——7*8—7_:_8—70“{-6}3 1. (A.Z)

Similarly, we have, for the second derivative

dz
W”’(aﬁo ek arl)(ai, + ok 37'1)
:%Jre(iéa—ifrzk%—;)ju&(kz aa;)_ (A.3)

409/28/2-9
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We now consider the extension of the nth derivative:

dr ¢ -8\
T (777 ek o) (A4)
We order the terms in (A.4) with powers of ¢
d A
(?7;‘ + Gk 8—7'1-) - p;o EpAp . (A.S)

Clearly, the right-hand side of (A.5) contains terms due to the binomial
expansion of the operator as well as terms with successive derivatives of the
clock function. For purposes of the present approximation scheme, only terms
of order e” and ! are needed, in addition to the lowest-order terms. The
corresponding operator coefficients are:

an
A= (A.6)
n-1 or+l
— (n)_ {n—r)
A=+ + rz ( ) k oy 01y (A7)
on nn—1) . .4 O
n—. l -
Apes = B e+ P B R (A8)
.on
= (B s (A.9)

That these are, indeed, the coefficients is proven by mathematical induction
as follows. We shall prove that if (A.6)-(A.9) is true for #, then it is true for
n -+ 1. Letting the derivative operator (A.2) act again on (A.5), we find:

n+1
(afo + ek ail ) '
= (%?'T + ek %;1) 3?': + k™ Bry + Z ( ) k! 3Ti:+3171

. on
.. n—1 n-1___
e (”(k) Grg 077

_*_(d_l)(k)n =

=

; _ Y es,. (A.10)

=0

+ e (g
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The relevant coefficients can be written as:

an+l

Bo= pr (A.11)
a 62 . an-}—l
— kn+D) (n)
By B e T R e T R mg
5 pin-rin 97 pnery O
Nn-—-r- n—
+ = (r) [ oty o, + oty o, ] (A.12)
0 & om 4+ 1 ortl
— pniny 9 (n—r+1)
ki on, + El ( r ) k oty 07y
B, = n(Ryt K o g w2
= n(k) R + n(k) s
nn—1) 0 1o,
R R O =
. . ontl (n + an .y
=+ DRy Oty 07" - Bk o " (.19
a n+1
By = (b oy (A.14)
1

On examining (A.6)~(A.9) and (A.11)~(A.14), it is seen that the latter are
obtained from the former by replacing # by (n + 1). Hence, if (A.6)-(A.9)
are true for », they are true for (n + 1). It is easily verified from (A.5)-(A.9)
and (A.3) that the validity for n = 2; thus, the induction is complete.

ArpENDIX B. A CRITERION OF VALIDITY
We derive here the criterion for validity of our approximation when applied

to the second-order equation with small parameter. Failure of the approxi-
mation occurs when the term neglected in the analysis ceases to be small:

(% %) (le-) ~L. (B.1)

The condition for failure is then given by

(k2 = % . (B.2)
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Substituting from (3.2.8) and simplifying, we obtain:
Ve U Podl) ol
Differentiation of (B.3) yields
Ve tPw = 1 wiot? 4 2tat
which can be rearranged to read

%_w_%w __+_ %wfé == '\/;

We recognize the first term to be a total derivative; therefore

d L 2 _1 -
J(w 2)~—T(w t) = — Ve

Using t~2 as an integrating factor, the above condition becomes:

4oty Ve
dt( ) e
Integration of (B.7) now gives

1 Ve

Vot ot
i.e., wi? >~ l/e. The approximation will therefore fail when

wt? ~ —1~— .
€

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

The criterion can be derived in a different way, also. The approximating
functions A(r) 7, and B(r,) are linearly independent with respect to =, .
Upon restriction along 7, = ¢, 7; = ek(t), this property may not be satisfied
throughout the domain. Our approximations can therefore be expected to
fail in a region where the constancy of the Wronskian is destroyed. From

(3.2.8) and (3.2.9), the Wronskian can be written as
N 1
WG, g0 = [~ 1+ e (5 [twd—t [ wa)

X exp

e(%ftzwdt—ftwdt—ffwdﬁ)g

(B.10)
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i.e., to lowest order in €, W(#, , J,) is a constant. Hence, failure is indicated
when either the exponent is of order unity or

1, 1
Tftwdt-«tj.wdtrw—e—. (B.11)

Therefore, we have

AZeftJ‘wdtdt~t. (B.12)

Differentiating Eq. (B.12), we obtain

— et f wdt ~ 1. (B.13)
Differentiating again,
Zew ~ 3y (B.14)

Thus, the approximations (3.2.8) and (3.2.9) fail near a value of ¢ for which
wt* ~ /e as obtained earlier. Substituting this shows that the exponent in the
exponential function of W(#, , #,) is of order unity.
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