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Abstract: A new graphical display is proposed for partitioning techniques. Each cluster is represented by a so-called
silhouetre, which is based on the comparison of its tightness and separation. This silhouette shows which objects lie
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by combining the silhouettes into a single plot, allowing an appreciation of the relative quality of the clusters and an
overview of the data configuration. The average silhouette width provides an evaluation of clustering validity, and
might be used to select an ‘appropriate’ number of clusters.

Keywords: Graphical display, cluster analysis, clustering validity, classification.

1. The need for graphical displays

There are many algorithms for partitioning a set of objects into k clusters, such as the
k-means method [6,9,13] and the k-median approach [20]. The result of such a partitioning
technique is a list of clusters with their objects, which is not as visually appealing as the
dendrograms of hierarchical methods. It is hoped that the graphical display introduced in
Section 2 will contribute to the interpretation of cluster analysis results, as illustrated by the
examples of Section 3. In Section 4, some other dispiays wiil be described.

Suppose there are n objects to be clustered, which may be persons, flowers, cases, statistical
variables, or whatever. Clustering algorithms mainly operate on two frequently used input data
structures (see [18 Chapters 1 and 2]). The first method is to represent the objects by means of a
collection of measurements or attributes, such as helght, weight, sex, color, and so on. In
Tucker’s [19] termmology such an objects by attributes matrix is called two-mode, since the row
and column entities are different. When the measurements are on an interval scale, one can
compute the Euclidean distance d(i, j) between any objects i/ and j.

This leads us to the second data structure, namely a collection of proximities which must be
available for all pairs of objects. This corresponds to a one-mode matrix, since the row and
column entities are the same set of objects. We shall consider two types of proximities:

dissimilarities (which measure how far away two objects are from each other) and similarities
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Table 1
Dissimilarities between twelve countries, obtained by averaging the result of a survey among political science students
Country Dissimilarities to other countries
BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG
BRA 5.58
CHI 7.00 6.50
CUB 7.08 7.00 3.83
EGY 4.83 5.08 8.17 5.83
FRA 217 5.75 6.67 6.92 4.92
IND 6.42 5.00 5.58 6.00 4.67 6.42
ISR 342 5.50 6.42 6.42 5.00 392 6.17
USA 2.50 492 6.25 7.33 4,50 2.25 6.33 2.75
ussS 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17
YUG 5.25 6.83 4.50 3.75 5.75 542 6.08 5.83 6.67 3.67
ZAIl 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92

(which measure how much they resemble each other). In this paper we shall assume proximities
on a ratio scale, such as the Euclidean distances mentioned. Also, most of the discussion will be
concentrated on dissimilarities, but the formulas for similarities (with analogous interpretation)
are also presented.

Let us consider a real data set consisting of dissimilarities. A questionnaire was distributed in
a political science class, asking the students to provide ratings of perceived positive dissimilarity
between all distinct pairs of twelve countries on a scale from 1 to 9. This is a replication of a
well-known experiment of Wish [23] with the students’ own country (Belgium) included. The
countries were (in alphabetical order): Belgium (BEL), Brasil (BRA), mainland China (CHI),
Cuba (CUB), Egypt (EGY), France (FRA), India (IND), Israel (ISR), United States (USA),
USSR (USS), Yugoslavia (YUG), and Zaire (ZAI). It was imposed that the dissimilarities had to
be symmetric, and the dissimilarity of a country to itself was not recorded. The final dissimilarity
coefficients listed in Table 1 were obtained by taking the averages of the values given by the
students. By construction, Table 1 is only a triangular half matrix.

Still, Table 1 contains 66 numbers, making it hard to perceive the structure of the data by the
naked eye. To obtain a better insight, one can partition the countries into k clusters. For
instance, one can use the k-median method as described by Massart, Plastria and Kaufman [14],
in which k representative objects are selected so as to minimize

» X dti. m(0)

where d(i, m(i)) is the dissimilarity of object i to the nearest representative object, denoted by
m(i). Like the k-means method, this algorithm tries to find roughly spherical clusters. This yields
the following result for k = 2:

cluster 1: BEL, BRA, EGY, FRA, ISR, USA, ZAl

cluster 2: CHI, CUB, IND, USS, YUG
and gives the following clustering for k = 3:

cluster 1: BEL, EGY, FRA, ISR, USA

cluster 2: BRA, IND, ZAl
cluster 3: CHI, CUB, USS, YUG
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in the data, or if we have merely partitioned our objects into some artlflclal groups. Indeed, such
clustering methods always come up with £ groups, whatever the data are like. At this stage, we
are left with many questions. Are the clusters of a high quality (that is, are the ‘within’
dissimilarities small when compared to the ‘between’ dissimilarities)? Which objects appear to be
well-classified, which ones are misclassified, and which ones lie in between clusters? What is the
overall structure of the data like? Can we obtain an idea about the number of ‘natural’ clusters
that are really present? These questions are difficult, and we feel that the existing displays answer
them only partially. It is hoped that the silhouettes introduced in the next section will provide the
user with additional guidance.

However, this does not tell whether these partitions reflect a clustering structure actually present

2. Construction of silhouettes

The silhouettes constructed below are useful when the proximities are on a ratio scale (as in
the case of Euclidean distances) and when one is seeking compact and clearly separated clusters.
Indeed, the definition makes use of average proximities as in the case of group average linkage,
which is known to work best in a situation with roughly spherical clusters.

In order to construct silhouettes, we only need two things: the partition we have obtained (by
the application of some clustering technique) and the collection of all proximities between
objects. For each object i we will introduce a certain value s(i), and then these numbers are
combined into a plot.

Let us first define the numbers s(7) in the case of dissimilarities. Take any object / in the data
set, and denote by A4 the cluster to which it has been assigned. (For a concrete illustration, see
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rig. 1). winen cluster 4 contains other uujcu.o apart irom l then we can com pute
a(i) = average dissimilarity of i to all other objects of A4.

In Fig. 1, this is the average length of all lines within 4. Let us now consider any cluster C which
is different from A4, and compute

d(i, C) = average dissimilarity of i to all objects of C.

In Fig. 1, this is the average length of all lines going from i to C. After computing d(i, C) for all
clusters C # A4, we select the smallest of those numbers and denote it by

Fig. 1. An illustration of the elements involved in the computation of s(#), where the object i belongs to cluster A.



W
o

.J. Rousseeuw / Graphical aid to cluster analysis

=3

The cluster B for which this minimum is atta r1 that is. d{i. BY = h{i\ we call the neichhor of
a3 AT LA ARSL YV AAANAL LAAAD SERIARNIRELANRL LI ulr\ful LV\A Llub ERs 2% w\l LI U }} YY U wdll Lliv IlCLéIlUU’ vl
object i. This is like the second-best choice for object ir if 1t oul ot be accommodated into

cluster 4, which cluster B would be the closest competitor? In Fig. 1, cluqter B indeed appears to
be closest (on the average) to object i, when A 1tself is discarded. Therefore, it is very useful to
know the neighbor of each object in the data set. Note that the construction of 5(i) depends on
the availability of other clusters apart from A4, so we have to assume throughout this paper that
the number of clusters k is more than one.

The number s(i) is obtained by combining a(i) and b(i) as follows:

{1 {aN 14N e £ 1N
1l—avi)/o1) uUali)<oii),
s(i)=<0 if a(i)=b(i),
\b(i)/a(i) =1 if a(i)>b(i)

It is even possible to write this in one formula:

b(i) — ali)
s(i) =

max{a(i), b(i)}

When cluster 4 contains only a single object it is unclear how a(i) should be defined, and then
we simply set s(i) equal to zero. This choice is of course arbitrary, but a value of zero appears to
be most neutral. Indeed, from the above definition we easily see that

—-1<s(i)<1
£far ann W Aleian~t S
101 Caull UUJC\.«L {.
Note that the s(i) defined above remains invariant when all the original dissimilarities are
mn]hnhed h\/ a nnmhvp constant, but that an additive constant is not allowed. This PYh]ﬂan whv

we have exphcnly assumed that the dissimilarities were on a ratio scale, which means that a
dissimilarity of 6 may be considered twice as large as a dissimilarity of 3. For instance, Euclidean
distances are on a ratio scale.

To strengthen our intuition about the meaning of s(i), let us look at a few extreme situations.
When s(7) is at its largest (that is, s(7) close to 1) this implies that the ‘within’ dissimilarity a(i)
is much smaller than the smallest ‘between’ dissimilarity b(7). Therefore, we can say that i is
‘well-clustered’, as there appears to be little doubt that / has been assigned to a very appropriate
cluster: the second-best choice ( B) is not nearly as close as the actual choice (A4).

A different situation occurs when s(7) is about zero. Then a(i) and b(i) are approximately
equal, and hence it is not clear at all whether i should have been assigned to either 4 or B.

N + 7 11 N £ fram 1 m 1 4
Object i lies equally far away from both, so it can be considered as an ‘intermediate case’.

The worst situation takes place when s(i) is close to —1. Then a(i) is much larger than b(i),
so i lies on the average much closer to B than to 4. Therefore it would have seemed much more
natural to assign object i to cluster B, so we can almost conclude that this object has been
‘misclassified’.

To conclude, s(i) measures how well object i matches the clustering at hand (that is, how well
it has been classified). In the special case where there are only two clusters (k = 2), we note that
shifting object i from one cluster to the other will convert s(i) to —s(i).
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In case the data consist of similarities, which also must be on a ratio scale, some small
modifications must be made. We now define a’(i) and d’(i, C) as the corresponding average
similarities, and put

b'(i)= magigumd'(i, C).
The numbers s(i) given by
1-b"(i)/a’(i) if a’(i)>b'(i),
s(i)=<0 if a’(i)=5b"(i),
a’ (i)/b'(i)—1 if a’(i) <b'(i),

may then be interpreted in the same way as before.

Having computed the quantities s(i) from either similarities or dissimilarities, we can now
construct the graphical display. The silhouette of A4 is a plot of the s(i), ranked in decreasing
order, for all objects / in 4. On a line printer, we represent s(i{) by a row of asterisks, the length
of which is proportional to s(i). Therefore, the silhouette shows which objects lie well within
their cluster, and which ones are merely somewhere in between clusters. A wide silhouette
indicates large s(i) values, and hence a pronounced cluster. The other dimension of a silhouette
is its height, which simply equals the number of objects in A.

In order to obtain an overview, the silhouettes of the different clusters are printed below each
other. In this way the entire clustering can be displayed by means of a single plot, which enables
us to distinguish ‘clear-cut’ clusters from ‘weak’ ones.

Figure 2 shows the silhouettes for the clustering into & = 2 clusters of the twelve countries data
mentioned above. The first silhouette is higher than the second, because the first cluster contains
seven objects and the second only five. The leftmost column (CLU) contains the index of each
cluster (1 and 2), and the second column (NEIG) gives the neighbor of each object. The third
column lists the numbers s(i), and the fourth identifies each object / by means of its
three-character label. Above and below the plot we find scales going from 0.00 to 1.00 with steps
of size 0.04 (to be read vertically).

Our first impression is that both silhouettes in Fig. 2 are rather narrow, which indicates a
relatively weak clustering structure. The first cluster consists of Western industrialized countries
and developing countries. In this cluster, USA possesses the largest s(i) which means that it was
classified with the least amount of doubt. The three developing countries (BRA, EGY, ZAl) are
listed at the end because they have smaller s(i) values than the four capitalist nations. The
second cluster consists of four Communist countries and India. The s(i) values of the Com-
munist countries are comparable to those of the Western countries in cluster 1. However, for
India we find s(/) = —0.04, and thus this country is an intermediate case lying far from both
clusters. Although the k-median algorithm assigns India to cluster 2, one could also make a case
that India should belong to cluster 1 because s(i) is even slightly negative; moving it to the other
cluster would yield s(i) = +0.04.

Figure 3 contains the silhouette plot of the same data, but now partitioned into 3 clusters (also
by means of the k-median method). Cluster 1 consists of the four Western countries plus Egypt,
but we see that the s(7) value of the latter nation is approximately zero, which means that it
holds an intermediate position between clusters 1 and 2 (because we see in the second column
that the neighbor of Egypt is cluster 2). The second cluster contains the remaining developing
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Fig. 2. Silhouettes of a clustering with k = 2 of the twelve countries data of Table 1.
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Fig. 3. Silhouettes of a clustering with k = 3 of the twelve countries data.
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silhouettes of the capitalist and the Communist countries are now wider than in Fig. 2, which
means that these clusters are slightly more pronounced. On the other hand, the second cluster
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does not score so highly. In the first cluster, all objects have cluster 2 for their neighbor. In the
second cluster, it appears that Zaire and Brasil are more inclined towards the Western countries
because their neighbor is cluster 1, whereas India (which has a smaller value of s(7)) seems to be
closer to cluster 3. In the third cluster there is also a dichotomy: USSR and Yugoslavia seem to
have some resemblance to the Western countries, whereas Cuba and China appear to be closer to
the developing ones.

Sithouettes offer the advantage that they only depend on the actual partition of the objects,
and not on the clustering algorithm that was used to obtain it. As a consequence, sithouettes
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negative s(i) to its neighbor), or to compare the output of different clustering algorithms applied

to the came data
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However, we think the main usefulness of silhouettes lies in the interpretation and validation
of cluster analysis results. Let us consider a heuristic argument relating silhouettes to the number
of clusters. Suppose the data set consists of some dense clusters which are far away from each
other, but that we have set k£ too low. In this case, most clustering algorithms will combine some
natural clusters in order to reduce the total number of groups to the specified value of k.
Fortunately, the silhouette plot will often expose such artificial fusions. Indeed, joining different
clusters will lead to large ‘within’ dissimilarities and hence to large a(i), resulting in small s(i)
values for the objects in such a conglomerate, yielding a narrow silhouette. (‘ Narrow’ is meant in
a relative sense, because comparisons are made across several values of k.)

On the other hand, suppose that we have set k£ too high. Then some natural clusters have to be
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these artificial fragments will typically also show up through their narrow silhouettes. Indeed, the
nh1Pr‘tc in such a fragment are on the averagce very close to the remaining part(s) of their natural
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cluster, and hence the ‘between’ dissimilarities b(z) will become very small, which also results in
small s(i) values.

This heuristic reasoning implies that the silhouettes should look best for a ‘natural’ value of k.
Therefore, we want the silhouettes to be as wide (or as dark) as possible. For each cluster, we can
define the average silhouette width as the average of the s(i) for all objects i belonging to that
cluster. This allows us to distinguish ‘clear-cut’ from ‘weak’ clusters in the same plot: clusters
with a larger average silhouette width are more pronounced. In Fig. 3, we see that the average
silhouette width of the second cluster is only 0.24, whereas the first and third cluster attain
higher values.

We can also consider the overall average silhouette width for the entire plot, which is simply

tha avarage nf tha of 7\ for all aliacte 7 1n tha “rlnnla data cat Tn Fig 2 thic vialde N I9Q and
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3 we obtain 0.33. In general, each value of k& will yield a different overall average silhouette
width (k). One way to choose k ‘appropriately’ is to select that value of k for which §(k) is a
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large as possible. For the twelve countries data, the compution of §(k) for the k- med1an
partitions corresponding to £ = 2,...,12 yields k = 3 as the best choice.



60 P.J. Rousseeuw / Graphical aid to cluster analysis

2 Bwvamnlag
T l_'JAallllJlCD

Let us now look at some rather extreme examples to obtain a better feeling for the meaning of
silhouettes. First suppose we have eight points which are divided over some very tight clusters,
far away from each other. For instance, assume that five objects coincide with one geometrical

point, and the remaining three coincide with another geometrical point at a large distance from
the first. This is an extremely sharp clustering structure, which should be recovered by any
reasonable algorithm when k = 2. The resulting silhouette plot in Fig. 4 is as dark as possible. All
s(i) equal 1.00, so the overall average silhouette width attains its maximal value 1.00 (therefore,
k = 2 is the best choice). In general, a very large overall average silhouette width can be taken to
mean that the clustering algorithm has discovered a very strong clustering structure.

However, one must be a little careful with the interpretation of the last statement. For
instance, a situation where the data set contains one far outlier is also an example of a strong
iy Dy A_;AA; I ey, el el toa o 1 1
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by comparison. W may expect our clustering algorithm to provide the following picture for
ing st the outlier and the other clicter congistinoe of the ku"{ af the

k = 2: one cluster containing just the outlier, and the other cluster consisting of the bulk of the

one ciustier

data. For instance, suppose seven objects have zero dissimilarities to each other, and all have
large dissimilarities to the eighth object, which is an outlier. The resulting silhouette plot looks
like Fig. 5, clearly separating object 8 from the rest. Because cluster 2 contains only a single
object, its s(i) was put equal to zero by convention. In order to mark such singleton clusters in a
more distinctive way, John Tukey (personal communication) suggested printing the number 1 in
the rightmost column of the plot. The overall average silhouette width equals 0.88, which is very
high (in general, one obtains (n — 1) /n where n is the total number of objects). Therefore, one
should never merely accept a high overall average silhouette width at its face value, but also look
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FOR THE ENTIRE DATASET, THE AVERAGE SILHOUETTE WIDTH IS 1.00
Fig. 4. Silhouettes of an example where eight points are divided over two very tight clusters, for k = 2.
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Fig. 5. Silhouettes of a data set containing a distant outlier, for k = 2.

at the graphical output itself to find out what caused it. Depending on the subject matter and the
task at hand, one might want to put the outlier aside for further investigation and run the
clustering algorithm again on the remaining data.

When the clustering algorithm does not succeed in finding any ‘natural’ clustering, the overall
average silhouette width tends to become very low. An extreme case is when all dissimilarities
between pairs of objects equal the same positive constant, so all non-diagonal entries of the
dissimilarity matrix are identical. (In the case of Euclidean distances, this happens with the »
vertices of a regular simplex in n —1 dimensions.) In such a situation no clustering is more
natural than any other, so there is a total absence of clustering structure. Whatever the value of
k, and whatever clustering algorithm is used, all s(7) will be zero (as well as the overall average
silhouette width 5(k)) and the silhouette plot stays completely empty. In actual applications one
sometimes does encounter cases where even the largest value of §(k) is rather small, and then
one might better seek an alternative to clustering as a model for and method of data analysis.

Figure 6 shows a plot of the well-known Ruspini data [15]. This data set is composed of 75
points, and was originally used by Ruspini to illustrate fuzzy clustering techniques. (The actual
coordinates were communicated to me by G. Libert). The points make up four groups 4, B, C, D
as indicated in the plot. Because this example is two-dimensional, we can now compare the
silhouettes to the structure that we perceive by the naked eye. Figure 7 contains the silhouette
plots of the k-median clusterings with £ = 2,...,6 (making use of Euclidean distance).

In the case of k=2, one cluster is formed as the union of 4 with D, whereas the second
combines B and C. As we saw before, artificial fusions are penalized by narrow silhouettes. For.
k=3 we see that clusters B and C are found, but 4 and D still stick together. The
corresponding silhouette plot shows clearly that both B and C are more pronounced than the
union of A with D. For k =4 the ‘right’ solution is found, which leads to four silhouettes of
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Fig. 6. Plot of the two-dimensional data set of Ruspini. The loops are merely drawn to indicate four groups of points.

about the same good quality. When k = 5 is imposed, the algorithm splits C into two parts. The
second part contains the three ‘lowest’ points of C (as viewed in Fig. 6), that is, the three points
of C with smallest y-coordinates. This trio has a rather prominent silhouette, and indeed some
people consider it as a genuine cluster (see [4]). However, the silhouette of the major part of C
becomes somewhat less wide, because this cluster is not so well separated from the three-point
one (indeed, one object has an s(i) value of about zero because it lies rather close to the
three-point cluster and therefore holds an intermediate position). The last case (k = 6) leads to a
more dramatic effect: cluster A is being split up in an artificial way, and consequently both parts
obtain narrow silhouettes. For £ =7,...,75 the results are still worse.

In conclusion, the silhouette plots tell us that a division into k = 4 clusters is probably most
natural. Indeed, the overall average silhouette width s(k) is largest for k = 4 (even if one tries all
values of k ranging from 2 to 75). The second best 5(k) is attained for & = 5, and the silhouette
plot shows us the advantages and disadvantages of the corresponding clustering.

4. Related graphical displays

Let us now look at some existing displays for cluster analysis. In the literature most of the
emphasis has been on hierarchical analysis, the results of which can be described by means of
trees or dendrograms. Also other graphical tools have been developed for summarizing hierarchi-
cal results, such as the diagrams of Ward [22], Johnson [10], Kruskal and Landwehr [12], Kent
[11], and others. Like the silhouette plot, the latter displays only require a line printer. On the
other hand, one can also construct a two-dimensional representation of the data (e.g. by means
of multidimensional scaling) and then indicate nested clusters by drawing loops around the
objects [16].

In the case of partitioning, relatively few displays have been considered. There are however
some examples, like shading of the dissimilarity matrix (which has also been used in connection
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Fig. 7. Silhouette plots of the Ruspini data, for k& ranging from 2 to 6.

with hierarchical methods). In the lower triangular matrix of dissimilarities the numbers are
replaced by symbols, the darkness of which depends on the magnitude of the original entries.
When the objects are in some random order this does not reveal much, but when the objects are
ranked according to a clustering then a structure becomes visible (see [17, p. 110] for an
interesting example from biology). A display like this can be generated automatically and drawn
with a line printer. Recently, Gale, Halperin, and Costanzo [7] proposed a more refined version
based on unclassed chloropeth mapping.

Wainer [21] gives a survey of methods for displaying multivariate data, in which each object is
represented by an icon (such as a polygon or a face) made up of parts which vary in size or shape
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with the measured attributes. Also some techniques are mentioned for allowing tables to better
communicate the data structure, such as rounding, reordering, and blocking.

Another approach is the taxometric map [2] which portrays a cluster as a circle, the diameter
of which is proportional to the diameter of the cluster. One tries to place the circles in the map in
such a way that the distances between them are proportional to the dissimilarities between the
corresponding clusters (these inter-cluster ‘dissimilarities may be defined in different ways). For
the pairs of clusters for which this is possible, a straight full line is drawn between the circles.
When the distance on the map would be too large the line is partly dashed, and when it is too
small a V-shaped line of correct length is drawn. A more extensive discussion of taxometric maps
is provided by Everitt [5], who gives an example. Taxometric maps are complementary to
silhouettes, because they depict the relationship between clusters but not the position of the
individual objects within those clusters.

Many variants of silhouette plots can be thought of, for instance by using more sophisticated
plotting devices instead of a line printer. One could also plot the negative s(i) (we have not done
so in the present examples because only a few slightly negative s(7) occurred, and we wanted to
use the width of the plot to its fullest advantage). J. Tukey (personal communication) also
suggested ways to modify the ordering of objects and clusters in the plot.

The overall silhouette width § is not the only combination of the individual s(i) that could be
used for choosing a ‘most appropriate’ value of k: one might use squares; medians, and so on.
Like most validity coefficients, also § could be used as an objective function for the clustering
itself (that is, one might want to find a clustering which maximizes 5). Another idea would be to
define s(i) simply by 1—a(i)/b(i), so s(i) could become much smaller than —1, hereby
penalizing misclassified points to a larger extent. Also, when the clustering method is based on
the construction of centroids or representative objects (one for each cluster), one could use the
dissimilarities to these centroids, which takes fewer calculations than computing a(i) and
d(i, C). Such a display would, however, depend on the clustering algorithm.

Another display is the distance graph used by Cohen, Gnanadesikan, Kettenring, and
Landwehr [3] and Gnanadesikan, Kettenring, and Landwehr [8]. For each cluster centroid, they
plot the distances of every entity from that centroid (the symbol plotted is the cluster to which
the entity was assigned). Although this display gives an indication of the internal cohesiveness of
a cluster, it does not allow the study of individual objects because they remain anonymous in
each list. For a recent sociological application, see Andes [1].
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