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Abstract: A new graphical display is proposed for partitioning techniques. Each cluster is represented by a so-called 
silhouette, which is based on the comparison of its tightness and separation. This silhouette shows which objects he 
well within their cluster, and which ones are merely somewhere in between clusters. The entire clustering is displayed 
by combining the silhouettes into a single plot, allowing an appreciation of the relative quality of the clusters and an 
overview of the data configuration. The average silhouette width provides an evaluation of clustering validity, and 
might be used to select an ‘appropriate’ number of clusters. 
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1. The need for graphical displays 

There are many algorithms for partitioning a set of objects into k clusters, such as the 
k-means method [6,9,13] and the k-median approach [20]. The result of such a partitioning 
technique is a list of clusters with their objects, which is not as visually appealing as the 
dendrograms of hierarchical methods. It is hoped that the graphical display introduced in 
Section 2 will contribute to the interpretation of cluster analysis results, as illustrated by the 
examples of Section 3. In Section 4, some other displays will be described. 

Suppose there are n objects to be clustered, which may be persons, flowers, cases, statistical 
variables, or whatever. Clustering algorithms mainly operate on two frequently used input data 
structures (see [18, Chapters 1 and 21). The first method is to represent the objects by means of a 
collection of measurements or attributes, such as height, weight, sex, color, and so on. In 
Tucker’s [19] terminology such an objects by attributes matrix is called two-mode, since the row 
and column entities are different. When the measurements are on an interval scale, one can 
compute the Euclidean distance d(i, j) between any objects i and j. 

This leads us to the second data structure, namely a collection of proximities which must be 
available for all pairs of objects. This corresponds to a one-mode matrix, since the row and 
column entities are the same set of objects. We shall consider two types of proximities: 
dissimilarities (which measure how far away two objects are from each other) and similarities 
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Table 1 
Dissimilarities between twelve countries, obtained by averaging the result of a survey among political science students 

Country 

BRA 
CHI 
CUB 
EGY 
FRA 

IND 
ISR 
USA 
uss 
YUG 
ZAI 

Dissimilarities to other countries 

BEL BRA CHI CUB 

5.58 
7.00 6.50 
7.08 7.00 3.83 
4.83 5.08 8.17 5.83 
2.17 5.75 6.67 6.92 

6.42 5.00 5.58 6.00 
3.42 5.50 6.42 6.42 
2.50 4.92 6.25 7.33 
6.08 6.67 4.25 2.67 
5.25 6.83 4.50 3.75 
4.75 3.00 6.08 6.67 

EGY FRA IND ISR USA uss YUG 

4.92 

4.67 6.42 
5.00 3.92 6.17 
4.50 2.25 6.33 2.75 
6.00 6.17 6.17 6.92 6.17 
5.75 5.42 6.08 5.83 6.67 3.67 
5.00 5.58 4.83 6.17 5.67 6.50 6.92 

(which measure how much they resemble each other). In this paper we shall assume proximities 
on a ratio scale, such as the Euclidean distances mentioned. Also, most of the discussion will be 
concentrated on dissimilarities, but the formulas for similarities (with analogous interpretation) 
are also presented. 

Let us consider a real data set consisting of dissimilarities. A questionnaire was distributed in 
a political science class, asking the students to provide ratings of perceived positive dissimilarity 
between all distinct pairs of twelve countries on a scale from 1 to 9. This is a replication of a 
well-known experiment of Wish [23] with the students’ own country (Belgium) included. The 
countries were (in alphabetical order): Belgium (BEL), Brasil (BRA), mainland China (CHI), 
Cuba (CUB), Egypt (EGY), France (FRA), India (IND), Israel (ISR), United States (USA), 
USSR (USS), Yugoslavia (YUG), and Zaire (ZAI). It was imposed that the dissimilarities had to 
be symmetric, and the dissimilarity of a country to itself was not recorded. The final dissimilarity 
coefficients listed in Table 1 were obtained by taking the averages of the values given by the 
students. By construction, Table 1 is only a triangular half matrix. 

Still, Table 1 contains 66 numbers, making it hard to perceive the structure of the data by the 
naked eye. To obtain a better insight, one can partition the countries into k clusters. For 
instance, one can use the k-median method as described by Massart, Plastria and Kaufman [14], 
in which k representative objects are selected so as to minimize 

where d( i, m(i)) is the dissimilarity of object i to the nearest representative object, denoted by 
m(i)_ Like the k-means method, this algorithm tries to find roughly spherical clusters. This yields 
the following result for k = 2: 

and gives 

cluster 1: BEL, BRA, EGY, FRA, ISR, USA, ZAI 

cluster 2: CHI, CUB, IND, USS, YUG 

the following clustering for k = 3: 

cluster 1: BEL, EGY, FRA, ISR, USA 

cluster 2: BRA, IND, ZAI 

cluster 3: CHI, CUB, USS, YUG 
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However, this does not tell whether these partitions reflect a clustering structure actually present 
in the data, or if we have merely partitioned our objects into some artificial groups. Indeed, such 
clustering methods always come up with k groups, whatever the data are like. At this stage, we 
are left with many questions. Are the clusters of a high quality (that is, are the ‘within’ 
dissimilarities small when compared to the ‘between’ dissimilarities)? Which objects appear to be 
well-classified, which ones are misclassified, and which ones lie in between clusters? What is the 
overall structure of the data like? Can we obtain an idea about the number of ‘natural’ clusters 
that are really present? These questions are difficult, and we feel that the existing displays answer 
them only partially. It is hoped that the silhouettes introduced in the next section will provide the 
user with additional guidance. 

2. Construction of silhouettes 

The silhouettes constructed below are useful when the proximities are on a ratio scale (as in 
the case of Euclidean distances) and when one is seeking compact and clearly separated clusters. 
Indeed, the definition makes use of average proximities as in the case of group average linkage, 
which is known to work best in a situation with roughly spherical clusters. 

In order to construct silhouettes, we only need two things: the partition we have obtained (by 
the application of some clustering technique) and the collection of all proximities between 
objects. For each object i we will introduce a certain value s(i), and then these numbers are 
combined into a plot. 

Let us first define the numbers s(i) in the case of dissimilarities. Take any object i in the data 
set, and denote by A the cluster to which it has been assigned. (For a concrete illustration, see 
Fig. 1). When cluster A contains other objects apart from i, then we can compute 

a(i) = average dissimilarity of i to all other objects of A. 

In Fig. 1, this is the average length of all lines within A. Let us now consider any cluster C which 
is different from A, and compute 

d( i, C) = average dissimilarity of i to all objects of C. 

In Fig. 1, this is the average length of all lines going from i to C. After computing d( i, C) for all 
clusters C # A, we select the smallest of those numbers and denote it by 

b(i) = minirium d(i, C). 

Fig. 1. An illustration of the elements involved in the computation of s(i), where the object i belongs to cluster A. 
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The cluster B for which this minimum is attained (that is, d( i, B) = b(i)) we call the neighbor of 
object i. This is like the second-best choice for object i: if it could not be accommodated into 
cluster A, which cluster B would be the closest competitor? In Fig. 1, cluster B indeed appears to 
be ‘closest’ (on the average) to object i, when A itself is discarded. Therefore, it is very useful to 
know the neighbor of each object in the data set. Note that the construction of b(i) depends on 
the availability of other clusters apart from A, so we have to assume throughout this paper that 
the number of clusters k is more than one. 

The number s(i) is obtained by combining a(i) and b(i) as follows: 

if a(i) <b(i), 

if a(i) = b(i), 

if u(i) > b(i). 

It is even possible to write this in one formula: 

b(i) -u(i) 

‘(I) = max{ u(i), b(i)} ’ 

When cluster A contains only a single object it is unclear how u(i) should be defined, and then 
we simply set s(i) equal to zero. This choice is of course arbitrary, but a value of zero appears to 
be most neutral. Indeed, from the above definition we easily see that 

for each object i. 
Note that the s(i) defined above remains invariant when all the original dissimilarities are 

multiplied by a positive constant, but that an additive constant is not allowed. This explains why 
we have explicitly assumed that the dissimilarities were on a ratio scale, which means that a 
dissimilarity of 6 may be considered twice as large as a dissimilarity of 3. For instance, Euclidean 
distances are on a ratio scale. 

To strengthen our intuition about the meaning of s(i), let us look at a few extreme situations. 
When s(i) is at its largest (that is, s(i) close to 1) this implies that the ‘within’ dissimilarity a(i) 
is much smaller than the smallest ‘between’ dissimilarity b(i). Therefore, we can say that i is 
‘well-clustered’, as there appears to be little doubt that i has been assigned to a very appropriate 
cluster: the second-best choice (B) is not nearly as close as the actual choice (A). 

A different situation occurs when s(i) is about zero. Then u(i) and b(i) are approximately 
equal, and hence it is not clear at all whether i should have been assigned to either A or B. 
Object i lies equally far away from both, so it can be considered as an ‘intermediate case’. 

The worst situation takes place when s(i) is close to - 1. Then a(i) is much larger than b(i), 
so i lies on the average much closer to B than to A. Therefore it would have seemed much more 
natural to assign object i to cluster B, so we can almost conclude that this object has been 
‘misclassified’. 

To conclude, s(i) measures how well object i matches the clustering at hand (that is, how well 
it has been classified). In the special case where there are only two clusters (k = 2), we note that 
shifting object i from one cluster to the other will convert s(i) to -s(i). 
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In case the data consist of similarities, which also must be on 
modifications must be made. We now define a’(i) and d’(i, C) as 
similarities, and put 

b’(i) = magi?umd’(i, C). 

The numbers s(i) given by 

( 

1 - b’(i)/a’(i) if a’(i) > b’(i), 

s(i) = 0 if a’(i) = b’(i), 

a’(i)/b’(i) - 1 if a’(i) <b’(i), 

may then be interpreted in the same way as before. 
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a ratio scale, some small 
the corresponding average 

Having computed the quantities s(i) from either similarities or dissimilarities, we can now 
construct the graphical display. The silhouette of A is a plot of the s(i), ranked in decreasing 
order, for all objects i in A. On a line printer, we represent s(i) by a row of asterisks, the length 
of which is proportional to s(i). Therefore, the silhouette shows which objects lie well within 
their cluster, and which ones are merely somewhere in between clusters. A wide silhouette 
indicates large s(i) values, and hence a pronounced cluster. The other dimension of a silhouette 
is its height, which simply equals the number of objects in A. 

In order to obtain an overview, the silhouettes of the different clusters are printed below each 
other. In this way the entire clustering can be displayed by means of a single plot, which enables 
us to distinguish ‘clear-cut’ clusters from ‘weak’ ones. 

Figure 2 shows the silhouettes for the clustering into k = 2 clusters of the twelve countries data 
mentioned above. The first silhouette is higher than the second, because the first cluster contains 
seven objects and the second only five. The leftmost column (CLU) contains the index of each 
cluster (1 and 2) and the second column (NEIG) gives the neighbor of each object. The third 
column lists the numbers s(i), and the fourth identifies each object i by means of its 
three-character label. Above and below the plot we find scales going from 0.00 to 1.00 with steps 
of size 0.04 (to be read vertically). 

Our first impression is that both silhouettes in Fig. 2 are rather narrow, which indicates a 
relatively weak clustering structure. The first cluster consists of Western industrialized countries 
and developing countries. In this cluster, USA possesses the largest s(i) which means that it was 
classified with the least amount of doubt. The three developing countries (BRA, EGY, ZAI) are 
listed at the end because they have smaller s(i) values than the four capitalist nations. The 
second cluster consists of four Communist countries and India. The s(i) values of the Com- 
munist countries are comparable to those of the Western countries in cluster 1. However, for 
India we find s(i) = - 0.04, and thus this country is an intermediate case lying far from both 
clusters. Although the k-median algorithm assigns India to cluster 2, one could also make a case 
that India should belong to cluster 1 because s(i) is even slightly negative; moving it to the other 
cluster would yield s(i) = +0.04. 

Figure 3 contains the silhouette plot of the same data, but now partitioned into 3 clusters (also 
by means of the k-median method). Cluster 1 consists of the four Western countries plus Egypt, 
but we see that the s(i) value of the latter nation is approximately zero, which means that it 
holds an intermediate position between clusters 1 and 2 (because we see in the second column 
that the neighbor of Egypt is cluster 2). The second cluster contains the remaining developing 
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Fig. 2. Silhouettes of a clustering with k = 2 of the twelve countries data of Table 1. 
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Fig. 3. Silhouettes of a clustering with k = 3 of the twelve countries data. 
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countries, and the third one consists of the four Communist nations in the survey. The 
silhouettes of the capitalist and the Communist countries are now wider than in Fig. 2, which 
means that these clusters are slightly more pronounced. On the other hand, the second cluster 
does not score so highly. In the first cluster, all objects have cluster 2 for their neighbor. In the 
second cluster, it appears that Zaire and Brasil are more inclined towards the Western countries 
because their neighbor is cluster 1, whereas India (which has a smaller value of s(i)) seems to be 
closer to cluster 3. In the third cluster there is also a dichotomy: USSR and Yugoslavia seem to 
have some resemblance to the Western countries, whereas Cuba and China appear to be closer to 
the developing ones. 

Silhouettes offer the advantage that they only depend on the actual partition of the objects, 
and not on the clustering algorithm that was used to obtain it. As a consequence, silhouettes 
could be used to improve the results of cluster analysis (for instance by moving an object with 
negative s(i) to its neighbor), or to compare the output of different clustering algorithms applied 
to the same data. 

However, we think the main usefulness of silhouettes lies in the interpretation and validation 
of cluster analysis results. Let us consider a heuristic argument relating silhouettes to the number 
of clusters. Suppose the data set consists of some dense clusters which are far away from each 
other, but that we have set k too low. In this case, most clustering algorithms will combine some 
natural clusters in order to reduce the total number of groups to the specified value of k. 
Fortunately, the silhouette plot will often expose such artificial fusions, Indeed, joining different 
clusters will lead to large ‘within’ dissimilarities and hence to large a(i), resulting in small s(i) 
values for the objects in such a conglomerate, yielding a narrow silhouette. (‘Narrow’ is meant in 
a relative sense, because comparisons are made across several values of k.) 

On the other hand, suppose that we have set k too high. Then some natural clusters have to be 
divided in an artificial way, in order to conform to the specified number of groups. However, 
these artificial fragments will typically also show up through their narrow silhouettes. Indeed, the 
objects in such a fragment are on the average very close to the remaining part(s) of their natural 
cluster, and hence the ‘between’ dissimilarities b(i) will become very small, which also results in 
small s(i) values. 

This heuristic reasoning implies that the silhouettes should look best for a ‘natural’ value of k. 
Therefore, we want the silhouettes to be as wide (or as dark) as possible. For each cluster, we can 
define the average silhouette width as the average of the s(i) for all objects i belonging to that 
cluster. This allows us to distinguish ‘clear-cut’ from ‘weak’ clusters in the same plot: clusters 
with a larger average silhouette width are more pronounced. In Fig. 3, we see that the average 
silhouette width of the second cluster is only 0.24, whereas the first and third cluster attain 
higher values. 

We can also consider the overall average silhouette width for the entire plot, which is simply 
the average of the s(i) for all objects i in the whole data set. In Fig. 2 this yields 0.28, and in Fig. 
3 we obtain 0.33. In general, each value of k will yield a different overall average silhouette 
width S(k). One way to choose k ‘appropriately’ is to select that value of k for which S(k) is a 
large as possible. For the twelve countries data, the compution of S(k) for the k-median 
partitions corresponding to k = 2,. _ . ,12 yields k = 3 as the best choice. 
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3. Examples 

Let us now look at some rather extreme examples to obtain a better feeling for the meaning of 
silhouettes. First suppose we have eight points which are divided over some very tight clusters, 
far away from each other. For instance, assume that five objects coincide with one geometrical 
point, and the remaining three coincide with another geometrical point at a large distance from 
the first. This is an extremely sharp clustering structure, which should be recovered by any 
reasonable algorithm when k = 2. The resulting silhouette plot in Fig. 4 is as dark as possible. All 
s(i) equal 1.00, so the overall average silhouette width attains its maximal value 1.00 (therefore, 
k = 2 is the best choice). In general, a very large overall average silhouette width can be taken to 
mean that the clustering algorithm has discovered a very strong clustering structure. 

However, one must be a little careful with the interpretation of the last statement. For 
instance, a situation where the data set contains one far outlier is also an example of a strong 
clustering structure. Indeed, when the outlier is far enough, the other data look like a tight cluster 
by comparison. We may expect our clustering algorithm to provide the following picture for 
k = 2: one cluster containing just the outlier, and the other cluster consisting of the bulk of the 
data. For instance, suppose seven objects have zero dissimilarities to each other, and all have 
large dissimilarities to the eighth object, which is an outlier. The resulting silhouette plot looks 
like Fig. 5, clearly separating object 8 from the rest. Because cluster 2 contains only a single 
object, its s(i) was put equal to zero by convention. In order to mark such singleton clusters in a 
more distinctive way, John Tukey (personal communication) suggested printing the number 1 in 
the rightmost column of the plot. The overall average silhouette width equals 0.88, which is very 
high (in general, one obtains (n - l)/ n where n is the total number of objects). Therefore, one 
should never merely accept a high overall average silhouette width at its face value, but also look 
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Fig. 4. Silhouettes of an example where eight points are divided over two very tight clusters, for k = 2. 
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Fig. 5. Silhouettes of a data set containing , a distant outlier, for k = 2. 

at the graphical output itself to find out what caused it. Depending on the subject matter and the 
task at hand, one might want to put the outlier aside for further investigation and run the 
clustering algorithm again on the remaining data. 

When the clustering algorithm does not succeed in finding any ‘natural’ clustering, the overall 
average silhouette width tends to become very low. An extreme case is when all dissimilarities 
between pairs of objects equal the same positive constant, so all non-diagonal entries of the 
dissimilarity matrix are identical. (In the case of Euclidean distances, this happens with the n 
vertices of a regular simplex in n - 1 dimensions.) In such a situation no clustering is more 
natural than any other, so there is a total absence of clustering structure. Whatever the value of 
k, and whatever clustering algorithm is used, all s(i) will be zero (as well as the overall average 
silhouette width S(k)) and the silhouette plot stays completely empty. In actual applications one 
sometimes does encounter cases where even the largest value of S(k) is rather small, and then 
one might better seek an alternative to clustering as a model for and method of data analysis. 

Figure 6 shows a plot of the well-known Ruspini data [15]. This data set is composed of 75 
points, and was originally used by Ruspini to illustrate fuzzy clustering techniques. (The actual 
coordinates were communicated to me by G. Libert). The points make up four groups A, B, C, D 
as indicated in the plot. Because this example is two-dimensional, we can now compare the 
silhouettes to the structure that we perceive by the naked eye. Figure 7 contains the silhouette 
plots of the k-median clusterings with k = 2,. . . , 6 (making use of Euclidean distance). 

In the case of k = 2, one cluster is formed as the union of A with D, whereas the second 
combines B and C. As we saw before, artificial fusions are penalized by narrow silhouettes. For 
k = 3 we see that clusters B and C are found, but A and D still stick together. The 
corresponding silhouette plot shows clearly that both B and C are more pronounced than the 
union of A with D. For k = 4 the ‘right’ solution is found, which leads to four silhouettes of 
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Fig. 

25 50 75 100 

6. Plot of the two-dimensional data set of Ruspini. The loops are merely drawn to indicate four groups of points. 

about the same good quality. When k = 5 is imposed, the algorithm splits C into two parts. The 
second part contains the three ‘lowest’ points of C (as viewed in Fig. 6), that is, the three points 
of C with smallest y-coordinates. This trio has a rather prominent silhouette, and indeed some 
people consider it as a genuine cluster (see [4]). However, the silhouette of the major part of C 
becomes somewhat less wide, because this cluster is not so well separated from the three-point 
one (indeed, one object has an s(i) value of about zero because it lies rather close to the 
three-point cluster and therefore holds an intermediate position). The last case (k = 6) leads to a 
more dramatic effect: cluster A is being split up in an artificial way, and consequently both parts 
obtain narrow silhouettes. For k = 7,. . . ,75 the results are still worse. 

In conclusion, the silhouette plots tell us that a division into k = 4 clusters is probably most 
natural. Indeed, the overall average silhouette width S(k) is largest for k = 4 (even if one tries all 
values of k ranging from 2 to 75). The second best S(k) is attained for k = 5, and the silhouette 
plot shows us the advantages and disadvantages of the corresponding clustering. 

4. Related graphical displays 

Let us now look at some existing displays for cluster analysis. In the literature most of the 
emphasis has been on hierarchical analysis, the results of which can be described by means of 
trees or dendrograms. Also other graphical tools have been developed for summarizing hierarchi- 
cal results, such as the diagrams of Ward [22], Johnson [lo], Kruskal and Landwehr [12], Kent 
[ll], and others. Like the silhouette plot, the latter displays only require a line printer. On the 
other hand, one can also construct a two-dimensional representation of the data (e.g. by means 
of multidimensional scaling) and then indicate nested clusters by drawing loops around the 
objects [16]. 

In the case of partitioning, relatively few displays have been considered. There are however 
some examples, like shading of the dissimilarity matrix (which has also been used in connection 
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Fig. 7. Silhouette plots of the Ruspini data, for k ranging from 2 to 6. 

with hierarchical methods). In the lower triangular matrix of dissimilarities the numbers are 
replaced by symbols, the darkness of which depends on the magnitude of the original entries. 
When the objects are in some random order this does not reveal much, but when the objects are 
ranked according to a clustering then a structure becomes visible (see [17, p. 1101 for an 
interesting example from biology). A display like this can be generated automatically and drawn 
with a line printer. Recently, Gale, Halperin, and Costanzo [7] proposed a more refined version 
based on unclassed chloropeth mapping. 

Wainer [21] gives a survey of methods for displaying multivariate data, in which each object is 
represented by an icon (such as a polygon or a face) made up of parts which vary in size or shape 
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with the measured attributes. Also some techniques are mentioned for allowing tables to better 
communicate the data structure, such as rounding, reordering, and blocking. 

Another approach is the taxometric map [2] which portrays a cluster as a circle, the diameter 
of which is proportional to the diameter of the cluster. One tries to place the circles in the map in 
such a way that the distances between them are proportional to the dissimilarities between the 
corresponding clusters (these inter-cluster ,dissimilarities may be defined in different ways). For 
the pairs of clusters for which this is possible, a straight full line is drawn between the circles. 
When the distance on the map would be too large the line is partly dashed, and when it is too 
small a V-shaped line of correct length is drawn. A more extensive discussion of taxometric maps 
is provided by Everitt [5], who gives an example. Taxometric maps are complementary to 
silhouettes, because they depict the relationship between clusters but not the position of the 
individual objects within those clusters. 

Many variants of silhouette plots can be thought of, for instance by using more sophisticated 
plotting devices instead of a line printer. One could also plot the negative s(i) (we have not done 
so in the present examples because only a few slightly negative s(i) occurred, and we wanted to 
use the width of the plot to its fullest advantage). J. Tukey (personal communication) also 
suggested ways to modify the ordering of objects and clusters in the plot. 

The overall silhouette width S is not the only combination of the individual s(i) that could be 
used for choosing a ‘most appropriate’ value of k: one might use squares; medians, and so on. 
Like most validity coefficients, also S could be used as an objective function for the clustering 
itself (that is, one might want to find a clustering which maximizes S). Another idea would be to 
define s(i) simply by 1 - a(i)/b(i), so s(i) could become much smaller than - 1, hereby 
penalizing misclassified points to a larger extent. Also, when the clustering method is based on 
the construction of centroids or representative objects (one for each cluster), one could use the 
dissimilarities to these centroids, which takes fewer calculations than computing a(i) and 
d(i, C). Such a display would, however, depend on the clustering algorithm. 

Another display is the distance graph used by Cohen, Gnanadesikan, Kettenring, and 
Landwehr [3] and Gnanadesikan, Kettenring, and Landwehr [8]. For each cluster centroid, they 
plot the distances of every entity from that centroid (the symbol plotted is the cluster to which 
the entity was assigned). Although this display gives an indication of the internal cohesiveness of 
a cluster, it does not allow the study of individual objects because they remain anonymous in 
each list. For a recent sociological application, see Andes [l]. 
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