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Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of
artificial intelligence based on the biological learning process. The ML approach deals with the design of
algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-
to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural
networks, support vector machines, self-organizing map, decision trees, random forests, case-based
reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-
sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive
applications in science and engineering. Herein, the role of ML as an effective approach for solving
problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML
techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,
nonparametric regression and classification illustrative examples are presented to demonstrate the ef-
ficiency of ML for tackling the geosciences and remote sensing problems.

© 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Machine learning (ML) is an effective empirical approach for both
regression and/or classification (supervised or unsupervised) of
nonlinear systems. Such systems can be massively multivariate
involving a few or literally thousands of variables. In ML, a compre-
hensive ‘training dataset’ of examples is constructed covering as
much of the system parameter space as possible. Typically, a random
subset of the data is put aside for a completely independent valida-
tion. ML is ideal for addressing those problems where our theoretical
knowledge is still incomplete but for which we do have a significant
number of observations and other data. In an ideal world, if we had
complete theoretical understanding, ML would be superfluous.

ML has proven useful for a very large number of applications in
many parts of the earth system (land, ocean, and atmosphere) and
beyond, from retrieval algorithms, crop disease detection, new
product creation, bias correction and code acceleration (e.g. Yi and
Prybutok, 1996; Atkinson and Tatnall, 1997; Carpenter et al., 1997;
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Lary et al.,, 2004, 2009; Brown et al. 2008; Azamathulla, 2012;
Zahabiyoun et al., 2013; Madadi et al., 2015). The types of the ML
algorithms commonly used are artificial neural networks (ANN),
support vector machines (SVM), self-organizing map (SOM), deci-
sion trees (DT), ensemble methods such as random forests, case-
based reasoning, neuro-fuzzy (NF), genetic algorithm (GA), multi-
variate adaptive regression splines (MARS), etc (e.g., Shahin et al.,
2001; Shahin and Jaksa, 2005; Das and Basudhar, 2008; Samui,
2008a,b; 2012; Azamathulla and Wu, 2011; Azamathulla et al,,
2011, 2012; Garg et al., 2014a,b,c). The ML-based methods have
been widely applied to the science and engineering problems for
near two decades. This is while the application of these techniques
in the geosciences and remote sensing area is fairly new and
limited. Herein, a number of relevant and documented applications
of ML will be summarized. The unique features of some of the ML
techniques for dealing with the geosciences and remote sensing
problems will be reviewed. Moreover, two very different but
complementary illustrative examples are presented: one using
multivariate nonlinear nonparametric regression, and the other
using multivariate nonlinear unsupervised classification. For these
two illustrative cases, we will start with the scientific motivation
that makes clear the real need for ML and then demonstrate how
ML addresses this need.

1674-9871/© 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-
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2. Overview of ML applications in geosciences and remote
sensing

The ML algorithms are “universal approximators”. That is, they
learn the underlying behavior of a system from a set of training
data. Another interesting feature of the ML-based techniques is that
they do not need a prior knowledge about the nature of the re-
lationships between the data. The application of ML may be cate-
gorized into three areas (Lary, 2010):

(1) The system’s deterministic model is computationally expensive
and ML can be used as a code accelerator tool.

(2) There is no deterministic model but an empirical ML-based
model can be derived using the existing data.

(3) Classification problems.

As mentioned before, ML includes a variety of algorithms ANN,
SVM, SOM, and DT. Over the last decade, there has been consider-
able progress in developing ML-based methodologies for many of
Earth Science applications (Lary, 2010). Some of these studies have
received special recognition as a NASA Aura Science highlight (Lary
et al., 2007) and commendation from the NASA MODIS instrument
team (Lary et al., 2009). ANN and SVM are the most commonly used
ML techniques for dealing with geoscience problems. A compre-
hensive review of application of ANN and SVM in geoscience and
remote sensing can be found in Lary (2010). Also, Nikravesh (2007)
presented an inclusive review study of the application of neuro-
computing, fuzzy logic and evolutionary computing in geo-
sciences and oil exploration. That study also covers the successful
application of hybrid methodologies such as NF, neural-genetic,
fuzzy-genetic and neural-fuzzy-genetic in the field. Nikravesh
(2007) discussed the major impact of these techniques for tack-
ling problems in geophysical, geological and reservoir engineering
(e.g., intelligent reservoir characterization and exploration, seismic
data processing, and characterization, well logging, reservoir
mapping, etc.).

Among the main subsets of ML, applications of genetic pro-
gramming (GP) (Koza, 1992) in the geoscience and remote sensing
domain are very new and restricted to a few areas. Despite the good
performance of ANNs, SVM and many of the other ML methods,
they are considered as black-box models. That is, they are not
capable of generating practical prediction equations. GP is consid-
ered as an efficient approach to deal with this issue. GP uses the
principle of Darwinian natural selection to generate computer
programs for solving a problem. In fact, GP is a specialization of GA
where the encoded solutions (individuals) are computer programs
rather than binary strings (Alavi and Gandomi, 2011). A notable
feature of GP and its variants is that they can produce prediction
equations without a need to pre-define the form of the existing
relationship (Alavi et al., 2010; Alavi and Gandomi, 2011; Alavi et al.,
2011a; Gandomi and Alavi, 2011). Herein, we present an overview
of a number of relevant and recent applications of GP in the field.
The majority of applications of GP focus on the behavioral charac-
terization of rock mass. The other few studies use GP as a tool for
interpreting the remote sensing data. It is worth mentioning that
there are some other studies mainly on the applicability of GP for
analyzing geotechnical engineering problems such as liquefaction
phenomenon, ground motion parameters, or ground movement
patterns (e.g., Javadi et al., 2006; Shuhua et al., 2006; Lia et al,,
2007; Cabalar and Cevik, 2009; Alavi et al., 2011b; Gandomi et al.,
2011; Alavi and Gandomi, 2012; Gandomi and Alavi, 2013).

As mentioned before, most of the GP-based studies focus on
estimating the properties of rock. Perhaps, one of the pioneer
studies in the field was done by Baykasoglu et al. (2008). They
applied GP-based approaches to the strength prediction of

limestone. Different variants of GP, called multi expression pro-
gramming (MEP), gene expression programming (GEP) and linear
genetic programming (LGP) to the uniaxial compressive strength
(UCS) and tensile strength prediction of chalky and clayey soft
limestone. The models were developed using experimental data.
The models had a good accuracy with determination coefficient
(R?) equal to 0.76 and 0.95 for tensile strength and UCS, respec-
tively. Beiki et al. (2010) developed new models to determine the
deformation modulus of rock masses using GP. Several parameters
were used as the predictor variables such as modulus of elasticity of
intact rock (Ei), uniaxial compressive strength (UCS), rock mass
quality designation (RQD), the number of joint per meter (J/m),
porosity, dry density, and geological strength index (GSI). Beiki et al.
(2010) also found that the GP models give higher predictions over
existing empirical models. Recently, Karakus (2011) employed GP to
analyze laboratory strength and elasticity modulus data for some
granitic rocks. Uniaxial compressive strength (o), tensile strength
(o¢) and elasticity modulus (E) were formulated in terms of total
porosity (1), sonic velocity (V}), point load index (Is) and Schmidt
Hammer values (SH). The results clearly indicated that GP is a po-
tential tool for predicting the elasticity modulus and the strength of
granitic rocks.

Rock mass modulus of deformation (Ey,) plays a critical role in
designing many structures on rock. Ravandi et al. (2013) performed
a back analysis calculation to derive an equation for estimation of
Em using GP. The model was developed using a database of 40,960
datasets, including vertical stress (1), horizontal to vertical stresses
ratio (k), Poisson’s ratio (m), radius of circular tunnel (r) and wall
displacement of circular tunnel on the horizontal diameter (d). The
computer program (CP) generated by GP had a good accuracy with
a correlation coefficient equal to 0.97. More recently, Ozbek et al.
(2013) proposed models to estimate the UCS of rocks with
different characteristics using a GP branch, i.e., GEP. They have
considered five different types of rocks including basalt and
ignimbrite (black, yellow, gray, brown) were prepared. UCS was
formulated in terms of effective porosity (n), water absorption by
weight (wa), and unit weight (v). It was shown that GP can be used
for estimating the UCS of rocks successfully.

The ML-based techniques are increasingly used for interpreting
the remote sensing images (RSIs). Conversely from the other ML
methods, there are few GP-based studies in the field of remote
sensing technology. Some typical examples are estimation of the
typhoon rainfall over ocean using multi-variable meteorological
satellite data (Chen et al., 2011), monitoring reservoir water quality
using remote sensing images (Chen, 2003), mapping of base-metal
deposits (Lewkowski et al., 2010), image thresholding for landslide
detection (Rosin and Hervas, 2002), and soil moisture distribution
analysis (Makkeasorn et al., 2006). As good examples in this
context, let us consider the studies done by Makkeasorn et al.
(2009) and dos Santos et al. (2010). RSIs are widely used as valu-
able tools in different real world applications. In the context of
agribusiness applications, a major challenge is recognition of crop
type regions. To cope with this issue, dos Santos et al. (2010) pro-
posed a new GP-based approach for automatic recognition of coffee
crops in RSIs. They combined texture and spectral information
encoded by image descriptors. Fig. 1 shows the steps of the pro-
posed classification process. As it is seen, this approach can be
divided into two main phases: (1) the image description and (2)
image classification. The first phase including the Step 1 to 3 is
focused on the image content characterization. The remaining 4
steps belong to the image classification process. GP has been used
by dos Santos et al. (2010) to identify relevant partitions by
combining the similarities provided by descriptors. Later, dos
Santos et al. (2010) proved that their GP-based method yields
slightly better results than the traditional MaxVer approach.
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Figure 1. Steps of the classification process (dos Santos et al., 2010).

The other example is about the detection of seasonal change of
riparian zones with remote sensing images and GP. As it is known,
riparian zones have a notable impact on the maintenance of
ecosystem integrity region wide. In order to detect the seasonal
change of riparian zones, Makkeasorn et al. (2009) developed a GP-
based method, called the Rlparian Classification Algorithm (RICAL).
This approach incorporates vegetation indices and soil moisture
images derived from LANDSAT 5 TM and RADARSAT-1 satellite
images, respectively. Makkeasorn et al. (2009) estimated the soil
moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR)
images and by using GP. Then, they defined several vegetation
indices based on reflectance factors calculated as the response of
the instrument on LANDSAT. The defined spectral indices along
with soil moisture images were used to classify the riparian zones
through another GP analysis.

3. Illustrative examples

In order to demonstrate the efficiency of ML for tackling the
geosciences and remote sensing problems, two nonparametric
regression and classification illustrative examples are presented in
this section.

3.1. Characterizing airborne particulates

Climate change is a defining issue of our generation. The IPCC
have reported that one of the largest uncertainties in simulating
climate change is the radiative forcing associated with atmospheric
aerosols (IPCC, 2013). In addition, the World Health Organization
(WHO, 2014) just released a report which concluded that in 2012,
seven million deaths across the world were associated with air
pollution, with a significant contribution from atmospheric aero-
sols. However, due to the significant challenges of remotely sensing
the atmospheric boundary layer, we still do not have a definitive
aerosol abundance product for the boundary layer. We demonstrate
that by simultaneously combining around 50 massive remote
sensing and Earth System modeling products using multivariate
nonparametric nonlinear ML, we can create a Virtual Sensor
providing an accurate boundary layer atmospheric aerosol product
together with an associated uncertainty. We can validate the
product using a global sensor web of ground based sensors and
unmanned aerial vehicles. The approach is also of benefit for pro-
ducing societally relevant data products.

Atmospheric aerosols are found globally. Estimating the abun-
dance of airborne particulate matter is a critical yet challenging task
for both retrospective study and forecasting of air quality (Grell
et al., 2005; Chuang et al., 2012), visibility and climate change
(Hansen et al., 1988; Allen et al., 2000).

Numerous studies show that among air pollutants, the abun-
dance of ground level airborne particulate matter with a diameter
of 2.5 pm or less (PM35) has the strongest link with human health
effects (Brook et al., 2010). Increased morbidity and mortality has
been associated with exposure to PM,s5 thereby suggesting
improved life expectancy is possible by reducing the exposure level
(Pope et al.,2009). Not only in the US but also in European studies, a
significant number of premature deaths, including cardiopulmo-
nary and lung-cancer deaths were attributed to long-term exposure
to PM> 5 (Boldo et al., 2011).

For more than half a century researchers have been studying the
impact of PM on health. Initially the attempt was to learn about the
possible adverse effects, and then the focus shifted to investigate
the exposure-response relationships. Now with further advance-
ment in technology and more awareness of health-concerns,
studies on composition-specific effects have emerged (Ayala
et al, 2012). With implementation of computational fluid dy-
namics (CFD) models and digital imaging of organs, researchers
started to study the pathophysiology associated with PM to better
understand the translocation of particulates in human body after
their deposition and the fate of these particulates in impacting
health.

Most short-term exposure impact studies on PM, 5, whether for
morbidity or mortality, focus on cardiovascular/cardiopulmonary
(Brook et al., 2010) or respiratory (Dockery et al., 1993) conditions.
Our dataset, with daily temporal scale, is suitable for such studies.
We are already studying daily asthma-related hospital admissions
associated with PM; 5 using our estimated data.

On the other hand, diseases, such as lung cancer, require study
of the long-term exposure to PM; 5. Data generated from this study
is expected to contribute to Health Impact Assessment (HIA) in
different parts of the world concerning long-term exposure to
PM; 5. Currently, long-term PM values are not available in many
localities and in many instances PM; 5 values are estimated from
PM for long-term HIA (Boldo et al., 2011). Studies also suggest that
even low level PM;5 exposure can contribute to serious health
impacts (Pope and Dockery, 2006). We have already created daily
global estimates of PM; 5 with an associated uncertainty for more
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than 13 years providing an appropriate dataset for extended cohort
studies for the areas with both high and level concentrations of
ambient PM; 5. In addition, long-range transportation of particles
as dust can provide potential vectors for bacteria (Ginoux and
Torres, 2003; Prospero, 2003). With global coverage of this study,
tracking PMy 5 transport is now easier for public health surveil-
lance. Since many of the health conditions are interlinked,
comprehensive studies are required to better understand the
impact of PM; 5. With increasing availability of electronic health
records, reliable PM; 5 data with seamless temporal and geographic
coverage can contribute to revealing many unknowns of PMj5
impacts on health.

It could be noted that the type and degree of adverse effect
greatly depends on the composition of the particulate matters.
Composition mostly varies due to source materials. Our current
study does not provide information on the composition of PM, 5.
However, this study can be extended to examine the potential of
source apportionment considering land use/land cover conditions
and transportation mechanism. Recent studies show specific
adverse impacts of exposure to ultrafine particles. Future studies
are recommended to derive further size fractions beyond just
PM; 5, particularly the ultra-fine particles in the sub-micron size
range.

The increasing awareness of the many health impacts implies
the importance of having precise estimations of PM;s. Existing
remote sensing data can be effectively used to meet this need by
employing ML, ensemble of random forests, to estimate the daily
global PM; 5 abundance. The method utilizes remote sensing and
meteorological data and ground-based observations of particulate
matter at 3019 sites in 38 countries (see Fig. 2) (Lary et al., 2014a).
Referring to Fig. 2, it can be observed that the sites in North
America, Europe and Asia have higher density.

The health impacts of PM,s5 depend on its abundance at
ground level where people can inhale the PM; 5. Various networks
of ground-based sensors routinely measure the abundance of
PM, 5. Fig. 2 indicates many gaps in the spatial coverage with no
PM, 5 observations. This is mainly because of the poor coverage of

the sensor network. This limitation has been tackled using remote
sensing and satellite-derived Aerosol Optical Depth (AOD)
coupled with numerical models (Engel-Cox et al., 2004a,b; Liu
et al., 2007; Lee et al., 2011a,b). It has been proved that several
parameters such as humidity, temperature, topography, cloud
cover, and cloud optical depth affect the relationship between
PM; 5 and AOD (e.g. Rajeev et al., 2008; Schaap et al., 2009; Liu and
Harrison, 2011; Liu et al., 2012). Thus, a multivariate, non-linear
and non-parametric ML approach seems to the best option to
capture this relationship. ML has a very good performance in
providing a new PM,5 product. Fig. 3 presents the monthly
average of the ML PMj 5 product (ug/m?>). A good agreement exists
between the PM; 5 product and the observations. In other words,
the color fill of the circles depicting the observations is in good
agreement with the background color depicting the new ML PM> 5
product.

Careful attention to details is critical for the precision of PM; 5
simulations. First, a highly restrictive coincident requirement needs
to be considered for the training dataset. Herein, we only take into
account hourly PM; 5 and satellite observations that were made
within 30 min of each other and had a great circle distance sepa-
ration up to only 0.02°. Second, a comprehensive training dataset
was gathered spanning the globe for more than a decade. Third, the
use of the full range of training parameters that characterize the
local environment as carefully as possible is recommended (e.g.
humidity, temperature, boundary layer height, surface pressure,
etc.). Fourth, a multivariate, nonlinear, nonparametric ML approach
is utilized that can handle continuous real variables and categorical
variables (flags and masks). It is notable that remotely sensed AOD
products typically have inherent biases relative to the ground truth
from AERONET and are dependent on the remote sensing instru-
ment, the algorithm, and the version of the processing software
(collection). These biases were directly and individually calibrated for
by performing separate ML training for our target variable (PM;5)
for each instrument, software version and algorithm combination
(i.e. collection, deep blue, standard). Example of these separate
calibrations can be seen in Fig. 4.

Figure 2. The 8329 PM, 5 measurement site locations from 55 countries (red squares) that were used over the period 1997-2014.
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Figure 3. The monthly average ML PM, 5 product (ug/m~>) for August 2001 (Lary et al.,
2014a).

3.2. Dust sources

Dust sources of many kinds are found globally. One of the most
salient features of dust sources is that they are often very localized.
For example, in Figs. 5 and 6, we can clearly see that the source of
the dust plumes are best described as an ensemble of many point
sources, not broad dust emitting regions. Realistically capturing this
very localized nature of dust sources has so far largely eluded
automated diagnosis, and consequently, description in global
models. Invariably current models describe dust sources as rather
large scale features (Ginoux et al., 2011), even when vegetation
indices and similar approaches are used. This is in marked contrast
to what we consistently see in the satellite imagery across the
planet.

Identifying dust sources is a critical yet challenging task for the
accurate simulation of atmospheric particulate distributions
(Ginoux et al., 2001; Prospero et al., 2002) relevant to air quality
(Schauer et al., 1996) and climate change (Tegen and Lacis, 1996,
Tegen et al., 1996).

For this case, we take a new and radically different approach to
any previous studies that have sought to identify global dust
sources on a routine basis. We demonstrate that this new approach
employing ML is very effective. The approach uses multi-wave-
length spectral reflectivity signatures to characterize land surfaces,
naturally paving the way for a new class of algorithm ideally suited to
fully exploit the next generation of hyper-spectral instrument. A
common application of remote sensing is production of thematic
maps using an image classification (Foody, 2002). New in our
approach is that we can both operate at very high spatial resolution
and distinguish between types of dust sources. For example, we can
easily distinguish between the edge of salt flats (Fig. 6), dried up
wadis or lakes, and agricultural sources to name just three of many
examples. The only limiting factor for the resolution is the resolu-
tion of the satellite imagery.

We employ ML to objectively provide an unsupervised multivar-
iate and nonlinear classification into a very large number of surface
types (in our demonstration study presented below 1000 classes
are used) using multi-spectral satellite data. In other words, we do
not impose any a priori assumptions, but rather, we let the data speak
for itself as to how we should classify surface types. Self-organizing
maps (SOMs) are good candidates to handle this classification task.
SOMs are a data visualization and unsupervised classification tech-
nique invented by Kohonen (1982). They reduce the dimensions of
data through the use of self-organizing neural networks. SOMs help
us address the issue that humans simply cannot visualize high
dimensional data unaided. The way SOMs go about reducing
dimensionality is by producing a feature map, usually with two
dimensions, that objectively plots the similarities of the data by
grouping similar data items together. SOMs learn to classify input
vectors according to how they are grouped in the input space. The
SOM learns to recognize neighboring sections of the input space.
Thus, SOMs learn both the distribution and topology of the input
vectors they are trained on. This approach allows SOMs to display
similarities and reduce the dimensionality. A SOM does not assume
a priori a functional form for the analyzed data. A noteworthy
enhancement of an SOM over principal component analysis is an
SOM’s ability to represent non-linear functions or mappings. For
further details please refer to Kohonen (1982).

The premise being that there are very many types of dust
sources, from the diatom rich sediments of the Bodélé depression
in Chad, to those at the edge of salt flats in Bolivia and Chile (Fig. 5),
to those in the coastal Green Mountains of Libya. Each of these dust
sources has distinct physical characteristics, and therefore a distinct
reflectance signature. If we are able to identify these signatures, then
we can map the temporal and spatial evolution of each of these
distinct dust sources. Once we have the surface type classification,
we then seek to identify which small subset of surface classes
correspond to various kinds of dust sources. Once we have identi-
fied the signature of a wide variety of dust sources, we can precisely
pick out these locations globally and how their distribution changes
with time. This is particularly useful as dust sources are very
localized, and some dust sources have a significant seasonal time
evolution. Having a methodology to identify the signature of these
small-scale regions is invaluable.

The ML approach to dust source identification was first
conceived in 2010 to face a very practical challenge that the Navy
has in producing real time visibility forecasts (Walker et al., 2009).
If the standard type of dust sources are used (Ginoux et al., 2001),
very poor regional visibility forecasts result. However, the quality of
the Navy visibility forecasts drastically improved with an analyst
(Annette Walker) manually identifying individual dust sources at
the heads of plumes by examining sequences of satellite images
such as those shown in Fig. 5 and also the EUMETSAT RGB Com-
posites Dust images available online (http://oiswww.eumetsat.org/
[PPS/html/MSG/RGB/DUST/). This methodology is very labor
intensive and does not lend itself to easy automation. The first
prototype dust sources using the ML approach described here were
devised specifically to automate the dust source identification and
also allow for the accurate diagnosis of the time evolution in the
spatial extent of the dust sources.

Beyond the applications of accurate dust sources for visibility
and air quality forecasts, the radiative forcing (RF) due to dust is a
key concept in climate change calculations considered by the IPCC
for the quantitative comparison of the strength of different human
and natural agents causing climate change (Solomon et al., 2007).
Radiative forcing can be categorized into direct and indirect effects.
A significant part of the direct effect is the mechanism by which
aerosols scatter and absorb shortwave and longwave radiation,
thereby altering the radiative balance of the Earth—atmosphere
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y-axis. A separate ML fits of PM, 5 is performed for each satellite data product using a given algorithm and instrument.

system. Mineral dust is a major component of global aerosols that
exert a significant direct radiative forcing. Mineral dust aerosols are
produced both naturally (=70%) and anthropogenically (=30%).

As discussed above, the main goal is to determine all dust source
surface locations on the planet. To this aim, SOM was used to
classify all the land surface locations into a very large set of n cat-
egories. In the examples shown here, n = 1000. A small subset of
these 1000 categories will be regions that are dust sources. Natu-
rally, there are a variety of distinct types of dust sources (e.g. dry
river beds, agricultural sources, edge of salt flats, etc.) that we
would like to delineate.

To achieve a comprehensive classification, we want to consider
the conditions present throughout the year, therefore, in the
demonstration, we took an entire year of the 0.05° MCD43(C3 data
product. For this entire year of data, we then calculate the mean, u

Figure 5. Dust sources are typically localized point sources.

for each grid point. This is a massive dataset, and the computational
time and memory required to perform the SOM classification in-
creases with the number of data records. For the examples shown
here, we therefore first restricted our attention to those broad
MODIS surface types that may include dust sources, namely: barren

July 18,2010 MODIS Aqua True Color
South America: Bolivia and Chile

Edges of small salt lakes are ‘

mapped as point sources
ST =

Figure 6. Examples of our ML approach correctly identifying very localized point
sources around the edge of salt flats in Bolivia and Chile. Notice the narrow dust
plumes originating from precisely the identified source regions that have been high-
lighted in blue and cyan.
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or sparsely vegetated surfaces, croplands, grasslands, and open and
closed shrublands. These are MODIS surface types 16, 12, 10, 7 and
6, respectively. For each of these surface types, we then constructed
an input vector that contains 7 values, namely for each of the 7
bands provided in the MCD43C3 MODIS product the mean, u, of the
directional and bihemispherical reflectance. When training the
SOM algorithm, we used the Euclidean distance to compare the
input vectors (each containing 7 values).

In order to provide a fine gradation of classification, we used the
SOM to group together the surface locations into 1000 classes, only
a small subset of which correspond to regions that are dust sources.
Once the classes that correspond to dust sources have been suc-
cessfully identified, we have an automated method with which we
can identify dust sources that can be routinely executed to provide
a regular dust source data product. We utilized the extensive hand
classification of very localized dust sources produced by the Navy
(Walker et al., 2009) for the Middle East and South West Asia to
guide our initial determination of which of the 1000 classes are
dust sources. It is worth noting that the SOM classes are unique and
distinct.

3.2.1. Bolivia and Chile salt flats dust event

Let us examine a case study. Fig. 6 shows the dust event of July
18, 2010 in the Bolivian Altiplano. This event can be seen clearly in
the MODIS Aqua True Color image where dust plumes emanate
from fluvio-lacustine deposits and fluviodeltaic sediments
(Risacher and Fritz, 1991a, b) around the Salars de Coipasa and
Uyuni, Lake Poopo, and other smaller salt flats and lakes. Overlaid
are the SOM classes that coincide with active dust sources on the
Altiplano. Notice that the salt flats themselves are not dust sources,
rather we see the plumes forming around the edges of the flats and
lakes. SOMs are very successful in identifying the unique spectral
signatures of dust sources. A set of papers is in preparation will be
describing an exhaustive atlas of the global dust sources.

4. Conclusion and future direction

We have discussed the main areas where ML can make a major
impact in geosciences and remote sensing. ML focuses on the
automatically extraction of information from data by computa-
tional and statistical methods. Herein, the features of the ML
techniques for nonparametric regression and classification pur-
poses are outlined. The ML’s application areas are very diverse and
include different themes such as trace gases, aerosol products,
vegetation indices, ocean products, characterization of rock mass,
liquefaction phenomenon, ground motion parameters, interpreting
the remote sensing image, etc. We also presented a review of a
number of recent applications of the new GP method in the field.
Two illustrative examples are presented to demonstrate the effi-
ciency of ML for tackling the geosciences and remote sensing
problems. Currently, data analysis methods play a central role in
geosciences and remote sensing. While gathering large collections
of data is essential in the field, analyzing this information becomes
more challenging. Evidently, such “Big Data” has notable effects
both on the predictive analytics and the knowledge extraction and
interpretation tools. Considering the significant capabilities of ML,
it seems to be a very efficacious approach to handle this type of
information.
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