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ABSTRACT

We present an automatic approach for the reconstruction of parametric 3D building models from indoor
point clouds. While recently developed methods in this domain focus on mere local surface
reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric
building model that additionally incorporates contextual information such as global wall connectivity. In
contrast to pure surface reconstructions, our representation thereby allows more comprehensive use:
first, it enables efficient high-level editing operations in terms of e.g. wall removal or room reshaping
which always result in a topologically consistent representation. Second, it enables easy taking of
measurements like e.g. determining wall thickness or room areas. These properties render our
reconstruction method especially beneficial to architects or engineers for planning renovation or
retrofitting. Following the idea of previous approaches, the reconstruction task is cast as a labeling
problem which is solved by an energy minimization. This global optimization approach allows for the
reconstruction of wall elements shared between rooms while simultaneously maintaining plausible
connectivity between all wall elements. An automatic prior segmentation of the point clouds into rooms
and outside area filters large-scale outliers and yields priors for the definition of labeling costs for the
energy minimization. The reconstructed model is further enriched by detected doors and windows. We
demonstrate the applicability and reconstruction power of our new approach on a variety of complex
real-world datasets requiring little or no parameter adjustment.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Digital 3D building models are increasingly used for diverse
tasks in architecture and design such as construction planning,
visualization, navigation, simulation, facility management, renova-
tion, and retrofitting. Especially for legacy buildings, suitable
models are usually not available from the initial planning. Point
cloud measurements are often used as a starting point for
generating 3D models in architectural software. But despite fast
scanning devices and modern software, the generation of models
from scratch still are largely manual and time-consuming tasks
which make automatic reconstruction methods highly desirable.

Reconstruction of indoor environments poses specific chal-
lenges due to complex room layouts, clutter and occlusions.
Furthermore, planning and maintenance tasks often require mod-
els which give deeper insight into a building's structure on the
level of building elements such as walls, and their relations like
wall connectivity. This enables high-level editing for prototyping
planned changes and simulations requiring information like room
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neighborhood or wall thickness. While previous reconstruction
methods are able to faithfully recover partially observed surfaces
from indoor point clouds and generate accurate boundary repre-
sentations in the form of mesh models, a plausible decomposition
into parametric, globally interrelated, volumetric building ele-
ments yet remained an open challenge. Existing approaches either
represent walls, floors and ceilings as sets of unconnected planar
structures detected in the point cloud [13,1,15,21,7] (Fig. 1(a)), or
as collections of closed 3D boundaries of either the whole building
[12], or separate rooms [4,19,18,8] (Fig. 1(b)). While the method in
[20] reconstructs volumetric walls, their thickness is defined
manually instead of being estimated from the input data.

To overcome the limitations of previous approaches, we pro-
pose a novel reconstruction method in which the representation of
buildings using parametric, interrelated, volumetric elements
(Fig. 1(c)) is an integral component. Our approach automatically
reconstructs walls between adjacent rooms from opposite wall
surfaces observed in the input data while simultaneously taking
into account globally plausible connectivity of all elements.
Together with a faithful estimation of wall thickness, the result
is a high-level editable model of volumetric wall elements. The
reconstruction is formulated as an energy minimization problem
which simultaneously optimizes costs for assigning rooms to areal
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regions of the building, and costs for separating adjacent rooms by
volumetric wall elements. In contrast to previous approaches, this
has the advantage that reasonable binary costs for the assignment
of pairs of room labels to adjacent areal regions of the building -
and thus the selection of suitable wall elements - is directly
incorporated into the global optimization. To make our method
robust against large-scale clutter outside the building, outliers are
automatically filtered prior to reconstruction. Finally, doors and
windows are detected, classified and assigned to the respective
wall elements to further enrich the model. Our evaluation using
various real-world indoor scans shows that our method rapidly
provides models which can be used for e.g. planning of retrofitting,
especially since our method requires little or no parameter
adjustment.

Applications: The distinguishing feature of our approach is that
it directly captures important properties and relations of building
elements. Since architectural Building Information Modeling (BIM)
formats (e.g. Industry Foundation Classes, IFC) are based on similar
relational paradigms, exporting our results to architectural soft-
ware is straight forward. This enables a whole range of processing
and analysis tasks in industry-standard software. We exemplify
some applications for e.g. planning of retrofitting in Fig. 2 which
can directly be implemented using our results: since the incidence
and adjacency relations of walls and rooms are inherently known,
selecting e.g. all walls enclosing a room or manipulating whole
walls while maintaining overall room topology is easily possible
(Fig. 2(a)). This allows for quick, high-level prototyping of changes
on the level of semantically meaningful construction element
groups. The available information also enables more complex
queries for e.g. the subset of wall elements that are simultaneously
incident to two adjacent rooms (Fig. 2(b)). Together with directly
available properties like wall thickness, openings, room and wall
areas, this provides important information for performing acoustic
or thermal simulations. The global connectivity information
further allows us to perform pathfinding in the whole building
story (Fig. 2(c)) for e.g. simulating and optimizing escape routes.

2. Related work

Okorn et al. [13] generate 2D floor plans from 3D point clouds.
A histogram of the vertical positions of all measured points is built.
Peaks in this histogram are considered to be large horizontal
planar structures (i.e. floor and ceiling surfaces). After removing
points belonging to the detected horizontal structures, a line
fitting on the remaining points is performed. The resulting line
segments constituting the floor plan are not connected and do not
provide e.g. closed boundaries of rooms. Budroni and Boehm [4]
extract planar structures for floors, ceilings and walls by conduct-
ing a plane sweep. Using a piecewise linear partitioning of the x-y-
plane, they classify cells of this partitioning as inside and outside
by determining the occupancy of the cells by measured points and
considering densely occupied cells as inside. The result is a 2.5D
extrusion of the determined room boundary. In the approach by
Sanchez and Zakhor [15], points are classified into floor, ceiling,
wall, and remaining points using the point normal orientations.
For floor, ceiling and wall points, planar patches are fitted and
their extents are estimated using alpha shapes. Parametric stair-
case models are fitted to the set of remaining points. The resulting
mesh models consist of unconnected planar surfaces. Monszpart
et al. [7] propose a method for extracting planar structures in point
clouds which follow regularity constraints. Their optimization
approach balances data fitting and simplicity of the resulting
arrangement of planes. A method for generating visually appealing
indoor models is proposed by Xiao and Furukawa [20]. An inverse-
CSG approach is used for reconstructing the building's geometry
by detecting planar structures and then fitting cuboid primitives.
These primitives are combined using CSG operations; the quality
of the resulting model is tested using an energy functional. Finally,
the resulting mesh model is textured using captured images. A
drawback is that the building needs to be sufficiently well
approximated by the used cuboid primitives. Adan and Huber [1]
reconstruct planar floor, ceiling, and wall surfaces from multi-story
point clouds by first detecting the modes of a histogram of point
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Fig. 1. Schematic of editing capabilities of different kinds of reconstructions. The input point cloud is shown on the left. The remaining columns exemplify editing operations,
i.e. elements are moved in the directions of the arrows. Surface representations without (column (a)) or with (column (b)) connectivity information do not allow intuitive
editing on the level of wall elements. Our reconstruction (column (c)) maintains room topology and global wall connectivity.

Fig. 2. Example operations which are easily implemented using our results. (a) Relations between walls and rooms enable editing while maintaining room topology. Note
how incident walls are adjusted automatically. (b) Automatic determination of wall elements shared between rooms together with automatic measurements enable e.g.
acoustic or thermal simulations. (c) Global connectivity enables pathfinding for e.g. simulation and optimization of escape routes.
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height values to find horizontal planes, and then detecting vertical
planes by means of Hough transform. They recover occluded parts
of reconstructed surfaces and perform an opening detection by
means of Support Vector Machine (SVM) learning. Xiong et al. [21]
extend this approach by classifying detected planar patches as
floor, ceiling, wall or clutter using a stacked learning approach,
also taking into account contextual information of neighboring
patches. Mura et al. [8] reconstruct indoor scenes with arbitrary
wall orientations by building a 3D Delaunay tetrahedralization of
the input dataset and partitioning inside and outside using a
diffusion process governed by affinities of tetrahedron pairs. A
binary space partitioning is also done by Oesau et al. [12] by first
splitting the input dataset horizontally at height levels of high
point densities and then constructing 2D arrangements of projec-
tions of detected wall surfaces. The space partitioning into inside
and outside is performed by means of Graph-Cut. Other
approaches not only perform binary space partitioning but label
different rooms: Turner and Zakhor [19] generate 2.5D watertight
meshes by first computing an inside/outside labeling of a trian-
gulation of wall points and a subsequent partitioning into separate
rooms using a Graph-Cut approach. This method is further devel-
oped by Turner et al. in [18], improving the texture mapping
capabilities of the algorithm. The results are well-regularized,
watertight, textured mesh models. Mura et al. [9] first extract
candidate wall elements while taking into account possibly
occluded parts of the surfaces to determine the real wall heights
for filtering out invalid candidates. After constructing a 2D line
arrangement, they use a diffusion embedding to establish a global
affinity measure between faces of the arrangement, and determine
clusters of faces constituting rooms. The result is a labeled
boundary representation of the building's rooms. Many of these
methods build upon a spatial partitioning defined by detected wall
surfaces and a subsequent classification of regions of this parti-
tioning. Although the resulting models have applications like
visualization, navigation or energy monitoring [17], they do not
realize a reconstruction of volumetric, interconnected building
elements like walls.

3. Approach

The starting point of our approach is a registered point cloud of
one building story consisting of multiple indoor scans including
scanner positions. Registration is usually done using the scanner
software and is outside the scope of this paper. The unit of
measurement and up direction are assumed to be known. Surface
normals for each point are estimated.

We argue that the wall structure of most building stories can be
represented as a piecewise-linear, planar graph in which edges
represent wall elements and vertices are locations where walls are
incident (Fig. 3(e)). Wall thickness is a scalar edge attribute.
Conversely, faces of this graph represent the spatial room layout.
There obviously exists a duality between the story's room layout
and its wall constellation, i.e. one representation can directly be
derived from the other. The main idea of our approach is that -
while both representations are essentially equally hard to recon-
struct — we can derive important hints (priors) for the room layout
from indoor point cloud scans since they are a sampling of the
inner surfaces of room volumes. It is therefore meaningful to base
our reconstruction on the derivation of a suitable room layout
from which the constellation of walls is immediately obtained due
to the duality.

We extract priors for the room layout as follows: assuming that
each room was scanned from one position (or few positions),
separate scans yield a coarse segmentation of the point cloud into
separate rooms (Fig. 3(a)). We improve this segmentation using a

diffusion process which eliminates most overlapping regions
between scans (Fig. 3(b)) and automatically filters out clutter
outside of the building. As further described below, the determi-
nation of a suitable room layout is then formulated as a labeling
problem of the regions of a suitable partitioning of the horizontal
plane (using labels for different rooms and the outside area). This
directly follows the aforementioned duality principle: after deter-
mining a suitable labeling, connected components of identically
labeled cells are rooms, and edges separating differently labeled
regions are wall elements.

Since our goal is to extract a piecewise-linear graph of walls, we
construct a partitioning based on potential wall surfaces: we first
detect vertical planes as candidates for wall surfaces and project
them to the horizontal plane (Fig. 3(c)). Similar to previous
approaches [9,11,12] we then construct an arrangement of (infi-
nitely long) lines from the set of possible wall surfaces (Fig. 3(d)).
In contrast to previous approaches, edges of this arrangement
represent wall centerlines instead of wall surfaces. Furthermore,
arrangement lines are not only constructed from single wall
surfaces but also from pairs of parallel surfaces which yield
candidates for walls separating adjacent rooms. This subtle but
crucial difference allows us to go beyond the reconstruction of
separate room volumes as done in previous works (Fig. 1(b)) by
enabling the algorithm to reconstruct room-separating wall ele-
ments directly. In order to guide the selection of adequate wall
elements, we retain the information from which supporting
measured points each edge originates. This yields wall selection
priors encouraging the reconstruction of wall elements which
were constructed from surfaces belonging to the same pair of
rooms that the wall separates.

The determination of a globally plausible labeling is then formu-
lated as an energy minimization problem. This allows us to incorpo-
rate room layout priors and wall selection priors as unary and binary
costs into one optimization. After an optimal labeling has been
determined, only retaining edges separating differently labeled
regions are the sought wall structures (Fig. 3(e)). Extruding walls
according to estimated room heights and a detection and classification
of openings yields the final parametric model (Fig. 3(f)).

4. Point cloud segmentation

To obtain priors for the localization of rooms in subsequent
steps, each point of the input point cloud is automatically assigned
a label for a room or the outside area. Our approach is based on the
method by Ochmann et al. [10] which we will briefly summarize
before describing our modifications: the original method assumes
at least one scan within each room; multiple scans per room are
merged manually such that a one-to-one mapping between
(merged) scans and rooms is obtained. The initial assignment of
each point to one of the (merged) scans (Fig. 3(a)) provides a
coarse segmentation of the point cloud into rooms. However,
openings such as open doors lead to severe overlaps between
scans, causing large areas of the point cloud to contain a mix of
differently labeled points. To obtain a point labeling that roughly
corresponds to the building's room layout and is homogeneous
within each room (Fig. 3(b)), an automatic labeling refinement is
performed. The process is based on the assumption that most
points that are visible from the position of a point p are already
labeled correctly. By determining which points are visible from the
position of p and averaging the observed labels, a new (soft)
labeling of p is obtained. After iterating this procedure, the label
with the highest confidence is assigned to p. This process can be
interpreted as a diffusion of point labels between points governed
by mutual visibility. In practice, a stochastic ray casting from the
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Fig. 3. Overview of our approach (see also Section 3). (a) Input point cloud; assignment of points to scans shown in different colors. (b) Refined assignment after automatic
segmentation. (c) Detected vertical planes transferred to the horizontal plane. (d) Candidates for walls are derived from single and pairs of projected planes. Intersecting their
centerlines yields a planar graph whose faces are subsequently assigned labels for rooms or outside area. (e) Only edges separating differently labeled faces are retained.
(f) The final model with detected and classified wall openings, e.g. doors (green) and windows (yellow). (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this paper.)

Fig. 4. Wall candidate generation. (a) and (b) Detected vertical planes in the 3D point cloud are projected into the horizontal plane. (c) Different wall surface lines including
the respective (projected) support points and surface normals. (d) For each single wall surface, an infinitely long wall candidate w for a wall separating a room from outside
area is generated. In this case, the thickness t,, is user-specified. (e) For each pair of approximately parallel wall surfaces, a candidate for separating adjacent rooms is

generated. In this case, wall thickness is estimated from the data.

position of p into the hemisphere around the normal of p is
performed.

We extend this method in two ways: first, we automatically
filter out clutter outside of the building which is often caused by
windows or mirrors. We argue that for a point p that is part of
clutter outside of the building, most rays cast from p into the
hemisphere around the normal of p do not hit any interior wall
surfaces. In this case we assign a high value for an additional
outside label to p. This modification proves to be highly effective in
our experiments as demonstrated in Fig. 3(b) (gray points have
been assigned the outside label). Second, we do not require that
multiple scans per room are merged manually. Instead, we run the
reconstruction using all scans as separate labels. In case of multi-
ple scans in a room, this leads to implausible walls within rooms
which are subsequently removed as described in Section 7.

5. Generation of wall candidates

Candidates for wall elements are derived from vertical surfaces
observed in the scans. They constitute possible locations of walls
for the optimization in Section 6. Since wall heights and lengths
are not regarded in this step, the following 2D representation is
used: each wall candidate w = (t,y, ny, dy) is defined by a thickness
tw € R*® and an infinite centerline in the horizontal plane given in
Hesse normal form {(n,,x)—d,, = 0. Wall heights and lengths will
be determined later.

In a first step, planes in the 3D point cloud are detected using a
RANSAC implementation by Schnabel et al. [16]. Nearly vertical
planes ( + 1°) with a sufficiently large approximate area (>1.5 m?)
are considered as potential wall surfaces. For a plane P fulfilling
these constraints, let np € R? be the plane normal and P the set of

measured points supporting P. Each extracted plane P is trans-
ferred to the horizontal plane as a wall surface line lp defined by
(n,,xy—d,, =0. A schematic example for the extraction of wall
surface lines is shown in Fig. 4(a)-(c). The normal n;, is approxi-
mated by the projection of np into the horizontal plane,

_ ((nP)xv(nP)y)
P T el

The distance to the origin d,, is determined by least squares fitting
to the set P of support points projected to the horizontal plane
using the fixed normal nj, such that >, P;y((ﬂ,,p,p)—d,,p)z is
minimized. From the wall surface lines, we then generate two
kinds of wall candidates as we do not know at this point which
types of candidates will yield a globally plausible reconstruction:

Outside walls: For each single wall surface line [», we construct a
candidate for a wall separating a room from the outside area
(Fig. 4(d)). Since the real wall thickness cannot be determined
automatically from a single surface, a user-specified thickness is
used (in our experiments, t, =20cm). The centerline of the
candidate is constructed such that the side of the wall candidate
that points towards the inside of the room is identical to Ip, i.e. the
centerline is defined by (n;,,x)—dw = —tw/2.

Room-separating walls: To generate candidates for walls separ-
ating adjacent rooms, each pair of wall surface lines fulfilling
certain constraints is considered as two opposite surfaces of a wall
separating adjacent rooms (Fig. 4(e)). Let I, and lp, be two wall
surface lines that are approximately parallel (+1°) and have
opposing normal orientations. To prune invalid pairs, a coarse
check is performed whether the projected support pointsets of the
originating planes PR ,PZ (partially) overlap. To this end, the
support pointsets are projected onto the respective opposite line.
If support points are present near the projected points, their
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Fig. 5. Determination of suitable wall candidate segments. (a) Input point cloud after segmentation. (b) Intersecting all wall candidate centerlines yields a planar graph. We
determine an assignment of all faces to rooms or outside area such that connected components of identically labeled faces are rooms and edges between differently labeled
faces are wall elements. (c) Resulting labeling of faces after optimization; colors indicate room labels. (d) Retaining only edges separating differently labeled faces yields a
subgraph representing the sought wall elements and their connectivity. (For interpretation of the references to color in this figure caption, the reader is referred to the web

version of this paper.)

Fig. 6. Considering only the number of projected points within a face for unary
costs does not take into account their spatial distribution.

support is considered overlapping. For each pair fulfilling these
constraints, a wall candidate is generated by fitting to I, and I,
simultaneously: The candidate's normal n,, is first determined as
the average of the normals ny,n, of Ip ,lp,, weighted with the
cardinality of the support pointsets,

| PR, 1n1+ PR, (—ny)

TP I 1 PL (o)

Using the common normal n,, two parallel lines ;,ie {1,2}
defined by (n,,x)—d;=0 are fitted to the respective support
pointsets such that 3°, prx((nw, p)—d;)? is minimized. The center-
line of the wall candidate is constructed midway between the
parallel lines, (ny,x)—1(d; +d;) =0, and the candidate's thickness
is defined as the distance between them, t,, = |d; —d,|. Candi-
dates with a thickness above a threshold are discarded (in our
experiments, t,, > 60 cm).

6. Determination of an optimal room and wall layout

From the infinitely long wall candidates, we determine a set of
wall segments which yields a plausible reconstruction of the
building's walls. To this end, we consider the intersection of all
wall candidate centerlines in the horizontal plane which yields a
planar graph W' = (V', E’) (Fig. 5(b)). Faces of W’ are regions of the
building's layout (i.e. parts of rooms or outside area), edges E’ are
segments of possible walls, and vertices V' are possible locations
where walls are incident. We follow the intuition that walls
separate different regions, i.e. adjacent rooms, or rooms and the
outside world. Consequently, a classification of the faces of W’
implies locations of walls in the following sense: connected
components of identically labeled faces are rooms (or outside
areas), and edges between differently labeled faces are walls.
Fig. 5(c) shows an example for a face labeling from which
connected wall elements as shown in Fig. 5(d) are extracted. Wall
thickness of an edge e is set to the thickness of the wall candidate
from which e originates.

We formulate the face classification as a labeling problem which is
solved using an energy minimization approach. The target functional
has two terms: unary costs for the assignment of labels to faces of W’
and binary costs for the assignment of label pairs to adjacent faces.
Unary costs provide hints where rooms (or outside areas) are located
and binary costs guide the selection of adequate edges for separating
differently labeled faces. In particular, if two adjacent rooms share a

common wall, a wall candidate constructed from wall surfaces of these
rooms should separate them. We will now formalize the problem. Let
W = (V,E) be the dual graph of W’ and let {I, ..., I, l,} be the set of
labels where I;,ie{1,...,k} are labels for each scan and [, is the
outside label. For clarity, we assume for now that each room was
scanned from exactly one position and thus k equals the number of
rooms; the more general case of multiple scans per room will be
discussed later. Given a unary cost function U,(l,) yielding the cost for
assigning label [, to a vertex veV, and a binary cost function
Byw(ly,ly) yielding the cost for assigning the (unordered) pair of
labels I, I, to v,w € V, we minimize the total cost for a labeling I, i.e.

E(I)ZZUV(IV)+ Z Bv,w(lv,lw)_’min- (])

veV (vw)eE

Applying the minimization algorithm to the dual graph W of W’
allows us to determine a labeling of the faces of W’ by finding an
optimal labeling of the vertices of W. The problem stated in Eq. (1)
is solved using the algorithm by Boykov et al. [3,6,2]. We now
define unary and binary cost functions for label assignments. In
the following, the notation for label vectors
v i:c=0,

L(-)=(C1, .-+ Ck> Co)s LGOI =1

will be used for soft label assignments to different entities, e.g.
points, faces and edges. The coefficient c¢; of £(-) corresponding to
label [; will be denoted L;(-). As a shorthand, let Z; denote a hard
label vector with ¢; =1, and let Z;; : =1(Z;+1I)).

Unary costs: Intuitively, the cost U,(l,) shall be low iff the area
spanned by face fin W’ is likely to belong to I,. We first estimate a
label vector £(f) whose coefficients reflect the probabilities that
the area covered by f belongs to each room or the outside area. A
naive approach would be to project all measured points into the
horizontal plane and to determine how many points of each room
(with respect to the point labels obtained in Section 4) are located
within f. The first problem is that non-uniform distributions of
measured points (Fig. 6, left) yield a similar probability estimate
like a uniform distribution (Fig. 6, right) although the latter
provides stronger evidence that the whole face belongs to a
certain room. The second problem is that we need to estimate
the probability that f is located in the outside area which is not
represented by measured points.

We therefore propose a stratified sampling method which
takes the spatial distribution of projected measured points into
account and yields an estimate for the outside label. All measured
points are projected into a uniform 2D grid in the horizontal plane.
The side length of the grid cells is chosen as twice the point cloud
subsampling density (see Section 8). The label vectors of all points
within a grid cell are averaged and empty cells are assigned the
outside label vector Z,. Subsequently, the label vector £(f) of f is
estimated by picking in the grid at uniformly sampled positions
within f and averaging the resulting label vectors. The number of
samples within f is chosen proportionally to the face area (at least
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one sample is enforced). The unary cost function is then defined as
Uv(ly) : =a-area(f) - I£¢F)~Zvll1, )

where v is the vertex of W corresponding to face fin W/, and a is a
weighting factor (see Section 8). L(f) is the estimated labeling of
face f, and Z, is the ideal expected label vector for label I,. The
distance between these label vectors is weighted proportionally to
the area of f in order to mitigate the impact of differently sized
faces in the sum of total labeling costs.

Binary costs: For the binary cost B, (ly, ly), consider edge e in
W’ to which the edge (v,w) in W corresponds. Intuitively, the cost
for assigning labels I,,l,, to veV and weV shall be low iff the
surfaces of the wall represented by e are supported by measured
points with labels [,,l,, (in the case of wall bordering the outside
area, there should be no support on the exterior side). In other
words, for the separation of faces with different labels I, I,,, wall
elements whose surfaces are supported by points with labels [, I,
shall be preferred. For estimating the label vector for an edge e, a
sampling strategy similar to the face label vectors is used. Consider
edge e originating from up to two wall surface lines Ip,,Ip, (see
Section 5) with according projected support points P2, P2 . If e
originates from a single wall surface line Ip,, we set P’;{ =@.
Analogous to the 2D grid in the horizontal plane, we construct a
one-dimensional grid on e. The support points P’g’l u P’gz are
projected into the grid and their point labels are averaged per
cell. Empty cells are assigned the outside label. The label vector
L(e) is now estimated by sampling uniformly distributed points on
e and averaging the label vectors obtained by picking in the grid at
the sample positions. We then define the binary costs as

- len(e) - (1£(e)—Zwwll1 +7Lo(e))

ifly # Ly,
Bv,w(lv, lw) L= {O ; Y

otherwise,
3)

where v, w are the vertices of W corresponding to faces f,g in W’
that are separated by edge e, len(e) is the Euclidean length of edge
e, and g,y are weighting factors (see Section 8) respectively. Similar
to the unary costs, weighting the distance between the observed
and ideal label vectors by edge length mitigates the influence of
different edge lengths. The additional term £,(e) penalizes usage
of edges with a high outside prior. We found that this term helps
to select correct edges with support points on both sides for
separating adjacent rooms. After the face labeling is determined,
only edges which separate differently labeled faces are retained.
The resulting subgraph W of W’ (Fig. 5 (d)) is used in Section 7 for
reconstructing connected wall elements.

Multiple scans within one room: We previously assumed that
each room was scanned from exactly one position within that
room. In the case of more than one scan, one room is represented
by a set of different labels. Fig. 7(a) shows an example of a hallway
scanned from three positions. After segmentation (Section 4), the
hallway is split into multiple regions represented by differently
labeled points (Fig. 7(b)). The graph labeling optimization sepa-
rates these sections by implausible walls (Fig. 7(c)). We remove

such walls (Fig. 7(d)) as part of the opening detection in the next
section.

7. Model generation and opening detection

From the determined graph, the final model can now be
derived in a straight forward manner. The model is further
enriched by detected window and door openings.

Walls: For each edge e=(,w) of W, a wall element W is
constructed with centerline endpoints located at v and w. The
thickness of W is determined by the thickness of the wall
candidate from which e originates. Endpoints of wall elements
are connected iff the corresponding edges are incident to a
common vertex. For vertical extrusion, we first estimate floor
and ceiling heights for each face f in W separately using the
following heuristic: consider all approximately horizontal planes
detected during wall candidate generation (Section 5). For each
plane, the number of support points located within f is deter-
mined. The elevation of the plane with the largest support within
f and upwards- (resp. downwards-) facing normal is chosen as the
floor height hp(f) (resp. ceiling height hy(f)) of f. The vertical
extent of a wall represented by edge f separating faces f,f, is
then defined to span the heights of both adjacent rooms:
[mincha(f4), ha(f2)), max(ha(f ), ha(f )]

Opening detection: Openings in walls either arise from doors
and windows, or because a reconstructed wall was artificially
introduced due to multiple scans within one room as described in
Section 6. By classifying detected openings accordingly, we further
enrich the model by doors and windows, and determine which
walls to remove for handling multiple scans within rooms. To
locate potential openings, we determine intersection points
between reconstructed walls and simulated laser rays from the
scan positions to the measured points. The intersection points are
clustered in the 2D domain of the wall surfaces (a simple greedy,
single-linkage clustering based on distances between intersection
points yielded satisfactory results); see Fig. 8 (b) for an example.
The clusters are then classified as doors, windows, virtual (i.e.
openings due to excess walls) or invalid (i.e. clutter) by means of
supervised learning using libsvm [5]. Six-dimensional feature
vectors with the following features are used to characterize
openings: cluster bounding box width and height, distance from
lower and upper wall bounds, approximate coverage by intersec-
tion points, and a binary feature indicating whether the associated
wall is adjacent to outside area. Clusters recognized as doors or
windows are assigned to the respective wall elements. Adjacent
faces of W separated by wall elements containing at least one
virtual opening (magenta clusters in Fig. 8(b)) are merged by
removing all edges to which both faces are incident. To account for
changes after a wall removal, the determination of room heights,
intersection points, clusters and opening classes is performed
iteratively until no more virtual openings exist.

a Scan positions

C Excess wall entities d

Fig. 7. Multiple scans within a single room. (a) The hallway has been scanned from three positions; room labels are mixed within that room. (b) After segmentation
(Section 4), the hallway is still split into multiple sections. (¢) The labeling algorithm separates these regions by wall elements that are not part of the building's true walls.

(d) By detecting and removing excess wall elements, faces are merged to larger rooms.
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Fig. 8. Opening detection and classification. (a) The input point cloud after segmentation. (b) Detected clusters of intersections between reconstructed walls and simulated
laser rays between scanner positions and measured points. Clusters are classified as doors (green), windows (yellow), “virtual” clusters indicating walls to be removed for
merging multiple scans within a room (magenta), and invalid (red). (c) The final model after removal of walls containing “virtual” openings. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 1
Datasets used in our experiments. Figure references marked with “x” indicate that
only a subset of the dataset is shown.

Dataset Points Scans Time (s) Figures
Building A, storey 1 9,524,724 23 84.9 12*
Building A, storey 2 19,365,622 33 215.7 16(a)
Building B, storey 1 826,229 5 6.0 —
Building B, storey 2 1,676,486 6 11.9 9*
Building B, storey 3 1,673,919 6 12.2 1,3
Building B, storey 4 2,203,670 8 16.0 2
Building B, storey 5 2,470,678 11 17.7 5
Building C, storey 1 4,749,565 9 39.7 14*
Building C, storey 2 22,757,718 67 486.3 7*, 8% 16(c)
Building C, storey 3 23,883,396 63 449.6 —
Building D, storey 1 17,712,659 34 2522 15
Building E, storey 1 14,399,907 37 189.3 13*
Building E, storey 2 19,769,647 51 319.9 —
Building E, storey 3 17,104,101 43 2415 16 (b)

8. Evaluation

We tested our approach on real-world point clouds of 14 stories
from 5 different buildings; statistics are given in Table 1. The
shown number of points is after subsampling with the Point Cloud
Library [14] using a resolution of e =0.02 cm (i.e. in a voxel grid
with a resolution of ¢, at most one point in each voxel is retained).
Normals are estimated by means of local PCA using point patches
of 48 nearest neighbors. Normals are flipped towards the respec-
tive scanner position.

Parameter selection: The first set of crucial parameters affects
plane detection in the extraction of wall surfaces (Section 5). For
classifying planes as vertical (wall surfaces) or horizontal (floor
and ceiling surfaces) we chose a threshold on the angular devia-
tion of +1° from the ideal orientations. We ignore planes with
less than 500 support points or an approximate areal coverage by
support points below 1.5 m2. Also, vertical planes resulting in line
segments below 0.5 m are ignored. These parameters control a
tradeoff between avoiding clutter and ignoring small details: high
thresholds only consider larger (but potentially more stable)
planes as candidates for wall surfaces. Conversely, low thresholds
may introduce clutter due to incorrectly detected planes. Fig. 9
demonstrates different choices. The second important set of
parameters consists of the weights a,8,y in Egs. (2) and (3). In
our experiments, we found that a ratio of «/p of 4/1, and y=4
yielded good results (Fig. 10(c)). The effects of setting either «, 3, or
y to zero are shown in Fig. 10(d)-(f). We also found that smoothing
the 2D and 1D grids used for the determination of face and edge
label vectors in Section 6 using a large Gaussian kernel usually
improves results.

Robustness: Quality and robustness of our reconstruction
depend on plane detection quality which is influenced by e.g.
scanner noise, point density, registration accuracy, and clutter
outside and inside of the building. As our datasets were captured

Fig. 9. Different plane detection options: Allowing smaller planes as potential wall
surfaces allows for more detailed structures (right-hand side) at the cost of possibly
detecting incorrect candidates in clutter.

using professional laser scanners, noise level and sampling density
were no issue. Registration errors directly influence the position of
detected planes and thus the generated wall candidates. Our
algorithm adapts well to small misalignment; stronger transla-
tional or rotational alignment errors have specific effects as
exemplified in Fig. 11. Clutter outside of the building is effectively
eliminated by our automatic filtering method. Clutter inside of
rooms and scan holes pose big challenges when working with
indoor scans. Except for extreme cases (e.g. completely unob-
served wall surfaces or objects which span the whole story height
and thus yield planes that are indistinguishable from walls), our
algorithm proves to be robust against e.g. furniture within rooms
as shown in Fig. 12: despite the presence of large scan holes, using
all available points (from e.g. furniture) as priors for room
localization closes holes, and the smoothness property of the used
graph-cut-based optimization yields well-regularized walls.
Furthermore, as our approach uses infinitely long wall candidates,
small or medium sized holes in the support pointsets of wall
surfaces caused by occlusions are automatically bridged in a
plausible manner (Fig. 13). We also found that the algorithm is
very robust against errors in the segmentation step (Section 4),
especially in the interior of the building, i.e. if overlaps between
scans of adjacent rooms still exist. However, filtering out large-
scale clutter outside the building is important in order to avoid
erroneous classification of outside area as rooms.

Opening detection accuracy: Our method for opening detection
consists of three parts (see Section 7): (1) determination of
intersection points, (2) clustering of intersection points, and
(3) classification of these clusters using supervised learning.
Regarding (1), we found that the determined intersection points
indicate locations and extents of openings well, with a low
number of false positives. For (2), a simple single-linkage cluster-
ing based on point distances already yielded good results due to
the low number of clutter intersection points which may cause
chaining effects. However, a more sophisticated clustering method
could improve results in some cases, e.g. multiple neighboring
windows are sometimes recognized as a single cluster. Concerning
(3), our training examples comprise 269 doors, 306 windows, 118
virtual, and 415 invalid clusters which were obtained by manually
correcting a heuristic classification. During training, all stories
originating from the building being classified were removed from
the training set. Average cross validation rate of the training sets
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Fig. 10. Different choices for a, 8,y in Egs. (2) and (3). (a) and (b) Perspective and orthographic view of an example situation. (c) Parameters chosen as described in Section 8.
Wall centerlines are well-regularized and common wall elements have been reconstructed between rooms. (d) Without unary costs (a : = 0). While the resulting walls are
well-regularized, parts of rooms are missing despite high areal support by measured points. (e) Without binary costs (4 : = 0). Walls are located similar to (c) but are overly
complex due to missing regularization and preference for correctly labeled edges. (f) Without penalty for high outside labeling (y : = 0). The algorithm does not prefer

common walls for separating adjacent rooms.

YoRRigRY

Fig. 11. Effects of registration errors. (a) Result without alignment errors. Wall volumes are shown in gray together with the respective wall centerlines. (b) Translational registration
errors may result in offset walls to which the algorithm adapts accordingly (right detail view). Wall thickness may also change (wall separating the red and green rooms in the left
detail view). (c) Rotational registration errors may lead to wall surface pairs not to be associated to common walls. Wall thickness is incorrect since the wall candidates do not originate
from wall surfaces pairs. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 12. Highly cluttered rooms. Left: clutter and transparent surfaces (windows)
cause large scan holes; wall surfaces are only partially scanned. Right: recon-
structed walls still are well regularized and separate rooms correctly.

Reconstructed
walls (centerlines)

Fig. 13. Our cost minimization approach and infinitely long wall candidates
automatically bridge scan holes in a plausible manner.

was 90.34%, average classification accuracy was 85.02%. This small
yet significant gap indicates a generalization performance below
optimum which we believe is caused by systematic differences
between e.g. the used windows in different buildings, causing the
feature vectors to not be i.i.d. Given the limited number of test
data, we think that our approach is promising, especially since
newly obtained examples can be fed back into the algorithm.

Fig. 14. Wall elements which are not connected at both ends to other walls are
currently not representable by our reconstruction.

Comparison to manually generated models: A visual comparison
between our reconstruction and a professional, manually gener-
ated model is shown in Fig. 15. Locations and thickness of wall
elements, and locations of doors are generally good; a few walls
are missing either due to the fact that (small) rooms were not
scanned separately and thus room labels are missing, or because
openings were misclassified as “virtual” clusters.

Time and memory requirements: Our experiments were run on a
6-core Intel Core i7-4930K (32 GB RAM) with a NVIDIA GeForce
GTX 780 (3 GB RAM). Processing times of our prototypical imple-
mentation are shown in Table 1. Peak RAM usage (incl. visualiza-
tion) for the largest dataset (Fig. 16c) was about 16 GB.

Limitations: If rooms are not completely enclosed by walls
(e.g. balconies or partially scanned staircases), points might
erroneously be classified as outside area during the segmentation
step which may lead to missing parts in the reconstruction. Due to
the current formulation of our approach, wall elements which are
not connected to other walls at both ends cannot be represented.
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Fig. 15. Visual comparison of reconstruction and manually generated model. (a) Input point cloud; scans are shown in different colors. (b) Professionally, manually generated
model. (c) Reconstructed model. Locations and thickness of walls, and locations of doors are generally good. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)

Fig. 16. Example results on point clouds with 33, 43, and 67 scans. Upper row: point clouds after segmentation step; most ceiling points (i.e. points with downwards-facing
normals) are removed for visualization. Lower row: reconstructed models; detected windows are shown in yellow, doors are shown in green. Most wall elements are
faithfully reconstructed; some excess walls have not been removed (see e.g. the large room in the lower-right corner of the second column). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

As a consequence, they are either missing (Fig. 14), or erroneously
connected to other wall elements. Also, since we only consider
planar wall surfaces and linear wall candidates, only piecewise
linear wall structures can be reconstructed.

9. Conclusion and future work

We presented the first automatic method for the reconstruction
of high-level parametric building models from indoor point clouds.
The feasibility of our approach was demonstrated on a variety of
complex real-world datasets which could be processed with little or
no parameter adjustments. In the future, a more thorough compar-
ison of reconstruction results with existing, manually generated
models would help to analyze reconstruction results quantitatively.
A generalization to multiple building stories poses specific challenges
but would enable the reconstruction of multi-story models without
the need to process stories separately. Also, the usage of different
capturing devices (e.g. mobile devices) and real-time handling of
streamed data are topics for future investigation.
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