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a b s t r a c t

This paper investigates some basic geometric properties for the class KSL of functions f
analytic in the open unit disc ∆ = {z : |z| < 1} (which is related to a shell-like curve and
associated with Fibonacci numbers) satisfying the condition that

f (0) = 0, f ′(0) = 1 and
zf ′′(z)
f ′(z)

≺
τ z + 2τ 2z2

1 − τ z − τ 2z2
(z ∈ ∆),

where, the number τ = (1−
√
5)/2 is such that |τ | fulfils the golden section of the segment

[0, 1]. Some relevant remarks and useful connections of the main results are also pointed
out.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Assume that A is the class of all holomorphic functions f in the open unit disc∆with normalization f (0) = 0, f ′(0) = 1,
and let S (as is customary) be the subclass of A which consists of univalent functions. We say that f is subordinate to F in
∆, written as f ≺ F , if and only if f (z) = F(ω(z)) for some holomorphic function ω such that |ω(z)| ≤ |z|, z ∈ ∆. The class
SL of shell-like functions is the set of functions f ∈ A satisfying the condition that

zf ′(z)
f (z)

≺p(z) (z ∈ ∆), (1.1)

where

p(z) =
1 + τ 2z2

1 − τ z − τ 2z2
, τ =

1 −
√
5

2
≈ −0.618, (z ∈ ∆). (1.2)

It should be observed that SL is a subclass of the class of the starlike functions S∗. The class of shell-like functions SL was
defined in [1] and further examined in [2]. The function (1.2) has some nice properties. The name attributed to the class SL
is motivated by the shape of the curve

C =
p(eit), t ∈ [0, 2π) \ {π}


, (1.3)
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which is a shell-like curve and a simple transformation converts it into a curve called the conchoid of de Sluze (René François
Baron de Sluze 1622–1685). For details, see Section 2. Moreover, the coefficients of (1.2) are connected with the Fibonacci
numbers as explained in Lemma 1.1 and in the next section.

A geometric description of the conchoid of de Sluze is given here as follows:
A ray OB is drawn from the point O(0, 0) and it cuts the directrix x = a, where a > 0 at the point B(a, b). From the point

B(a, b), segments BM and BN are laid off in either direction along the ray such that

|OB| · |BM| = k2 and |OB| · |BN| = k2,

where k > 0 is given. As b changes, the ray revolves, and the point M describes a curve (called the conchoid of de Sluze)
given by

a(x − a)(x2 + y2)+ k2x2 = 0, (1.4)

while the point N describes a curve (called the conjugate of the conchoid of de Sluze) given by

a(x − a)(x2 + y2)− k2x2 = 0. (1.5)

Motivated by these ideas, we consider for the purpose of this paper a certain class KSL of functions analytic in the
open unit disc which connects (by means of the subordination) the class K of convex functions with the class SL of shell-
like functions. The various results studied depict some of the basic geometric properties for this function class KSL. Some
relevant cases and useful remarks are also mentioned.

Definition 1. The function f ∈ A belongs to the class KSL of convex shell-like functions if it satisfies the condition that

1 +
zf ′′(z)
f ′(z)

≺p(z) (z ∈ ∆), (1.6)

where the functionp is defined in (1.2).

It may be pointed out here that Ma and Minda in [3] defined C(ϕ), (or S∗(ϕ)) to be the class of all normalized functions
f (z) = z + a2z2 + · · · such that 1+ zf ′′(z)/f ′(z) ≺ ϕ(z), (or 1+ zf ′(z)/f (z) ≺ ϕ(z)), where ϕ is fixed function analytic and
univalent in the unit disc∆with Reϕ(z) > 0, ϕ(∆) is symmetric with a real axis and ϕ is starlike with respect to ϕ(0) = 1
and ϕ′(0) > 0. Several subclasses of convex and starlike functions were unified in this way. Because the functionp is not
univalent in∆, we cannot use the results from [3] to obtain some theorems on the class KSL. The radius of univalence and
several other properties of the functionpwere found in [4]. Let us recall some of them.

Lemma 1.1 ([4]). Let the functionp be given by (1.2), then it satisfies the following:

(1) p is univalent in the disc |z| < (3 −
√
5)/2 ≈ 0.38, any increase in the greater side makes the assertion false,

(2) p(z) = 1 +
∑

∞

n=1(un−1 + un+1)τ
nzn = 1 + τ z + 3τ 2z2 + 4τ 3z3 + 7τ 4z4 + 11τ 5z5 + · · ·, where {un} is the sequence of

Fibonacci numbers u0 = 0, u1 = 1, un+2 = un + un+1 (n = 0, 1, 2, 3, . . .),
(3) limϕ→π− Im[p(eiϕ)] = −∞, and limϕ→π+ Im[p(eiϕ)] = ∞,
(4) Rep(eiϕ) =

√
5

2(3−2 cosϕ) ≥

√
5

10 = γ for all ϕ ∈ [0, 2π).

In [4], the authors presented a class SLMα, α ∈ [0, 1], of functions that are analytic in the open unit disc such that

f (0) = 0, f ′(0) = 1 and α

[
1 +

zf ′′(z)
f ′(z)

]
+ (1 − α)

zf ′(z)
f (z)

∈p(∆) for all z ∈ ∆.

This class SLMα is related to the presently investigated class KSL only through the functionp and SLMα ≠ KSL for all
α. It easy to see that KSL ⊂ SLM1 but KSL ≠ SLM1 becausep is not univalent function. The present paper deals with
ideas and techniques used in geometric function theory. The central problem considered here is the coefficient estimates for
this class depicted by the Fibonacci numbers. Besides the coefficient problems, we also provide some interesting corollaries
concerning the connections of our defined class with other well known classes.

2. Preliminary lemmas

For some in-depth understanding of the class KSL it would be worthwhile here to find the shape of the curve C =

{p(eit), t ∈ [0, 2π) \ {π}}. We begin our study by noting that

p(0) =p−
1
2τ


= 1 and p(1) =p(τ 4) =

√
5
2
.

Moreover, because

p e±i arccos(1/4)
=

√
5
5

= 2γ ,
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Fig. 1. Curve C : (10x −
√
5)y2 = (

√
5 − 2x)(

√
5x − 1)2 .

so the curve C intersects itself on the real axis at the point 2γ . If we denote

Rep(eiϕ) = x and Imp(eiϕ) = y, ϕ ∈ [0, 2π) \ {π},

then after simple calculations, we get

x =

√
5

2(3 − 2 cosϕ)
, y =

sinϕ(4 cosϕ − 1)
2(3 − 2 cosϕ)(1 + cosϕ)

, ϕ ∈ [0, 2π) \ {π}. (2.1)

It is useful here to use (2.1) to find the corresponding Cartesian equation of the curve C. This curve is described by the
equation

(10x −
√
5)y2 = (

√
5 − 2x)(

√
5x − 1)2. (2.2)

It is worthy to point out that for k = 2a, the conchoid of de Sluze (1.4) becomes the trisectrix of Maclaurin (Colin Maclaurin
1698–1746):

x3 + 3ax2 + (x − a)y2 = 0, (2.3)

while the conjugate of the conchoid (1.5) becomes the conjugate of the trisectrix of Maclaurin given by

x3 − 5ax2 + (x − a)y2 = 0. (2.4)

If we rewrite (2.2) in the following form√
5
5

− x

3

+
3
√
5

10

√
5
5

− x

2

+

√
5
5

− x


−

√
5

10


y2 = 0,

then the image of the unit circle under the functionp is translated into a trisectrix ofMaclaurin (2.3) (with a = (1−2τ)/10 =
√
5/10). Therefore the curve C has a shell-like shape, see Fig. 1.
Let us refer the class K(α) ⊂ S, (0 ≤ α < 1), of convex functions of order α, introduced in [5] and defined by

K(α) =


f ∈ A : Re

[
1 +

zf ′′(z)
f ′(z)

]
> α for all z ∈ ∆


.

If f ∈ KSL, then by (1.6) we have

Re

[
1 +

zf ′′(z)
f ′(z)

]
> min {Rep(z), z ∈ ∂∆} >

√
5

10

by condition (4) of Lemma 1.1. Therefore, we obtain

KSL ⊂ K(γ ), (2.5)

where γ =
√
5/10 ≈ 0.2236, which means that if f ∈ KSL, then it is convex of order γ and hence univalent in the unit

disc∆.

Corollary 2.1. If f is in KSL, then f is univalent in∆.
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Let us recall the relevant connection of the function defined by (1.2) with the Fibonacci numbers

un =
(1 − τ)n − τ n

√
5

, τ =
1 −

√
5

2
, (n = 0, 1, 2, 3, . . .) (2.6)

contained in (2) of Lemma 1.1. Moreover if

p(z) = 1 +

∞−
n=1

pnzn,

then the coefficients pn satisfy

pn =


τ for n = 1,
3τ 2 for n = 2,
τpn−1 + τ 2pn−2, for n = 3, 4, 5, . . . ,

(2.7)

where τ =
1−

√
5

2 .
It is also worth noting here that since

1
|τ |

=
|τ |

1 − |τ |
,

so the number |τ | divides [0, 1] such that it fulfils the golden section of this segment.

Lemma 2.2 ([2]). If a function

f (z) = z +

∞−
n=2

anzn (z ∈ ∆) (2.8)

is in the class SL, then

|an| ≤ |τ |n−1un n = 2, 3, 4, . . . , (2.9)

where un are given in (2.6). This result is sharp and the equality in (2.9) is attained by the function

g(z) =
z

1 − τ z − τ 2z2
=

1

τ
√
5

[
1

1 + z
−

1
1 − τ 2z

]
= z +

∞−
n=2

unτ
n−1zn (z ∈ ∆). (2.10)

3. Main results

Corollary 3.1. If a function f of the form (2.8) belongs to the class KSL, then

|an| ≤
|τ |n−1un

n
n = 2, 3, 4, . . . , (3.1)

where un are given in (2.6). This result is sharp and the equality in (3.1) is attained by the function

f (z) =
1

1 + τ 2
log

1 + z
1 − τ 2z

(z ∈ ∆). (3.2)

Proof. A function f is in the class KSL if and only if there exists a function g ∈ SL such that

g(z) = zf ′(z) for all z ∈ ∆, (3.3)

or equivalently

f (z) =

∫ z

0

g(t)
t

dt for all z ∈ ∆. (3.4)

The relations (3.3) and (3.4) follow directly from (1.1) and (1.6). Therefore, if

zf ′(z) = z +

∞−
n=2

nanzn (z ∈ ∆) (3.5)
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belongs to the class SL, then by Lemma 2.2, we conclude that |nan| ≤ |τ |n−1un, which establishes (3.1). The function (3.2)
is such that zf ′(z) =g(z), where the functiong is given in (2.10), and hence by (3.3), it follows thatf ∈ KSL. Moreover,
by (2.10) we get

f (z) = z +

∞−
n=2

unτ
n−1

n
zn (z ∈ ∆). (3.6)

Thus the result (3.1) is sharp. �

Theorem 3.2. A function f belongs to the class KSL if and only if there exists an analytic function q, q ≺p, such that

f (z) =

∫ z

0

[
exp

∫ w

0

q(t)− 1
t

dt
]
dw. (3.7)

Proof. It is known that a function g ∈ SL can be expressed by

g(z) = z exp
∫ z

0

q(t)− 1
t

dt, (3.8)

where q ≺p. In view of (3.3), we infer that f ∈ KSL if and only if zf ′(z) = g(z) (with g ∈ SL), and integrating (3.8), we
obtain (3.7). �

Theorem 3.2 provides us a method of finding the members of the class KSL. Let us refer the class S∗(α)(0 ≤ α < 1) of
starlike functions of order α, introduced in [5] and defined by

S∗(α) =


f ∈ A :

zf ′(z)
f (z)

≺
1 + (1 − 2α)z

1 − z


and the class (see [6,7])

S∗(A, B) =


f ∈ A :

zf ′(z)
f (z)

≺
1 + Az
1 + Bz


,

where −1 < B < A ≤ 1.

Theorem 3.3. If a function f belongs to the class KSL, then there exists a function g ∈ S∗(0,−τ 2) and a function h ∈ S∗(1/2)
such that

z2f ′(z) = g(z)h(z) (z ∈ ∆). (3.9)

Proof. Let f ∈ KSL, then by Theorem 3.2, there exists a holomorphic function ω(z) with ω(0) = 0 and |ω(z)| < 1 for
z ∈ ∆ such that

z2f ′(z) = z2 exp
∫ z

0

p (ω(t))− 1
t

dt. (3.10)

Observe that

p (ω(t)) =
1

1 − τ 2ω(t)
+

1
1 + ω(t)

− 1, (3.11)

so we can rewrite (3.10) in the form

z2f ′(z) = z2 exp

∫ z

0

1
1−τ2ω(t)

− 1

t
dt +

∫ z

0

1
1+ω(t) − 1

t
dt



= z exp
∫ z

0

1
1−τ2ω(t)

− 1

t
dt · z exp

∫ z

0

1
1+ω(t) − 1

t
dt

= : g(z)h(z). (3.12)

Using the structural formulas for the class S∗(A, B) (see [7, p. 315]) and for the class S∗(α) (see [8, p. 172]), we can find that
the functions g and h defined by (3.12) satisfy g ∈ S∗(0,−τ 2) and h ∈ S∗(1/2), respectively. �
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Fig. 2. The curve D = {f (eiϕ), ϕ ∈ [0, 2π) \ {π}}.

If the functions g ∈ S∗(0,−τ 2) and h ∈ S∗(1/2) are generated by their structural formulas with the same function ω,
then we can reverse the above steps of the proof, and by (3.11) and (3.12), we can get the function f such that

z2f ′(z) = g(z)h(z) (z ∈ ∆)

is in the class KSL. For example, if ω(z) = xz, |x| ≤ 1, then (3.12) gives

z2f ′(z) =
z2

(1 + xz)(1 − τ 2xz)
(z ∈ ∆).

Upon integrating we obtain that the functions

f (z) =
1

1 + τ 2
log

1 + xz
1 − τ 2xz

(z ∈ ∆),

belong to the class KSL for all |x| ≤ 1. For x = 1 it becomes the functionf given by (3.2), which shows the sharpness of
the estimation (3.1) of coefficients in the class KSL, for its Taylor expansion see (3.2). This function is also extremal for the
other problems in this class. Let us see what it looks likef (∆). To find the image of∆ under the function

f (z) =
1

1 + τ 2
log

1 + z
1 − τ 2z

(z ∈ ∆),

we observe that the function

w(z) =
1 + z

1 − τ 2z
(z ∈ ∆)

maps the circle |z| = 1 onto the circle

|w − R| = R, where R =
√
5 − 1 ≈ 1.236.

If we denote Argw(eit) = ψ(t), t ∈ [0, 2π), then it is easy to observe thatψ(t) ∈ (−π/2, π/2) and |w(eit)| = 2R cosψ(t).
By setting Ref (eit) = x and Imf (eit) = y, t ∈ [0, 2π) \ {π}, then after some calculations, we get from (3.2) that

x =
5 +

√
5

10
log[2R cosψ], y =

5 +
√
5

10
ψ, ψ ∈


−
π

2
,
π

2


. (3.13)

Consequently, the function (3.2) maps the unit circle onto a curve D described by (3.13), see Fig. 2. The functionsp andf are
connected by the relation:

1 +
zf ′′(z)f ′(z)

=p(z) (z ∈ ∆).

Just as the Koebe function plays a central role in the class S the functionf plays a central role in the class KSL.
Theorem 3.2 provides us amethod of finding themembers of the classKSL for given function q, q ≺p. Muchmore hard

to verify is the question if given f belongs to the classKSL. Evenwhenwe consider a simple polynomial, e.g. g(z) = z+czn,
then (1.6) becomes

1 + n2czn−1

1 + nczn−1
≺p(z) (z ∈ ∆)

and it is difficult to find all c satisfying this subordination becausep is not univalent. The next theorem excludes some
polynomials of KSL and somewhat solves this problem.
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Theorem 3.4. If n ∈ {2, 3, 4, . . .} and

|c| >

√
5 − 1

n(
√
5n − 1)

, (3.14)

then the function g(z) = z + czn does not belong to the class KSL.

Proof. Let us denote

G(z) := 1 +
zg ′′(z)
g ′(z)

=
1 + n2czn−1

1 + nczn−1
(z ∈ ∆).

We prove that if (3.14) is satisfied, then G(z) ⊀p(z). It suffices to show that G(∆) ⊄p(∆). The setp(∆) is on the right of
the curve in Fig. 1. The set G(∆) is a disc with the diameter from x1 =

1−n2|c|
1−n|c| to x2 =

1+n2|c|
1+n|c| . If (3.14) is satisfied, then the

one of xi, where i = 1, 2, satisfies xi < 2γ =
√
5/5, and then G(∆) ⊄p(∆). This proves Theorem 3.4. �

Thus for n = 2: if g(z) = z + cz2 ∈ KSL, then |c| ≤ (
√
5 − 1)/(4

√
5 − 2) ≈ 0.18.

Theorem 3.5. If f ∈ KSL(|z| = r, 0 ≤ r < 1), then

(1 + r)2γ−1
− 1

2γ − 1
≤ |f (z)| ≤ |f (−r)| =

1
1 + τ 2

log
1 + τ 2r
1 − r

(3.15)

and

1
1 + (1 + τ 2)r + τ 2r2

≤ |f ′(z)| ≤f ′(−r) =
1

1 + τ r − τ 2r2
, (3.16)

where γ =
√
5/10 and τ = (1 −

√
5)/2. The upper bounds are sharp.

Proof. Let f ∈ KSL be of the form (2.8), and let us denote by bn the coefficients of the functionf given by (3.6). Then by
(3.1), we have |an| ≤ |bn| for each integer n ≥ 0. Notice that the even coefficients bn = unτ

n−1/n are negative, while the
odd coefficients are positive. If z = reiθ , then from the coefficient inequality |an| ≤ |bn|, we obtain

|f (z)| ≤ r +

∞−
n=2

|an|rn ≤ r +

∞−
n=2

|bn|rn = r +

∞−
n=2

bn(−1)n−1rn = −f (−r)

which yields the upper bound of (3.15). Analogously, we can obtain

|f ′(z)| =

1 +

∞−
n=2

nanzn−1

 ≤ 1 +

∞−
n=2

n|an| |z|n−1

≤ 1 +

∞−
n=2

n|bn| |z|n−1
= 1 +

∞−
n=2

n|bn|rn−1

= 1 − 2b2r + 3b3r2 − 4b4r3 + · · · =f ′(−r),

and we get the upper bound of the inequality (3.16). It is easy to see that the upper bounds are sharp, being attained by the
functionf ∈ KSL at the point z = −r . To find the left-hand side of the inequality (3.15), let us recall (see [7, pp. 315–317]),
that if g ∈ S∗(0,−τ 2), then for |z| = r (0 ≤ r < 1), we have

r
1 + τ 2r

≤ |g(z)|. (3.17)

Moreover, if h ∈ S∗(1/2), then for |z| = r (0 ≤ r < 1), we get

r
1 + r

≤ |h(z)|. (3.18)

By Theorem 3.3, we have |z2f ′(z)| = |g(z)| |h(z)| with g ∈ S∗(0,−τ 2) and h ∈ S∗(1/2), and multiplying the respective
sides of (3.17) with those of (3.18), we thus obtain the left-hand side of (3.16). To prove the left-hand side of the inequality
(3.15), we note that by (2.5) if f ∈ KSL, then f ∈ K(γ ) is convex of order γ . The desired inequality will now follow from
the well-known inequality for |f (z)| with f ∈ K(γ ) (see, for example [8, p. 139]). �
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Theorem 3.6. If a function f of the form (2.8) belongs to KSL, then

n|an| ≤ 3b3 = 3 −
√
5 ≈ 0.764, n = 2, 3, 4, . . . , (3.19)

where bn = unτ
n−1/n are the coefficients of f ∈ KSL given by (3.6). Moreover, if the coefficient sequence {an} of the function

f converges, then

lim
n→∞

n|an| ≤
5 +

√
5

10
≈ 0.72, (3.20)

with equality holding for the coefficients bn of the functionf .
Proof. Iff (z) = z + b2z2 + b3z3 + · · ·, then by (3.6) we have

nbn = τ n−1un =


1 −

√
5

2

n−1
1

√
5


1 +

√
5

2

n

−


1 −

√
5

2

n
,

which implies that

nbn = (n − 1)bn−1τ + (n − 2)bn−2τ
2

and

2|b2| ≤ n|bn| ≤ 3b3 for n ≥ 2,

where

b2 = ((1 −
√
5 − 1)/4) ≈ −0.31, b3 = (3 −

√
5)/3 ≈ 0.26.

Using (3.1), we have |an| ≤ |bn|, which readily yields the inequality (3.19). The coefficient inequality |an| ≤ |bn| and the
limiting case that

lim
n→∞

n|bn| =

√
5 + 5
10

leads at once to the other inequality (3.20). �

By putting z = reiϕ, ϕ ∈ [0, 2π) \ {π}, and performing simple calculations, we get

p reiϕ =
1 + τ 2r2e2iϕ

1 − τ reiϕ − τ 2r2e2iϕ

=
(1 + τ 2r2)(1 − τ 2r2 − τ r cosϕ)

|1 − τ reiϕ − τ 2r2e2iϕ |2
+

iτ r(1 − τ 2r2 + 4τ r cosϕ) sinϕ
|1 − τ reiϕ − τ 2r2e2iϕ |2

.

Hence Im[p reiϕ]
Re[p reiϕ]

 =

 τ r(1 − τ 2r2 + 4τ r cosϕ) sinϕ
(1 + τ 2r2)(1 − τ 2r2 − τ r cosϕ)


≤

−τ r(1 − τ 2r2 − 4τ r)
(1 − τ 2r2 + τ r)(1 + τ 2r2)

:= φ(r), (3.21)

whenever r < r0 =
3−

√
5

2 . By Lemma 1.1 for such r the curvep(reit), t ∈ [0, 2π) \ {π}, has no loops andp is univalent in
∆r0 = {z : |z| < r0}. Therefore[

zf ′(z)
f (z)

≺p(z), z ∈ ∆r0

]
⇔

[
zf ′(z)
f (z)

∈p ∆r0


for all z ∈ ∆r0

]
,

where the subordination F ≺ G in a disc |z| < r denote that F(z) = G(ω(z)) for some holomorphic function ω,ω(0) = 0
and |ω(z)| < 1 for all |z| < r . A simple geometric observation of (3.21) gives the following theorem.

Theorem 7. If f ∈ KSL, thenArg [1 +
zf ′′(z)
f ′(z)

] < arctanφ(r)


|z| < r < r0 =

3 −
√
5

2


, (3.22)

where φ(r) is given by (3.21).

This theorem says that if f ∈ KSL, then f is strongly convex of order 2
π
arctanφ(r) (see [9]) in the disc |z| < r , whenever

r < r0.
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