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Reduced-impact logging (RIL) is a promising management strategy for biodiversity conservation and
carbon sequestration, but incentive mechanisms are hindered by inadequate monitoring methods. We
mapped 937 ha of logging infrastructure in a selectively harvested tropical forest to inform a scalable
approach to measuring the impacts of discrete management practices (hauling, skidding, and felling).
We used a lidar-derived disturbance model to map all skid trails and haul roads within 26 months of
the selective harvest of six blocks of dipterocarp forest in five industrial concessions in East

Ié?(;";gggsgm ¢t logein Kalimantan, Indonesia. Lidar maps of logging impacts (220 ha) agreed well with ground-based maps
Lidar p s8ing (total of 217 ha, RMS error of 6 ha or 3%), but skid trail positions agreed only 59% of the time. Due to rapid

forest regeneration, total lidar-derived haul road area was 31% smaller than road area measured in the
field; agreement was higher for lidar collections within a year of the harvest. Maps of carbon density
generated from Fourier transforms of lidar height profiles estimated skidding and felling biomass losses
to within 1-5% of ground-based measurements. Lidar-derived skidding and hauling impact zones covered
only 69% of the permitted harvest area; the remaining areas showed no signs of logging disturbance, and
available biophysical data did not explain their location. These results emphasize the need for more
extensive mapping of logging infrastructure to capture spatial variability in skid trail density and hitherto
undetected no-impact zones. While a ground-based GPS is recommended as the most affordable method
for wide-scale infrastructure mapping, aerial lidar is an effective tool for remotely quantifying the extent

of logging impacts in tropical forests.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Areas zoned for selective logging comprise 20% of earth’s exist-
ing tropical forests (Blaser et al., 2011). Reduced-impact logging
(RIL) practices, such as improved skid trail planning, directional
felling, and reduced haul road width, can provide substantial
contributions to biodiversity conservation (Burivalova et al,
2014, 2015; Duah-Gyamfi et al., 2014; Bicknell et al., 2015), finan-
cial competitiveness (Holmes, 2015), and climate change mitiga-
tion (Putz et al., 2008; West et al., 2014).

Despite the demonstrated benefits of RIL, opportunities to link
ecosystem service incentives with RIL have been limited by the
absence of robust verification systems (Putz et al.,, 2012). Unlike
clear-cut harvests and deforestation, selective logging impacts
are notoriously difficult to detect and quantify with available
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satellite imagery (Read, 2003; Frolking et al., 2009; Weishampel
et al.,, 2012; Réjou-Méchain et al., 2015). To date, performance
measurement systems for selective logging have relied on
sample-based measurements of infrastructure (roads, log landings,
and skid trails) collected from a combination of optical image
interpretation, Global Positioning System (GPS) maps, and field
inventory data (Griscom et al., 2014; Pearson et al., 2014). Because
these approaches are sample-based (not wall-to-wall), they fail to
capture the true spatial distribution of logging infrastructure. And
because they rely on two-dimensional overhead imagery, they
miss the sub-canopy impacts of selective logging.

The active sensor, three-dimensional assets of airborne lidar
(light detection and ranging) provide a solution to this problem.
Extensive research has focused on the use of lidar to estimate
above-ground biomass or carbon density (Zolkos et al., 2013), but
no cost-effective lidar monitoring system currently exists for
detecting and measuring selective logging impacts at the logging
block scale. In a first step toward such a system, D'Oliveira et al.
(2012) and Andersen et al. (2014) devised a novel approach (the
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Relative Density Model, or RDM) to map haul roads, skid trails, and
felling gaps using a dense lidar point cloud.

Here we provide a field-validated test of lidar-derived RDMs to
map vegetation damage based on logging infrastructure and apply
lidar-based mapping methodologies to quantify the impact of
selective logging on the structure and aboveground carbon density
of a dipterocarp forest in Borneo. Our results inform logging infras-
tructure impact parameters for the first applicable methodology to
verify carbon emissions reductions from RIL (VCS, 2015), which
could contribute 0.16 Gt Cyr~! of climate mitigation (Putz et al.,
2008). Our objectives were to: (1) test the applicability of the
RDM approach using commercial-grade, small-footprint lidar at
medium pulse density (<5 pulsesm™'); (2) use large, RDM-
mapped skid trail networks to expand the sample size of the latest
field-based RIL carbon performance measurement methodology
(Griscom et al., 2014) and more accurately map the extent of no-
harvest zones; and, (3) estimate differences in forest structure
and aboveground carbon density within impact and no-impact
zones mapped by the RDM.

Table 1

2. Materials and methods
2.1. Study site

For five logging concessions in East Kalimantan, Indonesia (B, C,
D, G, and H in Griscom et al., 2014), we obtained geospatial coordi-
nate locations of six cutting blocks (314-1750 ha) and 54 nested
sub-blocks (42-209 ha, Table 1, Fig. 1) harvested in 2010 and
2011. All concessions were characterized by commercial timber-
producing species of Dipterocarpaceae growing on latosol soils at
elevations of 201-630 m with average slopes of 41% rise (see
methods below). Mean annual rainfall was 225-425 cm yr~'. The
most frequently encountered trees >60cm diameter at breast
height (DBH; stem diameter at 1.4 m or above buttresses) were
commercially valuable species of Shorea and Dipterocarpus (see
Table 1 for timber volume extraction rates). Commercial logging
in our study area occurs on 35 year rotations (Sist et al., 2003)
and involves the construction of haul roads along ridge lines using
Caterpillar D7 bulldozers to skid logs >60 cm DBH (on slopes up to

Cutting block spatial statistics for reported sub-blocks. Parenthetical values are the number of sub-blocks in the reported harvest area. Ranges are 95% confidence intervals,
calculated from sub-block units (not available for hauling due to low sample size). Skid trail density is calculated as length per skidding/felling zone.

Logging Year  Sample Reported harvest  Skid trail density Hauling Skidding/felling No-impact Average slope  Harvest intensity
concession  cut area (ha) area (ha) (mha™") extent (%) extent (%) extent (%) (% rise) (m3ha™1)
B (5) 2010 417 374 164+ 18 2.0 788 208 57+3 28
B (13) 2011 1308 1061 156 £ 11 24 63+10 3510 49+3 30
C(4) 2011 418 320 189 +38 3.1 5516 42 +18 38+13 31
D (4) 2010 378 314 137 £37 1.0 33+9 66+9 53+4 32
G (20) 2011 1841 1750 249+12 3.6 777 208 28+6 43
H (8) 2011 1259 846 158 +24 3.7 5415 43 +16 43 +12 58
Mean 937 +495 777 £455 175+32 2.6+0.8 60+13 37+14 41+£9 7+9
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Fig. 1. Location of cutting blocks sampled in this study.
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Fig. 2. Illustration of the RDM calculation method adapted from D’Oliveira et al.
(2012) with permission of the author. The high RDM value illustrated here indicates
a site with a relatively intact understory and therefore low likelihood of skidding
impact. RDM values near zero indicate understory damage. An RDM with no data
occurs when there are no returns below the lower RDM limit, indicating a very
dense over-story that occludes pulse returns from ground level.

80%) to log yards that are adjacent to haul roads. Concessions were
selected from the nine concessions sampled in Griscom et al.
(2014) based on proximity to the closest airport, and represent
the same set of landscape conditions defined there.

2.2. Lidar data

A commercial lidar company based in Jakarta, Indonesia (PT
Credent Teknologi) was commissioned to acquire 5620 ha of
medium-density, discrete-return lidar data across the study site
in April 2013, within 26 months of closure of logging operations.
Data could not be collected from the southern portion of
concession C (1130 ha) due to cloud cover. We ranked cutting
blocks on the basis of the “time lag” between harvest and lidar data
collection.

Credent collected lidar data at an average pulse density of
45m~2 (above the threshold recommended by Leitold et al.,
2015), with 40% swath overlap, scanner angle <20°, and standard
flying height of 650 m above ground level. Credent delivered LAS
point-cloud files with ground points classified, digital terrain mod-
els (DTM) of ground surface (1 m resolution), digital surface mod-
els (1 m resolution), percent canopy cover (15m resolution),
canopy height models (1 m resolution), and contemporaneous
color orthophotos (~0.78 m resolution). Slope values (% rise) were
calculated from 17 m resolution rasters derived from 1-m DTMs
using ArcGIS spatial analyst.

2.3. Lidar disturbance model

To detect skidding and hauling disturbances, we generated 1-m
resolution RDMs for the entire lidar sample area, using methods
adapted from D’Oliveira et al., 2012. RDM rasters were created
from LAS point-clouds using ArcGIS 10.2 model builder and the
lasheight, las2las (filter), and lasgrid tools from the LAStools tool-
box (http://lastools.org). The RDM model reveals spatial corridors
in understory vegetation created by skidding operations. RDM val-

ues are calculated by dividing the number of lidar point returns in
the RDM height stratum by the total number of returns below the
upper RDM limit (Figs. 2 and 6, D’Oliveira et al., 2012). This analyt-
ical method was applicable to the logging landscape in Berau
because bulldozers with ~3.7 m wide blades are used to skid logs
from stump to log yards at the margins of haul roads, thereby cre-
ating sub-canopy corridors of aboveground biomass disturbance.
We used a default RDM lower limit of 1 m and an upper limit of
10 m, identified after testing alternative limit values and assessing
the clarity of RDM skidding corridors with our field GPS map of
skid trail locations. RDM results were also used to provide a more
accurate delineation of disturbance from haul road construction by
fully capturing the damage to understory vegetation normally
obscured by overhanging tree canopies.

2.4. Skid trail and road delineation

Using the default RDM and a DTM for reference, the lead author
on-screen digitized the centerlines of all skid trails and haul roads
for the six cutting blocks (5620-ha total sample area) at a scale of
1:3500. Haul roads and skid trails were identified by the absence of
RDM corridor vegetation (RDM value approaching 0, i.e. almost no
lidar returns in the 1-10 m corridor), and visible disturbance of
earth in the DTM resulting from bulldozer excavation and
subsequent traffic. Haul roads were distinguished from skid trails
by the presence of an RDM corridor >15 m wide (Griscom et al.,
2014), more pronounced ground disturbance in the DTM,
occasional wide areas in the RDM corridors representing log yards,
and location on ridgelines. Coincident field GPS data was not
consulted during the delineation process.

Although there are many automated linear feature extraction
software tools available, (e.g. Clode et al., 2007; White et al.,
2010; Azizi et al., 2014), manual digitization was preferable for this
study because: (1) human interpreters are particularly adept at
synthesizing a wide range of spatial cues to group features into
meaningful line patterns (Quackenbush, 2004); (2) the human
interpreter in this study (lead author) was familiar with local land-
scape conditions and logging practices from extensive field work in
the same concessions; and (3) false RDM signals from streams can
be more easily ruled out by referring to the DTM.

2.5. Impact zone delineation

We define impact zones as geographic areas of logging distur-
bance to vegetation; road centerlines define the center of hauling
impact zones and skid trail centerlines define the center of skid-
ding/felling impact zones. Because vegetation is completely
destroyed during road construction, the hauling impact zone is
spatially coincident with the hauling corridor. Due to the diffuse
nature of selective logging, the skidding/felling impact zone is
more expansive, allowing for felling damage that occurs outside
the skidding corridor. We pooled skidding and felling disturbance
into a combined impact zone because these disturbances often
occupy the same geographic space (e.g. harvest trees are felled
onto skid trails). We mapped the extent of all impact zones within
logged sub-blocks reported to the Indonesian Ministry of Forestry
(reported harvest area).

To delineate hauling impact zones (Fig. 7), we selected all zero-
value contiguous RDM pixels that intersected digitized road cen-
terlines. We then grouped the selected pixels to generate vector
polygons and re-grouped the individual polygons into a single con-
tinuous road polygon for each block by filling high RDM-value
anomalous gaps (e.g. created by post-harvest regrowth). To elimi-
nate skidding and felling zones from the final hauling impact zone
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polygon, we manually pruned segments that intersected digitized
skid trails.

To map the skidding/felling zone (Fig. 7), we used the “area
accessed” from Griscom et al. (2014) (48 m) to generate a plani-
metric buffer of digitized skid trails. This buffer distance was deter-
mined by adding the maximum measured distance from skid trails
centerlines to stumps (N =124, after removing outliers) to the
maximum dipterocarp forest crown radius measured by Ashton
et al. (1992). We removed overlapping portions of skidding/felling
zones where they intersected hauling impact zones. We catego-
rized the total area within the reported harvest area but outside
of the skidding and hauling impact zones as no-impact zones in full
recognition that edge effects (e.g., indirect impacts on understory
humidity) may extend unknown distances into the adjacent forest.

We generated spatial statistics from skid trail/haul road fea-
tures and lidar-derived rasters in each of the three zones (Table 1).
All haul road, skid trail, and impact zone statistics were calculated
based on a horizontal plane. Skid trail density was calculated as the
length of skid trail per area skidding/felling zone (m ha~!, Fig. 3,
VCS, 2015). To calculate intra-cutting block variability in skid trail
density, no-impact zone area, slope, canopy cover, and canopy
height, we intersected impact zones with sub-block boundaries
in the reported harvest area, using sub-blocks as the unit of repli-
cation. Hauling extent was calculated as hauling impact zone area
divided by cutting block area and expressed as a percentage.
Because haul roads occupy much smaller portions of harvested
sub-blocks, and often straddle sub-block boundaries (Fig. 3), we
did not evaluate hauling extent at the sub-block scale.

2.6. Carbon density mapping

To estimate field-based forest biomass of unlogged areas, we
collected tree measurements in randomly selected pre-harvest cut-
ting blocks adjacent to sampled logged blocks. At 100 m intervals
on two parallel transects separated by 100 m we measured the
DBH (stem diameter at 1.4m) of all ‘in’ trees using a
9.18m?ha' BAF prism (40 ft?>acre !), and then tallied the
number of ‘in’ trees using a 4.59 m? ha~' BAF prism (20 ft? acre™ ),

following the dual prism sampling method described by Marshall
et al. (2004). A total of 27 prism plots were sampled across
concessions C, D, and H, and standard errors of prism-based bio-
mass estimates were calculated using Marshall et al. (2004) Eq.
(2). We also measured the height of the largest DBH tree per plot
with a clinometer. More information on biomass plot field methods
can be found in Griscom et al. (2014).

To map carbon density, the discrete-return lidar data was tiled
at a resolution of 20 m x 20 m to be consistent in scale with the
average size of the variable radius prism plots (i.e., 10 m radius).
A waveform was synthesized for each tile as well as for a 10-m
radius vertical column centered on each of the 27 prism plots.
Waveform synthesis was accomplished by binning the lidar point
returns into vertical bins 50 cm wide and counting the number
of returns from each bin (Fig. 4). This procedure included removing
the influence of ground slope on each lidar point-cloud return by
subtracting from its elevation (i.e., z value) the bald-earth elevation
estimate derived from the 1-m resolution DTM. A series of filters
were also applied to flag and remove tiles with anomalous wave-
form characteristics (1-4% of the tiles, depending on the conces-
sion), including tiles with (1) no ground returns, (2) a point
density <1 point/m?, (3) more than 1% of normalized heights
>82 m (i.e., 20% greater than the maximum field-observed height),
and (4) more than 1% of normalized heights <—3 m.

Following Treuhaft et al. (2010, 2013) and Gongalves (2014),
we took Fourier transforms of the synthetic lidar waveforms
to serve as explanatory variables in carbon density models,
exploring the vertical scales at which the canopy is organized
explicitly as it relates to aboveground biomass. The normalized
Fourier transform y(f) at spatial frequency f was calculated as
(Bracewell, 1986):

Jo w(z)e 2mzdz

() =T wod (M

where w(z) is the number of lidar point returns included in the
50-cm bin centered at height z. The peak of the ground return in
the synthetic waveform was assumed to be at z=0, and w(z) was
set to zero at altitudes higher than the tallest tree. The waveforms
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Fig. 3. 1:12:000 map of two entire and portions of 4 adjacent sub-blocks from concession G presenting differences in skidding density, expressed as skid trail length (thin red
line) per skidding/felling zone (blue area). Haul road length (thick red line) per hauling impact zone (orange area) is also shown. The skidding densities in the upper left and

right sub-blocks shown (green boundaries) are 273 and 224 m ha™!

calculation.

respectively. No impact zones are shown in white, and were not included in the skidding density
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Fig. 4. Example of a synthesized lidar waveform generated from raw point-cloud
data associated with a cylindrical vertical footprint of 10-m radius centered on a
single field plot. Each point represents the number of returns (x axis) in each 50-cm
height interval (y axis). The gray line provides a loess-smoothed functional
representation of the data (for illustration purposes), which suggests a multistoried
canopy structure with a limited understory (~5 m) and mid-story (~25 m) beneath
a more pronounced multi-layer over-story (~50-70 m). The tallest tree measured
from the ground in this plot was 64 m and 305 MgCha~! was the field-based
estimate of aboveground carbon density.

were decomposed into frequencies ranging from 0.3 to 0.01 cyc/m
(vertical wavelengths of 3.3-100 m), with a step of 0.01 cyc/m,
resulting in a total of 30 complex valued metrics, each described
by an amplitude and phase. Regression analysis was used to model
the relationship between field-estimated aboveground carbon den-
sity (MgC ha™') and Fourier transforms extracted from the synthe-
sized waveforms. We conducted a data-driven test of potential
regression models by fitting all possible explanatory variable
subsets with up to 6 metrics per subset and selecting the one that
minimized the Bayesian Information Criterion (BIC). A multivariate
linear regression including Fourier transforms at vertical
wavelengths between 3.3 and 50 m—namely amplitudes at 0.02,
0.03 and 0.13 cyc/m, and phases at 0.11, 0.24 and 0.30 cyc/m—
was selected after determining that the relationship between
biomass and the structural metrics could be linearized by applying
a logarithmic transformation to the response (i.e., aboveground
biomass), as suggested by graphical analysis and the Box-Cox
procedure (Box and Cox, 1964). This model explained 83% of the
variation in aboveground biomass, with a RMS error of
31.4MgCha™! (16.8% of the field estimated mean, Fig. 5a). A
repeated random sub-sampling validation test based on 1000
iterations resulted in an average cross-validation RMS error of only
42.1 MgCha~! (22.5%), indicating a high predictive ability of the
model (Fig. 5b). We note that all statistics were calculated after
converting the predictions back to the original scale of measure-
ment, accounting for back-transformation bias. Regression model
assumptions (linearity, constant variance, normality, and
independence) were evaluated using formal tests and graphical
tools, and no significant deviations were identified. The selected
model was used to map carbon density across the study site at a
spatial resolution of 20 m.
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Fig. 5. (a) Relationship between observed (field estimated) and predicted (mod-
eled) aboveground biomass based on data from 28 variable-radius prism plots plus
one dummy plot (Z), identified post hoc in the middle of a haul road with zero
aboveground carbon density. Error bars represent 95% prediction intervals.
(b) Distribution of the RMS error calculated using a Monte Carlo cross-validation
approach (1000 iterations). The average cross-validation RMS error was
42.1 MgC ha™! (22.5%) and the standard deviation was 19.3 MgC ha~! (10.3%).

2.7. Comparison of lidar-based and GPS infrastructure maps

To evaluate the agreement of impact zones, we calculated
regression statistics comparing lidar-based results to impact zones
derived from GPS tracks mapped in the field using Garmin 60 CSX
GPS receivers as described in Griscom et al. (2014).

To evaluate the positional agreement of skid trails and haul
roads, we followed Goodchild and Hunter (1997) to calculate the
percentage of lidar-digitized infrastructure lines (Section 2.4) that
fall within a specified horizontal distance of the GPS line. We used
a GPS line buffer (“specified horizontal distance”) of 10 m to
account for the positional accuracy of the GPS receiver (Garmin
Ltd., 2006).

To evaluate the agreement of the skidding/felling zones, we
used the ArcGIS union tool to delineate an area of commission,
where a lidar impact zone is unconfirmed by GPS reference data,
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and omission, where a lidar impact zone misses impacts observed
in GPS reference data. We calculated percent agreement from a
confusion matrix (Congalton, 1991). Note that we do not assume
lidar or GPS data have inherently higher accuracy, but consider
the amount of agreement or disagreement between them as an
indicator of the accuracy of both approaches.

To evaluate the agreement of the hauling impact zone maps for
each cutting block, we calculated the difference between hauling
impact zone area and coincident haul road area from field mea-
surements collected by Griscom et al. (2014). Note that haul road
widths included log landings, which we include as part of the road
corridor.

All statistical analyses were performed in the R statistical pack-
age (R Development Core Team, 2014). We tested for normality
and equal variance of the residuals when necessary. Paired com-
parisons of means were conducted using the Bonferroni-Holm test.
All reported ranges reflect 95% confidence intervals unless other-
wise noted.

3. Results
3.1. Spatial distribution of logging impacts

The lidar RDM-mapped vegetation corridors 1-10 m above
ground, thereby revealing the spatial distribution of all logging
impacts, including skidding and felling damage typically occluded
from optical sensors by over-hanging vegetation (Figs. 6 and S1).
Using RDM as a reference, on-screen digitization resulted in the
delineation of 71.4 km of roads and 657.2 km of skid trails in the
5620 ha sample area. Hauling and skidding/felling zones occupied,
on average 3% and 60% of the harvest area in the sampled sub-
blocks respectively, leaving 37% of the harvest area not directly
affected by logging (no-impact zone, Table 1, Fig. 7).

For all sub-blocks, we detected no slope difference between
skidding/felling zones and no-impact zones. When stratified by
concession, cutting blocks B-2011 and D had steeper slopes in
no-impact zones than skidding/felling zones, whereas cutting
block G showed the opposite pattern (Table 2).

3.2. Comparison of lidar-based and GPS infrastructure maps

Ninety-eight percent of the variance in GPS-defined impact
zone area is explained by the lidar RDM, with a RMS error of
5.8 ha (total GPS impact zones in sample = 217 ha; lidar impact
zones in same sample = 220 ha; Fig. 8)

Positional agreement was lower than impact zone agreement,
with 59% of the RDM skid trail length within 10 m of field reference
GPS lines. Overall positional agreement of skidding/felling zones
was 70%; the RDM skidding/felling zone was 14% larger than the

Table 2

Means of sub-block scale slope values calculated from lidar DTM at 17-m resolution,
showing t-test results by cutting block. Cutting blocks with significantly different
slope values between skidding/felling and no-impact zones are shown in bold.

Cutting Skidding/felling No-impact zone df T p
block zone slope (%) slope (%)

B-2010 55.0 59.6 4 -0.74 0.482
B-2011 384 50.2 12 -5.88 <0.001
C 38.9 33.0 3 0.69 0.539
D 389 533 3 -423 0.024
G 323 23.1 19 453 <0.001
H 41.2 434 7 -0.74 0.482
All cutting  38.2 39.0 53 -046 0.649

blocks

reference GPS skidding/felling zone due to RDM commission
almost twice omission (Fig. 9, Table 3).

The lidar hauling impact zone was on average 31% smaller than
the field-based measure of hauling road area. The difference
between RDM haul road area and field-based haul road area
increased as time lag increased (R? = 0.86, Table 3). When cutting
blocks harvested >2 years prior to the April 2013 collection date
are removed from the consideration, all positional measures of
agreement improve.

3.3. Skid trail density and haul road extent

Using sub-blocks as the unit of replication, a paired comparison
of means indicated that only cutting block G’s skid trail density dif-
fered from other cutting blocks (p < 0.004, Table 1); its values were
highest for both lidar and GPS-based estimates. When cutting
block G was excluded, skid trail density remained within 17% of
a mean value of 161 mha~'. Mean lidar skid trail density was
higher than the mean from GPS subsamples (175 and 141 m ha™!
respectively, p = 0.047).

Again using sub-blocks as unit of replication, we detected a
weak negative relationship between terrain slope and RDM skid
trail density (R? = 0.097, p = 0.02), but this relationship was not evi-
dent at the cutting block scale and disappeared entirely if conces-
sion G was removed from the analysis (R* =0.014, p = 0.50). Skid
trail density measured by lidar was not related to harvest intensity
(p=0.74) or committed carbon emissions as measured by Griscom
et al. (2014, R*=0.312, p=0.25).

Hauling extent varied considerably among cutting blocks
(Table 1), but where the time lag was <2 years, mean hauling
extent increased and variability decreased (from 2.6+ 0.8% to
3.5% £ 0.3%). We detected a weak negative relationship between
hauling extent and slope (R? = 0.55, p = 0.09), and no relationship
between haul road length and percent skidding/felling zone or skid
trail density (p =0.51 and 0.70 respectively).

3.4. Forest structure and carbon density

Compared to un-harvested areas in the no-impact zones, lidar-
based estimates of canopy height and percent canopy cover in the
skidding/felling zones were lower by 4.6 m (15.1%) and 5.3% (5.4%)
respectively (p=0.001 and 0.002). Lidar-based average above-
ground live dry carbon density in the no-impact zone was
203 +7 MgCha™! - within the 95% confidence interval of pre-
harvest field plots (187 +28 MgC ha~'). Mean carbon density in
the skidding/felling zone of the lidar-based map was
178 £ 20 MgC ha™!, which is 13 + 8% lower. When blocks D and
B-2010 are removed to eliminate time lags >2 years, the lidar car-
bon density difference is 18 + 8%. We found no difference in carbon
density between no-impact zones and unreported zones (Figs. 10
and 11).

4. Discussion
4.1. Spatial distribution of logging impacts

In the reported harvest area of the six cutting blocks we studied
in East Kalimantan, 3202 ha of the 4665 ha (69%) were directly
affected by timber harvesting. Previous studies have insufficiently
sampled logging impacts to accurately extrapolate area based
emissions factors (Pearson et al., 2014, based on data from six sites
across Indonesia, Republic of Congo, and Latin America; and
Griscom et al., 2014, in the same study region). In order to use
reported harvest areas to extrapolate logging emissions estimates
to entire regions using field measurements collected in impact
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Fig. 6. 1:10,000 1-m resolution map of RDM from concession B’s 2011 cutting block based on lidar data collected 19 months after harvest. RDM values (0-100) are shown in
grayscale black to white, with green for no data (no aboveground pulse returns below 10 m). Purple lines delineate sub-block boundaries and the gray line bounds the lidar
acquisition. Thick red lines are digitized haul roads, and thin red lines are digitized skid trails. Note the dark sinuous pattern of a natural stream course (blue arrow),
vegetation disturbance from post-skidding induced hillside erosion (orange arrow), and patches of white at the edges of skid trails and roads indicating post-harvest

regeneration following skidding, felling, and hauling impacts (RDM = 100, green arrow).

zones (as recommended by these studies and the RIL-C VCS
methodology, VCS, 2015), area-based emissions factors need to
be adjusted accordingly. Based on a limited field sample of “area
accessed” within the same harvest blocks we report on here,
Griscom et al. (2014) assumed that impact zones in East Kaliman-
tan occupy 99% of the harvested sub-block and applied an adjust-
ment factor of 1.01. Based on the more extensive mapping of
infrastructure in this study, we recommend revising this adjust-
ment factor to 1.45 (1-0.69), resulting in a 31% reduction in the
area-based estimate of carbon emissions from selective logging
in the region.

We did not detect any relationship between the observed distri-
bution of logging impacts and slope, stream configuration, topo-
graphic position, or carbon stocks. Even though slopes were
steeper in logged portions of cutting blocks B-2011 and D, the
opposite was observed in G (Table 2). This confounds the intuitive
assumption that logging crews avoid steep areas because of oper-
ational challenges, and confirms the finding of Griscom et al.
(2014), who find no relationship between slope and skidding, fell-
ing, or hauling emissions. Map interpretation of stream corridors
derived from lidar DTMs and flow accumulation models revealed
no apparent spatial correlation between no-impact zones and
streams or topography. If we accept carbon density as a proxy

for standing timber volume, the insignificant difference in carbon
density between no impact zones and unreported zones suggests
that logging impact distribution cannot be explained by manager
selection for areas with higher volumes of commercial timber.
More research is needed to understand why concession operators
choose to access certain areas and leave others un-logged.

We believe a large opportunity exists to reduce the environ-
mental impacts of logging through informed location of no-
impact zones. For example, pre-harvest planning could position
impact zones away from sensitive riparian and steep slope areas
(Figueiredo, 2007). Also, the spatial distribution of no-impact zones
could be optimized to maximize landscape connectivity while min-
imizing edge effects (Putz and Ruslandi, 2015).

4.2. Comparison of lidar-based and GPS infrastructure maps

The impact zone areas mapped from the RDM lidar model
agreed well with GPS impact zones (total predicted impact zone
was only 1% larger than the GPS impact zone), but digitized lines
did not reliably fall within the 10 m GPS buffer. (Figs. 8 and 9,
Table 3). We believe time lag (time interval between harvest and
lidar data acquisition) is the major contributor to this lack of agree-
ment; the strong negative correlation between hauling impact
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Fig. 7. 1:10,000 map of lidar-delineated skidding/felling impact zones (blue), and hauling impact zones (orange) in the concession B 2011 cutting block, with DEM hillshade
in background for topographic reference. Note haul roads and major skid trails concentrated on ridgelines, extensive no-impact zones in the central sub-block, and

un-harvested sub-block to the north.
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Fig. 8. Relationship between GPS field sample and predicted lidar-based impact
zone areas for the 6 sampled cutting blocks (labeled by letter). Dashes delineate the
one-to-one line.

zone accuracy and time lag indicates that regrowth can rapidly
obscure lidar-derived disturbance signals in the RDM. This
problem is pronounced in dipterocarp forests where regrowth is
particularly rapid (Berry et al., 2010; Banin et al., 2014). The utility
of commercial-grade lidar as a tool for delineating logging infras-
tructure in tropical forests is therefore time-limited. Based on the
above results, we recommend collecting lidar data <2 years after
harvest completion. It may be feasible to extend the RDM signal
by adjusting the RDM height corridor as a function of time since
harvest (we used a fixed corridor of 1 to 10 m aboveground), but
this would require careful tracking of time since harvest and veg-
etation regrowth rates in each sub-block. Adjusting corridor
heights will also complicate the comparability of data among
sub-blocks, so should be done only after additional analyses to cal-
ibrate RDM corridor values with field-based metrics and as a func-
tion of time lag.

4.3. Skid trail density and haul road extent

Despite apparently large differences in operating conditions
(e.g. slopes), skid trail density did not exhibit a clear pattern or
relationship to available explanatory variables. The inclusion of
concession G suggests a false pattern between slope and skid trail
density, because concession G happens to contain the gentlest
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Fig. 9. 1:7000 map of GPS sample area from concession G showing GPS skid trails (dotted blue lines), corresponding lidar skid trails (solid black lines), and lidar skid trails
from adjacent areas un-sampled in the field (gray). Areas of skidding/felling zone agreement are in green, RDM omission in orange, and RDM commission in red.

Table 3

Results comparing skid trail and haul road lines and zones from the lidar RDM to field GPS lines and impact zones.

Cutting Estimated time lag® Skid trail position Skid/fell zone Skid/fell zone Skid/fell zone overall Hauling zone
block (months) agreement” (%) commission area (%) omission area (%) agreement® (%) difference? (%)
G 17-20 65 13 1 86 —-4.1

C 18-21 60 24 40 50 -3.0

B-2011 18-21 39 39 2 60 24.9

H 17-23 60 8 14 80 -0.5

D 24-26 45 45 21 48 65.0

B-2010 24-32 70 17 8 77 67.5

Total 59 23 12 70 21.1

¢ Estimated time between harvest and lidar collection, based on communication with concession managers. Ranges reflect different harvest completion dates of nested

sub-blocks.

b The percentage of the digitized line within 10 m of the GPSed skid trail (Goodchild and Hunter, 1997).

¢ Calculated via confusion matrix (Congalton, 1991).

4 Calculated as field-based haul road area - lidar hauling impact zone area/field-based haul road area.

slopes, and was harvested by sub-contractors with few
incentives for skidding efficiency. We believe that the logging
sub-contractor’s lack of investment in skid trail design influenced
skid trail density more than slope.

Our ability to evaluate the variability of hauling extent with the
lidar RDM was limited by inaccuracies associated with time lags
discussed above, but we were nonetheless surprised by the low
variability among cutting blocks with time lags <2 years (9% of
mean at 95% confidence interval). Our field experience indicates
that concession managers usually plan haul road networks at the
outset, and their driving concern is access to timber, with little
regard for environmental conditions (e.g. slope) or impacts (e.g.
soil erosion). Therefore, the opportunities to reduce the impacts
of haul roads are substantial and warrant attention.

Our assessment of hauling extent follows the RIL-C methodol-
ogy (Verified Carbon Standard, 2015) to measure haul road widths
as “the distance between the nearest tree trunks (>10 cm DBH)
perpendicular to any given point along the haul road centerline.”
This differs from previous studies (White et al., 2010; Azizi et al.,
2014; Pearson et al., 2014) that delineated haul road corridor

widths between from adjacent tree canopies, thereby
underestimating the hauling impacts because overhanging vegeta-
tion obscures the true disturbance corridor. The more accurate VCS
methodology approach requires lidar or field measurements, since
2-dimensional images such as those used in the aforementioned
studies cannot perceive understory vegetation structure (see
Fig. S1).

4.4, Forest structure and carbon density

Carbon density maps derived from the Fourier-based biomass
model accurately describe the natural variation in biomass and
detect biomass differences between logged and unlogged areas.
Despite the limited calibration sample (28 prism plots), the map-
based distribution of biomass for the 6 cutting blocks closely
approximates the biomass distribution observed in the field
(Fig. 10), and biomass estimation error (17%) is only slightly higher
than errors reported in other studies with more robust calibration
datasets (10-14%: Mascaro et al., 2011; Meyer et al., 2013; Réjou-
Méchain et al.,, 2015). Dendritic patterns of reduced biomass



P. Ellis et al./ Forest Ecology and Management 365 (2016) 184-196 193

B 2010 B 2011 C
0.25
0.20 - Mean =191.94 Mean = 184.69 Mean = 175.78
’ Std dev=101.09 Std dev =94.00 Std dev =103.25
0.15
0.10
0.05
2
% 0.00 - m—
s
a D G H Field Plot Data
0.25
0.20 4 Mean = 206.36 Mean = 156.76 Mean = 188.50 Mean = 187.40
’ Std dev =99.94 Std dev=99.20 Std dev = 100.60 Std dev=76.42
0.15
0.10
0.05 - ‘
0.00 T T I I
T T T
0 200 400

T T T T T T T
0 200 400 600 0 200 400

T T T T T
0 200 400 600 600

AGB (MgC/ha)

Fig. 10. Distributions of mapped carbon density (MgC ha~!) for each cutting block compared to the carbon density distribution observed in the field.

shown on the map correspond to roads and skid trails mapped by
both GPS and the lidar RDM (Fig. 11), illustrating the sensitivity of
the Fourier model to logging-induced biomass losses.

Even more compelling, the Fourier-based biomass model pro-
vides an accurate estimate of the magnitude of logging distur-
bance. When correcting for time lag, the 18 + 8% lidar-estimated
biomass reduction in skidding/felling zones closely approximates
the skidding and felling emissions calculated from field measure-
ments by Griscom et al.,, 2014, who observed that 17 +1% of
aboveground live biomass is destroyed by skidding and felling. This
finding demonstrates the utility of carbon density maps derived
from airborne lidar to detect and measure vegetation damage
and associated carbon emissions from selectively logged tropical
forests. More work is needed to test this lidar-based strategy across
a range of tropical ecosystems to operationalize the approach.

4.5. Applications to measurement of RIL performance

The results of this study are relevant to two of the four impact
parameters specified by the RIL-C VCS Performance Method Mod-
ule for North and East Kalimantan (VCS, 2015): SKID and HAUL.
SKID is calculated as the product of skidding damage (SKIDgqm)
per meter of skid trail, and skidding density (SKIDges), defined as
the average length of skid trails in harvest areas (mha~!). The
methodology definition for harvest area is identical to impact zone
as defined in this paper, and should not be confused with the total
annual cutting block area that includes no-impact zones. Skidding
damage measures the performance of skidding operations, while
skidding density quantifies the benefits of skid trail planning, as
prescribed by many forestry standards (Dykstra and Heinrich,
1996; Forest Stewardship Council, 2014; Tropical Forest
Foundation Indonesia, 2015). Direct field-based measurements of
damage are needed to estimate skidding damage, but skidding
density can be calculated directly from lidar RDMs and/or GPS
tracks once sufficient field data is collected to estimate the mean
skid-to-stump buffer distances.

Extensive skidding maps, like those derived in this study, can be
used to evaluate the effectiveness of skid trail planning. Our find-
ings emphasize the importance of collecting sufficient GPS or lidar
data (as indicated in the VCS Kalimantan module) in order to cap-
ture the full extent of no-impact zones and accurately evaluate
skidding efficiency. In this study, the high skid trail density in Con-
cession G presents an opportunity for impact reduction through
incentivizing owner operation and operator training, capacity
building, and supervision. Focusing incentives on measurable
results in the form of decreased skid trail density can ensure ade-
quate performance through reduced carbon emissions.

For non-carbon ecosystem services, skidding extent, as mapped
by GPS or lidar, can be used to monitor and incentivize RIL
improvements for water quality, sediment stabilization, and habi-
tat protection, as well as reduce costs (Broza et al., 2012). Surpris-
ingly, our results suggest minimal influence of environmental
conditions on the location and extent of logging impacts. If RIL ini-
tiatives can identify priority conservation zones and inform strate-
gic spatial planning of harvest operations, monitored skidding
extent (via GPS or lidar) can verify compliance.

In the RIL-C methodology, the HAUL impact parameter is calcu-
lated as “the area, in square meters per ha of harvest area, of haul
road and log landing corridors.” (VCS, 2015), which is equivalent to
this study’s definition of hauling extent divided by 10,000. Our
finding that time lag generates considerable error in haul road
width confirms the judgement of the RIL-C methodology to derive
baseline values from a combination of corridor widths measured in
the field and haul road lengths measured from lidar and/or GPS.
Our field-based width measurements combined with lidar mea-
surements of haul road length yield a baseline hauling extent of
3.2% (323 m? ha!), 23% higher than the hauling extent reported
from lidar here, but within the range of error for cutting blocks
with time lags <2 years (3.5 £ 0.3%). We believe that future lidar
measurements could be used to produce more consistent estimates
of haul road width if collected <2 years after harvest completion,
but we currently endorse the combined lidar and field-based esti-
mates of the VCS methodology.
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Fig. 11. 1:10,000 map of carbon density values in concession B (same region shown in Fig. 6). Note the clear signal of the haul road (dark red, black arrow) and skidding/

felling impacts (blue circle, see Fig. 7), which reflect a 12% reduction in carbon density.

4.6. Recommendations for future initiatives to monitor logging
infrastructure

Lidar is a powerful tool for mapping and monitoring forest con-
dition and change; much of the information available from lidar is
underutilized, particularly for applications to improve forest man-
agement. For example, lidar data of the type and quality used in
this study can supplement national inventories (Henry et al.,
2015), estimate standing timber volumes (Junttila et al., 2015),
model water flows (Murphy et al., 2008), assess erosion impacts
and siltation (Milodowski et al., 2015), extract forest structure
metrics (this study, Palace et al., 2015), quantify carbon stocks (this
study, Asner et al., 2012; Gongalves, 2014), estimate carbon density
change (this study, McRoberts et al., 2015), and map logging infras-
tructure (this study, D’Oliveira et al., 2012). While agreement with
GPS-based infrastructure maps is promising, more research is
needed to quantify the uncertainties of lidar based infrastructure
mapping, and we recommend that future studies repeat RDM-
based infrastructure mapping with separate interpreters to assess
variability (Olofsson et al., 2014).

The costs, timing, and logistical challenges of acquisition (in
that order) remain substantial barriers to broad-scale use of lidar
for infrastructure mapping. While many of the inaccuracies in
lidar-based infrastructure mapping reported above can be reduced
through minimizing time lags, there are practical limitations to
achieving a properly constrained time-window for lidar collection.
For this study, we aimed to restrict time lags to <2 years, but were
forced to extend it beyond our limit due to logistical and cloud

cover challenges that impeded lidar acquisition over our remote
study area. For these reasons, we recommend use of ground-
based GPS for mapping wall-to-wall infrastructure in similar
remote tropical landscapes, because it can be easily integrated into
the ground-based monitoring plan needed for other impact param-
eters (e.g. bucking and felling inefficiencies), is less susceptible to
time lag errors (old skid trails are usually easy to detect on the
ground), and remains substantially cheaper.

The average rate of infrastructure mapping using ground-based
GPS reported in Griscom et al. (2014) was 4 km person~' day~!, or
250 person-hours to map a 900 ha cutting block with an average of
121 km of infrastructure. Assuming a wage rate of $1.00h~! (a
generous inflation of the World Bank wage of $0.65 h~! for Indone-
sia in 2006, Oostendorp, 2013), GPS-based infrastructure mapping
would cost ~$0.25 ha~!, more than an order-of-magnitude less
than the average cost of current-day commercial airborne lidar.
Costs would be lower if GPS tracking were integrated into harvest
operations. One potential strategy could promote or require that
GPS units are attached to bulldozers to map infrastructure during
skidding (McDonald et al., 2002).

5. Conclusion

With lidar, we demonstrate the importance of comprehensive
infrastructure and carbon density mapping for accurate measure-
ment and monitoring of selective logging impacts. Our analysis
reveals that a large proportion of designated harvest blocks (37%)
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are not directly affected by timber extraction. The distribution of
these no-impact zones does not correspond with riparian areas
or steep slopes, indicating large opportunities to reduce the impact
of logging without reducing harvest volumes. Lidar helped to
improve existing performance monitoring in East Kalimantan,
Indonesia, and we believe it will likely play a role in logging impact
assessments elsewhere in the future. However, ground-based, GPS-
supported mapping of logging infrastructure is still the more
affordable and efficient near-term option for monitoring selective
logging operations.
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