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Abstract

In this paper, we show that ifu,),-1 is a Lucas sequence, then the Diophantine equation
Up-Upyl - Uppp=y" Inintegersn >1, k>1, m >2 andy with |y| > 1 has only finitely many
solutions. We also determine all such solutions whiep), -1 is the sequence of Fibonacci
numbers and when, = (x" —1)/(x — 1) for all n>1 with some integer > 1.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

There are several papers in the literature dealing with Diophantine equations involving
powers in products of consecutive integers, or in products of consecutive terms in
arithmetic progressions. For example, &ddnd Selfridgd6] showed that a product
of at least two consecutive integers is never a perfect power. For a survey, see [17].

In this paper, we address a similar question when the product of consecutive terms
in arithmetic progressions is replaced by the product of terms in Lucas sequences
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whose indices form an arithmetic progression. To fix the notations and terminology,
we assume that and s are nonzero integers witd = 2 + 4s # 0, put£ = gcd(r, s),

let o and S be the two roots of the equatior? — rx —s = 0, with the convention that
|| > |B] and write (u,), >0 and (v,), >0 for the Lucas sequences of first and second
kind, respectively, of general terms

ot —
Uy, = b

for all n>0 (L1
a [—

and
vy =o'+ " for all n>0. (1.2

The sequence8t,,), >0 and (v,), >0 haveug =0, u1 =1, vg = 2 andvy = r and they

both satisfy the recurrence relatiofy 2 = ru,+1 + su, and v, 2 = rv,41 + sv, for

all n>0. We shall also assume that these sequences are nondegenerate, iog; that

is not a root of unity. In general, when dealing with such sequences one also assumes
that ¢ = 1 (i.e., thatr and s are coprime), but for our purpose we shall not need to
impose this restriction. Examples of such sequences which have received considerable
interest are whelr, s) = (1, 1) for which the resulting sequencés, ), >0 and (v,), >0

are the sequences of Fibonacci and Lucas numbers denoted from here(sp)byo

and (L), >0, respectively, and whefr, s) = (x + 1, —x) with some positive integer

x > 1, for which the corresponding general terms of the Lucas sequences of the first
and second kind are

x" -1

x—1

U, = and v, =x"+1 for all n>0,
respectively.

Closely related to the Lucas sequences are the Lehmer sequences. Given nonzero
integersr > 0 ands such that- +4s # 0, lety and ¢ be the two roots of the quadratic
equationx?— /rx —s = 0. Then the Lehmer sequence of roptandd is the sequence
of general term

no_ §n
! if n=1(mod2.
y—90

wy = s
yn_ n ] _
—«,;2—52 if n=0(mod2.

The numberw,, is an integer for allz>0. We assume that/J is not a root of 1, but
we do not assume thatands are coprime.

For an integek we write P (k) for the largest prime divisor of with the convention
that P(0) = P(£1) = 1. We suppose throughout the paper thatd, k, m andy are
positive integers withn >2, gcdn,d) =1 andy > 1 and thatb is a nonzero integer.
We put

2k if d > 1,

Flk,d) = |
k ifd=1
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We consider the Diophantine equations
UnUn+d - - - Un+(k—1)d = by™ (13

and
UnUn+4d - - - Un+(k—1)d = bym (1.4)

in unknowns(n, d, k, b, y, m). Arithmetic properties with products of consecutive terms

in binary recurrences were investigated[ib]. For a givenb, it follows from results
proved independently by Pethd [12] and Shorey and Stewart [18], that either one of
Egs. (1.3) and (1.4) wittk = 1 or 2 implies that:, d, y andm are bounded by an
effectively computable number depending only ons and b. In fact, the preceding
assertion withb composed only of primes from a given finite set follows from the
result of Pethd. Fok >3 we prove the following result.

Theorem 1. Assume thak >3.
() Eg.(1.3)with P(b) < f(k, d) implies that k is bounded by an effectively computable
number depending only on the sequerigg), >o.
(i) Let P>1. Then Eq.(1.3) with P(b) < P implies that

maxn, d, k, |b|, y, m} < c1,

wherec; is an effectively computable number depending only ,os and P
(iii) Assertions(i) and (i) with the sequencéu,), >0 replaced either by the sequence
(Un)n>0 O (wy), >0 are also valid.

Here are some particular instances of Theorem 1. We beginuyith F,. A long-
standing conjecture thaf, is a perfect power only when =0, 1, 2, 6 and 12 has
been recently confirmed by Bugeaud et [d]. We prove the following result.

Theorem 2. Eq. (1.3) with u,, = F,, n > 1, b =1 and k>2 is not possible.

In particular, a nonzero product of two or more consecutive Fibonacci numbers is
never a perfect power except for the trivial caBe- Fo = 1.

Theorem 3. Let x > 1 be an integer. Then Eq1.3) with (r,s) = (x + 1, —x), for

which
n
-1
a for all n>0,

U, =
X —

b=1,n>1,k>2 and d odd does not hold.

We note that the sequence,), >0 appearing in the statement of Theorem 3 is the
sequence of all theep-units in base xnamely the sequence consisting of 0 together
will all positive integers whose baserepresentation consists of a string of 1's.
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We recall that the Diophantine equation from Theorem 3 wita 1, x > 1, n > 2,
andm > 2 is still unsolved, although several particular instances of this equation have
been dealt with (see the survey papf8d6]).

Throughout the proofsgz, c¢3, ... are effectively computable constants larger than
1 which depend only on the initial data. For a real number 1 we use log for
the natural logarithm ok and n(x) for the number of prime numbers<x. For a
nonzero integek and a prime numbep we write ord, (k) for the exact order at which
p appears in the factorization in prime factorslofFor two positive integersn and n
we write either gc@n, n) or (m, n) for the greatest common divisor ofi and n.

2. The proof of Theorem 1.1

We shall prove this theorem only for the case of the Lucas sequence of the first kind
(un)n>0 as the proofs for the cases of the Lucas sequdngg, >0 or the Lehmer
sequencqwy), >0 are entirely similar. In order to simplify the presentation, we shall
first assume that = 1 and we shall treat the general case later. There are three
well-known properties of the Lucas sequen@g),>o which we will use, namely:

(a) gcdum’ Uy) = U(m,n)-

(b) If m|n andp is a prime dividing gctu,,, u,/u,), thenp dividesn/m.

(c) If n > 30, then there exists a prime factorof u#,, which does not divide eithed
or u,, for any positive integem < n. Such a primep is always congruent ta:-1
modulo n (see[1]).

We shall assume thdt > ¢» = max30, P(4)} and we shall writeQ = P(n(n + d)
«...-(n+ (k= 1Dd)). We distinguish two cases:

Casel: Assume that eithed > 1, ord =1 butn>k + 1.

Whend = 1, thenQ > k > ¢2 by a theorem of Sylvester. Wheh > 1, then the
same inequality holds except whém, d, k) = (2,7, 3) by a result from [20]. Since we
are assuming that > ¢2>30, it follows that the inequalityQ > k always holds. We
write i for the unique positive integer in the interj@l k—1] such thatQ | (n+id) and
we write v for ordg(n +id). Thus,n +id = Q1-m;, with Q1 = Q¥ and P(m;) < Q.

We rewrite Eq. (1.3) as

ug, - M1 =by",
where
Un+tid
My = 25 l_[ Un+tjd- (2.1
o1 iciok-1
J#E

We now show that gago,, M1) = 1. In order to prove this, we first look at the prime
factors of gcdug,, un+ia/up,)- By (b) above, these numbers divige+id)/ Q01 = m;.
Since Q1 is a power ofQ > P(4) andQ is odd, it follows, by (c) above, that all the
prime divisors ofu g, are congruent ta=1 modulo 221. In particular, eithee o, = £1,
or any prime divisor ofug, is at least 21 — 1 > P(m;). The instanceup, = £1
is impossible by (c) above whe@;>Q > 30. We now look at gc@ig,, u,4 jq) for
j #i. By (a) above, this number equalgp, »+;4). However, sincej # i, we have
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that P(n + jd) < Q, therefore gcdQ1,n + jd) = 1. Thus, gcthug,, untja) =u1 =1
for j #i. Now Eq. (2.1) together with the fact that any prime divipoof u o, satisfies
p=201—1>2(k + 1) — 1 > 2k implies that if either condition (i) or (ii) is satisfied
and k > P/2, then equationip, = £yf" holds with some integey; >1. From[19,
Corollary 9.2, p. 152], we obtain tha®1 < c3. Sincek < 0< Q1 < c¢3, we have
obtained thatk < c3. This proves (i) for this case as well as the fact tkas bounded
in this case and in instance (ii).

Case2: Assume that/ = 1 and thatn <k.

In this casepn(n+1)...(n+k—1) is a multiple ofk!. By Bertrand’s postulate, there
exists a prime numbay in the intervallk/2, k]. Since we are assuming thiat- 30, we
can infer even more, namely that there exists a prime number in the infekvd, k].
Indeed, this assertion is equivalent to the fact th@t) — n(2k/3) > 1 holds fork > 30.
From [14, Theorem 2], we know that the inequality

X X
_— _ 2.2
logx — 0.5 <70 < logx — 1.5 (2.2

holds for allx > 67. We checked that the inequality

X B (2x/3)
logx — 0.5 log(2x/3) — 1.5

>1

holds for allx > 150, which implies that the intervéPx /3, x] contains a prime number
wheneverx > 150. This is also true forx € [30, 150] and in this range the above
assertion can be checked by hand.

Thus, we know thatQ >2k/3. If there exists only one indek € [0, kK — 1] such
that Q | (n + i), then the argument from Case 1 shows thds bounded in either
instance (i) or (ii). Assume therefore that< i» are in[0, k — 1] and have the property
that bothn + i1 and n + io are multiples ofQ. It is clear thati, = i1 + Q. Write
n+ip = Qm;, andn+iz = Q(m;; +1). ThenQ(m;; +1) <n+k—1<2k —1, therefore

(2k—1) 32k —1)
2<m;; + 1< < %
andn +ip = 2Q. Hence,u,1;, = upg = ug - vg. We rewrite Eq. (1.3) as

< 3. Thus,m;; = 1. We therefore get + i1 = Q

v
oy T o o
1 jel0k—1]
J#i1,02

One proves easily thaitp /vy is always odd forQ > 3, that gcdvg/vi, v1) = Q
or 1 according to whetheQ | vy or not, and that gado/vi, wu,4;) = 1 holds
whenever;j # i1, iz is in [0, k — 1]. Assuming now thalQ does not dividev; = r
(this can be arranged say k23 > P(r), or, equivalently, ifk > c4 = 3P(r)/2),
we then get that Eq. (2.3) together with the fact that every prime divisarggh, is
>20 —1>4k/3— 1> k imply that

vo/v1 = £y7'
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holds with some positive integer; >1. From[19, Corollary 9.2, p. 152], we obtain
that O < c¢3, and since 2/3< Q < c3, we get thatk < ¢5 = 3c3/2. This completes
the proof of (i).

To complete the proof of (ii), assume thatis a given constant and that Eq. (1.3)
holds with some integeb such thatP(b)< P. By the above arguments, it follows
that bothk < ¢g and P(n(n + d)...(n + (k — 1)d)) < cg hold with an effectively
computable constants depending onr, s andP. We assume, of course, thas > P.
Let S = {n=1]| P(n) < ce}. We recall thatk >3. We now claim that there exists
a computable constant; such that ifn(n + d)(n + 2d) € S then maxn, d} < c7.
Indeed, the relatiom(n 4+ d)(n + 2d) € S together with the fact thah and d are
coprime implies that the three positive integars=n, y =n+d andz =n+ 2d
have gcdx, y) = gcd(y,z) =1, gedx,z) | 2, 2y =x+z andx, y, z € S. This last
equation is anS-unit equation and it is well-known that this equation has only finitely
many effectively computable such solutiogs, y, z). Since 3k <cg it follows that
max{n, d, k} < c7 holds with some effectively computable constant which together
with the fact thaty > 1 implies that|b|, m andy are also bounded by an effectively
computable constant.

Assume now that > 1, suppose thak satisfiesk > max30, P(4),3P(r)/2, P(¢)}
and write 1 = gcd(r2, s). Notice that every prime number dividing; divides ¢ as
well. Putry = r/v/f1, s1 = s/f1 and putey and f;, for the roots of the quadratic
equationx? — rix — s1 = 0 with the convention thafoy| > |B1|. Clearly, aq = o/+/01
and 1 = /+/f1. Moreover, notice that; € Z andr? = r2/¢1 € Z. Write (w,), >0 for
the sequence of Lehmer numbers of rogfsand f; whose general term is given by

1P~ 1mod.
op — Py
wa =1, o (2.4)
1P i = omod2.
O‘;L_ﬁl

It is well-known thatw, is an integer for alk >0. Moreover (se¢19, Lemma A.10]),
the two idealgo?] = [0/¢1] and [f7] = [$?/¢1] are coprime inOx whereK = Q[«].
It is also easy to see that the formula

/2y if = 1(mod 2,
U, = (2.5)

| rel21y, it n=0(mod2,

holds for alln>0. Since we are assuming that> maxP (¢), 3P(r)/2}, it follows
that every solution of Eq. (1.3) leads to a solution of

WyWyid * -+ W (k—D)d = b1iy™, (2.6)

with the same value ofy and with some different nonzero integéy satisfying
P(b1) < f(k,d). The sequencéw,), >0 enjoys the same divisibility properties as the
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Lucas sequence of the first kind and itih term has primitive divisors for > 30 by
the result from[1]. Moreover, since the ideaIBc{] and [ﬁ%] are coprime inOk, one
may now employ the same arguments as the ones used in the proof of the case in
which ¢ = 1 to conclude that both (i) and (ii) hold in this instance as well.
The proofs for the cases of the sequen@gs, >0 and (w,),>o are entirely similar
and we give no further details here. Theorem 1 is therefore proved.

Remark 1. Note that the conditiork > P(4) appearing in the above arguments can
be relaxed in the following sense. There exists a constgnwhich depends only on
w(A) such that ifk > ko, then Eq. (1.3) withP (b) <k implies that there exists a prime
numberQ (with Q@ > k if d > 1, orn>k + 1 and Q > 2k/3 otherwise) and which
does not divided, such that the equatiomp, = £y7' holds with Q1 a power ofQ

and some positive integen. Indeed, a close analysis of our arguments shows that the
only relevant feature of our choice of the numh@gr= P(n(n +d)...(n + (k — 1)d))

is that Q0 > k and thatQ does not divided. Assume thatd > 1. Then a recent
result from[8] confirming a conjecture of Moree from [11] shows that the inequality
omm+d) ... (n+(k—-1)d)) > n(2k)—1 holds save for the exceptional triple, d, k) =

(1, 3,10). In particular, imposing that > ko wherekp is the smallest solution to the
inequality n(2k) — n(k) — 1 > w(4), it follows that up to the above exception Eq. (1.3)
with such a value ok will lead to an equation of the formg, = +y!" with Q; a
power of some prime) > k and some positive integen (which could be 1 and then
ug, Will have no primitive divisors). A similar argument can be employed in the case
whend =1 andn>k + 1 by a result from [7] where it is shown that the inequality
omnmn+1)...(n+k—1) > n(k)+ [3n(k)/4] — 1 holds for alln >k + 1 with finitely
many exceptionsn, k) which are all explicitly known. Such observations can be useful
when trying to find all the solutions of an equation like (1.3) with an explicitly given
sequenceduy,), >o0. We also offer the following conjecture.

Conjecture 1. Let (u,), >0 be a Lucas sequence of the first kind. Then the Diophantine
equation

Unlptd = - - Unt(k—Dyd = DY" (1.5

in integer unknownsn, d, k, b, y, m) withn>1, d>1 and coprime to nk>1, m>2,
y > 1, and P(b) <k implies that k is bounded by an absolute constant. A similar
conjecture can be made for the sequentgs, >0 and (wy), >o.

Remark 2. We note that the conclusion of Theorem 1 remains valid if we replace the
assumption that ged, d) = 1 by the assumption that ged d) is bounded by a fixed
constant.

3. The proof of Theorem 2

Just to eliminate the small solutions, we used Mathematica to show that

Fy...Fopg—pa =y" (N
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does not have any integer solutions> 0, k > 1, d>1 and coprime tan and with
n + (k — 1)d <190 except for the trivial ond - F» = 1. What we did was to check
computationally that ifp > 17 is a prime number and @ ¢£<190 thenp? does not
divide F,. Since for¢ > 12 the numberF, has primitive divisors which are larger
than or equal tof — 1, it follows that if 18 < n + (k — 1)d <190, thenF,; x—1)a
has a primitive divisop such thatp? does not divideF, +—1)q- This certainly shows
that Eq. (3.1) is impossible whem+ (k — 1)d > 18. The fact that Eq. (3.1) has no
solutions withn > 0, k > 1, d>1 and coprime ton and 3<n + (k — 1)d <18 other
than F1 - F» = 1 can be checked by hand.

From now on, we shall assume that+ (k — 1)d > 190. We may certainly assume
thatm = ¢ is a prime number. We split the argument into two steps.

Stepl: Assume thatl = 1 and thatn <k.

In this case, it is easy to see that the interf@lk — 1] contains a number such
thatn 4 i is a power of 2. Indeed, this is clearly so wher= k because in this case
the interval[n, n + k — 1] is simply [k, 2k — 1], while whenn <k — 1 then

n+k—-1
I = T,n+k—l Cln,n+k—-1)]

and the interval clearly contains a unique power of 2. Let us write this power of 2
asn+i = 2" Thus, if j #1i € [0,k — 1], then ord(n + j) < p. Notice also that

. k—1_k
2k —1>n+k —1>191 thereforek >96. Since 2 > % > > >48, we deduce
that u>6. Thus, we may rewrite Eq. (3.1) as
Lz;z—l . Fz;z—l . 1_[ FIH-j = yq. (32)
jel0,k—1]
J#i

It follows immediately that ge. .1, F;) = 1 for j #i € [0,k — 1] and gcdFpu-1,
Ly-1) = 1. Thus, Eq. (3.2) implies that,.-1 = y{ holds with some integep; > 1
and some prime number>2. Since 2-1>32, it follows, by the results fronj], that
this equation is impossible.

From now on, we assume that>k + 1 if d = 1.

Step2: The final contradiction.

By Sylvester’s theorem, we have th@= P(n(n +d)...(n+ (k — 1)d)) > k when
d = 1, because: >k + 1 in this case. The same is true when> 1 (without the
restriction thatn >k + 1) by the result from [20] which says that the only exception
to the above inequality is the instan¢e, d, k) = (2, 7, 3) for which n + (k — 1)d =
16 < 190. It is also clear that in our range we hage>5. Indeed, for if 0 <3, it
would then follow thatt = 3 and that each one of the three positive integers: + d
andn + 24 is either 1, or is divisible only by primes from the §& 3}. Thus, either
n=1and{n+d,n+2d}=1{2% 3"}, orn+d=23"and{n,n + 2d} = {291, 22} In
the first instance we get the Diophantine equatién-2¢+1 = 1, while in the second
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instance we get the Diophantine equatioti 2 21 = 2. 3. The largest solution of
such equations ia + 2d = 9 < 190.

It now follows that there exists a unique value of the index [0, K — 1] such that
Q| (n+id). Write n+id = Q1m;, where Q1 = Q" holds with some positive integer
1 and some positive integes; coprime toQ. We may therefore rewrite Eq. (3.1) as

Futid
For- === [ Fuja=»" (32)
01 o1
J#L

By the argument from the proof of Theorem 1, we have that(ggd, Fi+a) =
Fgcd01.n+ja) = F1 =1 when j # i and that gcdFg,, Fu+tia/Fo,) = 9cd(Fg,, m;) =
1, becausen; is coprime toQ >5. Moreover, all the prime divisors dfp, are congru-
ent to +1 (mod 2Q) and therefore at least as large a@ 2 1 > P(m;) when Q > 5,
or they are at least as large as 5 wh@n= 5, but in this case we have again that
P(m;) < Q =5. Eq. (3.2) now implies thafy, = yi must hold with some positive
integer y1, which is impossible by the result ¢4].

This completes the proof of Theorem 2.

4. The proof of Theorem 3

We start with a couple of well-known facts. For a proof of the Lemma 1 below, we
refer the reader to Ribenboim’s book [13].

Lemma 1. The Diophantine equation
X2 41 = oY1 4.1)

with 6 € {1,2} does not admit any solution in positive integai¥, Y, p,g) with
X>1 Y >1and p and gq prime numbers.

We shall also need the following result due to Ljunggf@h

Lemma 2. The only solutions of the Diophantine equation

x" =1
— = (4.2)

in positive integerst > 1, y>1, n> 2 are (x,y,n) = (3,5,11), (7,4, 20).

Proof of Theorem 3. For any nonnegative integen we write u,, = (x™ —1)/(x — 1)
and v, = x™ + 1. As in the proof of the Theorem 2, we shall achieve our goal in
a few steps. We leid = {n, n+d, ..., n+ (k— 1)d}. The Diophantine equation
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to be proved impossible is

n+/d 1

n =1, (4.3)

Stepl: Assume that the intervdD, k — 1] contains a number with the following
properties:

Q) n+id > 4;

(2) 4n+id;

(3) eithern + id = 2* is a power of 2, and there is no other numbeg i in the
interval [0, k — 1] such thatn + jd is a multiple of 2, or Q = P(n + id) > 2,
andn + id is the only positive integer ind which is a multiple of 4.

Then Eq. (4.3) is impossible.

The argument we shall use here is somewhat similar to the one used in the proof of

Theorem 2.

For example, ifn +id = 2* is the only number which is a multiple of*2:8 in A,
then Eq. (4.3) can be rewritten as

Upu—1 * Ugu-1 - l_[ Un+jd = ym (44)
jel0k—1]
J#l

One proves immediately that ard,.-1) <1 and that 2 is the only prime which can
divide either gcdvou-1, upu-1) Or gcdvpu-1, uny jq) With some;j # i. Thus, we get that
x27" 4 1= 6y holds with € {1, 2} and y; > 1.

Assume now that + id = 2*Q"m;, whereu>2, v>1, m; is coprime to 2 and
n +id is the only multiple of 49 in A. In this case, withQ; = Q", one may rewrite
Eq. (4.3) as

Un+id
Uzp—lQl . I/tzy—lQl . ( e ) . 1_[ ul’H—jd = yt]_ (45)
U201/ icio k-1
J#i

From the conditions we have imposed oA id one checks immediately that the only
prime number that can divide either one of the following four numbers:

Un+id
—> o 9cd(vau-1g, s Untjd),

9Cd(vpi-1g,, uzn-1g,),  ged <UZ”lQl’ unQ
1

with j #i e [0,k — 1]

is 2 (or some of these numbers are 1) and sipge2, we have that ortlvy.-14,) <1.
With Eq. (4.5), we get again that there exist integérs {1, 2} and y1 > 1 such that

x2u—1Q1 +1= 5yg

holds.
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Thus, we always obtain a diophantine equation of the fofff + 1 = 5Y¢ with
0 € {1, 2} in positive integersX > 1 andY > 1 and prime numberp and g and such
an equation is impossible by Lemma 1.

Step2: If the set.A contains a multiple of 4 larger than 4, then the hypotheses from
Step 1 are satisfied.

Let n1 = 4no be the smallest multiple of 4 i, and lett be the number of multiples
of 4 in A. Clearly, these multiples of 4 il are precisely A2, 4(na+d), ..., 4na+
(t —Dd). If t =1, thenny > 4 and the hypotheses from Step 1 are satisfied >
andd > 1, thenQ = P(nao(n2+d)...(n2+ (t — 1)d)) > t, except when(ny, d,t) =
(2,7,3). In this exceptional case, we have thaug+ (r — 1)d) = 4-16 = 25. Thus,
the hypotheses from Step 1 are satisfied whien 1.

Assume now thatl = 1. If np>r+1, thenQ > ¢ by Sylvester's Theorem, and so the
hypotheses from Step 1 are satisfied. Finally, wher(z, then the argument from the
beginning of Step 1 of the proof of Theorem 2 shows that the inté¢mgal . ., no+1—1]
contains a unique power of 2 and so the hypothesis from Step 1 are satisfied in this
instance as well, which completes the proof of Step 2.

Step3: The final contradiction.

From Steps 1-2, it follows that the only case in which Eq. (4.3) might have a
solution is either whend does not contain a multiple of 4, or whene4A is the only
multiple of 4 in A.

Assume first that 4 ind is the only multiple of 4 inA. Sincen > 1, it follows that
eitherd > 1 andn =4 ord = 1.

Assume first thatd > 1 and thatn = 4. Clearly, k <4. Arguments similar to the
ones employed before show that gegl up) | 2 and that gcto, u,4;q) | 2 for all
j €11, k—1]. Thus, Eg. (4.3) implies that

rl=vy= Sy? (4.6)

holds with some positive intege® € {1,2} and y; > 1. The cased = 1 does not
lead to a solution of Eq. (4.6) while in the cade= 2 only ¢ = 2 is possible. Since
k € [2,4] and d is odd, it follows easily that4,, is coprime tous, wusyq and to
u4+34, and since we now know that = 2, Eq. (4.3) implies an equation of the form

x4+d -1

2
— =y5, 4.7
x—1 2 @D

Ultd =

with some positive integey,. The above equation does not have any positive integer
solution (x, d, y2) andd >3 by Lemma 2.

We shall now assume thdt= 1. It then follows that4 C [2, 7]. Writing uq = uz-vo,
it follows that we may write Eq. (4.3) as

V2 - Uup - H Unyj =y (4.9
jel0.k—1]
n+j#4
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Arguments similar to the ones employed above show once again thatgegl, ;) | 2
holds for alln + j € A distinct from 4 and that okdv) <1. Thus, Eq. (4.8) implies
that Eg. (4.6) must hold, and now we know that the only possibility in Eq. (4.6) is
0 =gq = 2. Thus, Eq. (4.6) becomes

x4+ 1=2y% (4.9

Sincek > 2, it follows that.A contains either the number 5 or 3. If&bA, it then follows
that gcdus, u,4;) = ugedsn+j) = 1 holds for alln + j # 5 in A and therefore Eq.
(4.3) implies that

x°-1

_ .2
x—1 =2

holds with some integey, > 1. By Lemma 2, this last equation has only one integer
solution (x, y2) with x > 1, y2 > 1, namely(x, y2) = (3, 11). However, withx = 3,
Eq. (4.9) becomes)# = 3% + 1 = 10, which is impossible.

Thus, 5 ¢ A therefore 3¢ A and A C [2,4]. But in this case 3¢ A and
9cd(u3, un1j) = uged3dn+j) = 1 holds for alln 4+ j # 3 in A therefore Eq. (4.3)
implies that

hx+1l=uz=y3 (4.10)

holds with some integeys > 1. Obviously, Eqg. (4.10) does not admit any solution in
integersx > 1, y3 > 1.

From now on, we assume that does not contain any multiple of 4. In particular,
k € {2,3} and if k = 3 thenn +d is even but not a multiple of 4. Lete [0, k — 1] be
such that: +id is the only even number inl. In this caseu,;q is coprime tou, jq
for all j € [0, k — 1] distinct fromi therefore Eq. (4.3) implies that, ;s = yZ holds
with some integert > 1. ThUS,u(u+ia)/2 - Vintiay2 = ¥1. Since(n +id)/2 is odd, it
follows thatu ;a2 is odd, therefore:(, ;42 and v, yiqa)/2 are coprime. Thus, there
exists an integep, > 1 so that

x(Hid)/2 4 q yg (4.11)

holds. Eqg. (4.11) is the Catalan equation which has been completely solved by
Mihailescu (sed?2]) and its only solution in integers; > 1, y1 > 1, (n + id) >

2is (x,n+id, y2,9) = (2,6,3,2). Assume first thad > 1. If i > 0, then since

n > 1 andd is odd, the only possibility would seem to b= n = 3, but this is
again not convenient because we are assumingrtetd d are coprime. Soj = 0

and thereforen = 6 andk = 2. Moreover,d is coprime to 6 and; = 2. We then get

that u,,q = 267¢ — 1 must be a perfect square and this is impossibledfars. Thus,

we may assume that = 1. In this case, ifn +i > 2 thenn +i = 6. In particular,
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either 5¢ A or 7 € A. When 5¢ A we get thatus must be a perfect square but
us = 2° — 1 =31 is not, while when & A we get thatu7; must be a perfect square
but u7 = 27 — 1 =127 is not. Thus, the instaneeti > 2 is impossible, and therefore
n+i =2 leading ton =2, i =0 and A = [2, 3]. Sinceup and uz are coprime, we
get again thatt3 must be a perfect power. Hence, there exigts> 1 such that the
relation

xz—i-x—i—l:ug:yg (4.12

holds. The above equation has no integer solutions1, y; > 1 wheng = 2. When
g > 2 then, withx; = 2x + 1, the above Eq. (4.12) can be rewritten as

x5 +3=4. (4.13)

The fact that this equation has no integer solutions wjth5 is known (see, for
example,[5, Corollary 4]), while forg = 3 the only solution of Eq. (4.13) witl; > 1
is (x2, y1) = (37, 7) (see, for example, [10]). Thus, we get that 2 1 = 37 therefore
x =18, butup = x +1=19 is not a perfect cube in this case.

Theorem 3 is therefore completely proved.]
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