
The Egyptian Journal of Remote Sensing and Space Sciences (2016) 19, 37–47

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
HO ST E D  BY
National Authority for Remote Sensing and Space Sciences

The Egyptian Journal of Remote Sensing and Space

Sciences

www.elsevier.com/locate/ejrs
www.sciencedirect.com
RESEARCH PAPER
Extracting and analyzing forest and woodland cover

change in Eritrea based on landsat data using

supervised classification
* Corresponding author.

Peer review under responsibility of National Authority for Remote

Sensing and Space Sciences.

http://dx.doi.org/10.1016/j.ejrs.2015.09.002
1110-9823 � 2015 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mihretab G. Ghebrezgabher
a,b
, Taibao Yang

a,*, Xuemei Yang
c
, Xin Wang

a
,

Masihulla Khan b
a Institute of Glaciology and Ecogeography, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
China
bEritrea Institute of Technology, College of Education, Mai-Nefhi 12676, Eritrea
cGansu Desert Control Research Institute, Lanzhou 730070, China
Received 13 February 2015; revised 4 September 2015; accepted 7 September 2015

Available online 28 January 2016
KEYWORDS

Eritrea;

Forest and woodland;

Remote sensing;

Change detection
Abstract Remote sensing images are suitable for quantifying and analyzing land-cover dynamics,

particularly for forest-cover change. In this study, the methodology used the supervised classifica-

tion technique to classify and analyze the total forest-cover change in Eritrea. The results indicated

that the forest and woodland cover extracted with high overall accuracy and kappa coefficient of

approximately 96% and 0.94, respectively. Generally, the forest cover declined from 2966 km2 to

1401 km2 from the 1970s to 2014, and the woodland forest cover was reduced from 14,879 km2

to 13,677 km2 in the same period. The annual rate of deforestation was very high, with approxi-

mately 0.35% (62 km2) of the total forest cover lost each year for the last 44 years. The study con-

cluded that deforestation is one of the leading causes of environmental degradation in the country

and it might be caused by human factors as well as due to climate change, i.e., by prolonged drought

and inadequate and erratic rainfall. Thus, this paper may significantly help decision makers and

researchers who are interested in remote sensing for forest management and monitoring, and for

controlling and planning development at local, regional, and global [scales].
� 2015NationalAuthority forRemote Sensing and Space Sciences. Production and hosting byElsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Forest ecosystems cover one-third of the Earth’s land surface.

They are important resources for nations. Forests play a signif-
icant role in environmental protection, such as soil conserva-
tion, increasing biodiversity, and prevention of climate

change. Forests are beneficial for long-term national economic
growth through providing raw material such as timber for
industry and construction, and as a source of medicines. In
addition, forests reduce global warming through the carbon

cycle and ecosystems (Baumann et al., 2014; Kim et al.,
2014). However, the forest resources of the world are
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endangered by different human factors. According to
Chakravarty (2012), approximately 0.20% of world forest
cover was lost between 1990 and 2000 and approximately

0.13% in the next 10 years between 2000 and 2010. In addition,
approximately 0.56% of the total forest in Africa was lost
between 1990 and 2000, and 0.49% was lost from 2000 to

2010. The highest rate of deforestation occurred in East and
Southern Africa, approximately 0.62% and 0.66%, between
1990 and 2000 and 2000 and 2010, respectively. Kim (2014)

found that the rate of deforestation was higher in Africa than
in any other part of the world, particularly in the Democratic
Republic of Congo, with the growth of agro-industries.

In Eritrea, deforestation is one of the most serious environ-

mental problems and it is caused mainly through human activ-
ity and climate change. Because approximately 80% of the
population depends on farming, the negative impact of shifting

and subsistence cultivation and overgrazing on forests is signif-
icant, and the dependence on firewood and traditional housing
are also factors contributing to deforestation. Effects of cli-

mate change include infrequent and uneven distribution of
rainfall and prolonged droughts, particularly in the 1960s,
1970s, 1980s, and early 1990s (Hessel et al., 2009; Bobee

et al., 2012; Brandt et al., 2014; Waal, 1991), and have con-
tributed significantly to deforestation in the Sahel region,
including Eritrea. According to the Ministry of Land, Water
and Environment (MLWE), 2012, increase in temperature,

which leads to a high rate of evaporation of moisture from
the soil, is the main contributing factor for deforestation in
Eritrea. According to researchers such as (Nyssen et al.,

2004) 30–40% of the total area of the country was covered
by forest in the year 1900. Forest currently covers only approx-
imately 13.7% of the country, including the woodland forests

(MOA, 2002; Arayal, 1999). The United Nations Food and
Agriculture Organization (FAO) reported that the total forest
area (including woodland forest) in Eritrea was approximately

15,276 km2 in 2010. According to the FAO, Eritrea has lost an
average of 45,000 and 44,000 hectares of forest every year
between 1990 and 2000, and 2000 and 2010, respectively,
which annually is a loss of approximately 0.28% (44 km2),

and approximately 89,000 hectares of forest cover was lost
within 20 years of independence, from 1990 to 2010.

Advanced technology, such as GIS and remote sensing,

which emerged in early 1970s, is vital to the world, particularly
to environmental scientists (Jayanth et al., 2015; Brink et al.,
2014). Recently, different researchers (Baumann et al., 2014;

Chasmer et al., 2014; Churches et al., 2014; Dronova et al.,
2015; Iqbal and Khan, 2014; Zhang et al., 2013; Butt et al.,
2015; Naqvi et al., 2014) have used remote-sensing data for
land-use classification, monitoring, and management of land

degradation and quantifying and analyzing land-use changes.
Landsat data are also used to investigate land degradation,
such as desertification and deforestation. Remote sensing

and GIS studies of environmental degradation are more effec-
tive than field surveys in terms of cost, time, and area coverage
(El Baroudy and Moghanm, 2014). Today, many different sci-

entific approaches, together with remotely sensed satellite
images and GIS, play important roles in analyzing and moni-
toring land-cover change based on time series (Jayanth et al.,

2015; Yiran et al., 2012; Huang and Siegert 2006; Rawat and
Kumar 2015). However, less-developed countries in Africa,
such as Eritrea, are far from the application of these technolo-
gies or their use is very limited, although they are valuable
tools for assessing environmental changes in the Sahel region
(Brandt et al., 2014). This circumstance might be the result
of a lack of access and poor education facilities, especially in

Eritrea, because the country is new, the introduction of this
technology has been very slow. Particularly, the monitoring
and managing of land degradation such as deforestation and

desertification with the help of remote-sensing technology
and GIS applications is very limited.

Several Landsat data classification methods or techniques

enable us to analyze and assess the different land cover types.
The most common methods of classification are unsupervised
and supervised (Belgiu and Dragut, 2014; Papa et al., 2012).
The unsupervised method of classification is independent of

external sources. The classification of the image is done
automatically and involves random sampling in unknown
land-cover types. Accuracy may not be efficient, although it

is essential. The supervised method of classification is a depen-
dent method and is more controlled than the unsupervised
method. The supervised method requires creating a signature

based on the region of interest or on training sites, and
then the software runs automatically for the process of classi-
fication. Different classification methods can be used, such as

parallelepiped, minimum distance, Mahalanobis distance,
maximum likelihood, and spectral angler mapper. However,
the most commonly used technique is the maximum likelihood
to natural nearby-neighbor algorithm (Keuchel et al., 2003).

The accuracy of the supervised classification depends on the
sampling and the quality of the training data, which is more
suitable than the unsupervised method (Yiran et al., 2012;

Iqbal and Khan, 2014).
Therefore, the purpose of this paper is to extract and

analyze forestland and woodland cover change over the past

four decades. To analyse and assess the distribution and
change of forest and woodland in Eritrea, we used Landsat
data from the 1970s, the 1980s, and 2014. In addition, we used

statistical data to evaluate the annual rate of deforestation or
loss of total forest cover and predicted forest and woodland
cover change in the coming 30 years.
2. The study area

Eritrea is located in arid, semi-arid, and sub-humid parts of the
Sahel region in Africa. It is a small country situated on the

western side of the Red Sea in East Africa. It is located
between 12� 220 and 18� 020 N latitude and between 36� 260 and
43� 130 E longitude (Teklay, 1999; Nyssen et al., 2004;

Ghebrezgabher et al., 2014). Eritrea is bordered by Sudan in
the north and west, Djibouti in the southeast, Ethiopia in
the south, and the Red Sea in the east (Fig. 1). No consistent

data about the size of the country are available, but in this
study, the total area of the country is considered to be approx-
imately 125,902 km2. The country comprises a coastline of
approximately 1900 m and approximately 390 islands in the

Red Sea.8 Today, the total population of the country is
estimated to be 6.2 million, and approximately 80% of the
population are engaged in primary economic activities, such

as agriculture, fishing, herding, and forestry (MLWE, 2012).
Eritrea has an elongated shape and comprises a very com-

plex topography of mountains, valleys, rivers, escarpments,

highlands, and lowlands. The elevation varies from below
sea level in the Danakil depression to above 3000 m in the



Figure 1 Geographical location of the study area.
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southern highland of the country. Eritrea is bounded by the

western and eastern lowlands where the highland in between,
trends north to south. The highland is a plateau with steep-
sided eastern and western escarpments. Thus, the weather
and climate of the country are highly influenced by its physical

features. Temperature increases from the highlands toward
both lowlands. The annual average temperature in the central
highland is approximately 16� C in Asmara, the capital city,

and 30� C in the western and eastern lowlands in Agordet
and along the coast in Massawa, the port city. Rainfall is extre-
mely variable in time and amount. There is no persistent distri-

bution of rainfall, and it increases from north to south in the
highland, which annually receives rainfall of approximately
200 mm and 800 mm, respectively. The eastern escarpment

receives rainfall twice per year above 900 mm, the eastern
lowland along the coast has the lowest rainfall in the
country at less than 200 mm, and the western lowland
receives approximately 500 mm annually. Currently, Eritrea

experiences different environmental problems, such as deserti-
fication, deforestation, overgrazing, and soil erosion. Particu-
larly, desertification and deforestation are the most serious

land degradations. Desertification in the country is largely
caused by human activity and climate change, especially
drought (Ghebrezgabher et al., 2014; Nyssen et al., 2004).

3. Data and methodology

3.1. Landsat data selections

For this paper, remotely sensed images were freely down-

loaded from the United State Geological Survey website.
The images were clear of cloud cover. MSS Landsat_1, MSS
Landsat_5, and ETM + images, respectively, were down-
loaded from the 1970s, the 1980s, and 2014. In this study, 43

satellite images were used to cover the whole area, with 13 of
the images from the 1970s and 15 images each from the
1980s and 2014. For the 1970s, 8 Landsat images from 1972,
4 from 1973, and 1 from 1975 with 57-m spatial resolution

were downloaded. For the 1980s, 11 images from 1987, 2 from
1985, and 1 each from 1984 and 1986 with 60-m spatial reso-
lution were obtained. For 2014, 30-m resolution Landsat_7
images from different months – 7 from April, 6 from June,

and 1 each from May and February – were selected. The
UTM zone for all images ranges from 36� N to 38� N, and they
were scanned at different sun elevations. For this study, the

digital elevation model (DEM) was obtained from the Shuttle
Radar Topography Mission (SRTM) at (http://gdem.ersdac.js-
pacesystems.or.jp/search.jsp).

3.2. Digital image pre-processing

Landsat image pre-prepossessing is necessary for extracting

and quantifying meaningful information from remotely sensed
data (Iqbal and khan, 2014; Butt et al., 2015; Naqvi et al.,
2014). In this study, digital image pre-processing was per-
formed by application of ENVI 4.7 software. Green, red,

near-infrared, and short-wave infrared bands, or bands 1, 2,
3, and 4 and 2, 3, 4, and 5, respectively, for Landsat MSS
and Landsat_7 or ETM+, were imported, because forest land

cover is more sensitive in the near-infrared band. Image
calibration, geometrical and atmospheric correction were
completed (Torahi and Rai, 2011; Boori et al., 2015). We used

a layer-stacking tool to convert the three bands (1, 2, and 3 for
MSS and 2, 3, and 4 for ETM+) for each satellite into a
single-layer file, and they were mosaicked into a single file

for each period. Gap filling was completed by the use of a build
mask for Landsat ETM+. The nearest-neighbor resampling
method was used in datum WGS84 (Boori et al., 2015). The
mosaicked images were projected to UTM zone 37 N and

resampled to 30-m spatial resolution. We applied a masking
method to resize the images to the desired size of the study area
(Petta et al., 2013; Ma et al., 2011), where each image was pre-

pared for different indices’ calculation and supervised
classification.

http://gdem.ersdac.jspacesystems.or.jp/search.jsp
http://gdem.ersdac.jspacesystems.or.jp/search.jsp
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3.3. Indices for classification approach

3.3.1. Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is the

most widely used indicator for vegetation distribution. It is
sensitive to chlorophyll in vegetation (Barrett et al., 2014;
Yang et al., 2014), and has a linear correlation between density
and distribution of vegetation (Li et al., 2011). The NDVI is

the difference in the wavelength of red and near-infrared
bands, and the value ranges from �1 to 1. The highest value
of the NDVI indicates forest and the lowest value indicates

desert vegetation. In this study, the NDVI is used to under-
stand the distribution of vegetation throughout the study area,
which is significant for enhancing the accuracy of forest and

woodland classification change (Rawat et al., 2013; Zhang
et al., 2013; Li et al., 2014). However, generally, the variation
in the NDVI values is very low, particularly in 2014. Thus,
NDVI above 0.31 is considered high to very high vegetation

cover (Table 1). The NDVI is calculated as

NDVI ¼ ðNIR� redÞ=ðNIRþ redÞ
where, NIR refers to the near-infrared wavelength and red rep-
resents the wavelength in the red band.

3.3.2. Vegetation cover proportion

The vegetation cover proportion (VCP) is similar to the

NDVI. However, the VCP explains the density of vegetation
cover based on the stems, branches, and leaves of the vegeta-
tion (Li et al., 2011). The VCP depends on the NDVI maxi-
mum and minimum, and the maximum and minimum NDVI

represents vegetation NDVI and soil NDVI, respectively (Li
et al., 2011; Zhang et al., 2013). The value falls between 0
and 1. In this study, the VCP is adopted to indicate the highest,

medium, and lowest vegetation cover throughout the study
periods, and it is very significant for maximizing the classifica-
tion accuracy. In our study, a VCP>0.64 is considered high to

very high vegetation cover (Table 1 and Fig. 2). The VCP is
given by the following formula:

VCP ¼ ðNDVI�NDVIminÞ=ðNDVImax �NDVIminÞ
where, NDVImax and NDVImin represent vegetation NDVI
and soil NDVI, respectively.

3.3.3. Soil Adjusted Vegetation Index

The Soil Adjusted Vegetation Index (SAVI) is used to mini-

mize the effect of brightness reflection in the NDVI, which is
caused by the soil. The SAVI is very useful in areas with spare
vegetation cover, such as arid and semi-arid regions. Accord-
ing to Huete (1988), the SAVI depends on near-infrared and

red bands, with a constant L factor that is added to the denom-
inator of the NDVI formula to adjust for the effect of soil. The
Table 1 Summary of the values of vegetation indexes for high

to very high, medium, and low to very low vegetation cover and

its distribution with DEM.

Vegetation cover NDVI VCP SAVI DEM (m)

High–very high >0.31 >0.64 >0.68 >1500

Medium 0.21–0.31 0.58–0.68 0.51–0.68 600–1500

Low–very low <0.21 <0.58 <0.51 <600
SAVI value ranges from �1 to 1. However, it should be mul-
tiplied with the numerator by 1 + L, because the NDVI value
ranges between �1 and 1 (Huete, 1988; Gilabert et al., 2002;

Aggarwal and Minz, 2013). The L factor is 0.5 for a very spare
canopy of vegetation, 1 for a medium canopy of vegetation,
and 0 for a very high canopy of vegetation. In this study, the

SAVI is important because more than 70% of the country is
arid and semi-arid (MLWE, 2012), and the distribution of
the NDVI value is generally very low, particularly in 2014,

except in a few areas/pixels. Thus, we applied 0.5 as constant
factor (L) to all pixels, except some pixels under high forest
cover, where the L factor was zero and the SAVI >0.68 gen-
erally falls under high vegetation cover (Table 1). SAVI is

defined as

SAVI ¼ ðNIR� redÞ � 1þ L=ðNIRþ redþ LÞ

where, NIR is near-infrared band, red refers to the red band,
and L is the constant factor.

3.3.4. Modified/Normalize Difference Water Index

McFeeter (1996) introduced the Normalized Difference Water
Index (NDWI) for analyzing and understanding the location
and distribution of water bodies in a particular region. The

NDWI is computed from the green and near-infrared bands.
However, Xu (2006) first presented the Modified Normalized
Difference Water Index (MNDWI) to separate water from

land boundary more accurately than the NDWI. Therefore,
in this study, we used the NDWI in the MSS image for the
1970s, which lacks the short-wave infrared. Although, no sig-
nificant water bodies are in the study area, it comprises the

longest coastline along the Red Sea. Therefore, the MNDWI
might be important for a clear understanding of the distribu-
tion of water bodies and also helps minimize misclassifications.

According to Xu (2006), the MNDWI depends on the green
band and the short-wave infrared band. Recently, several
researchers (El-Asmar et al., 2013; Aggarwal and Minz,

2013; Zhang et al., 2013; Li et al., 2011, 2014) have used the
MNDWI in their studies. The value for the MNDWI varies
from �1 to 1, and the highest value indicates water and the
low MNDWI value indicates forest or high vegetation cover.

In this study, MNDWI >0.18 indicates water. The MNDWI
is explained by the following formula:

NDWI ¼ ðGreen�NIRÞ=ðGreenþNIRÞ or

NDWI ¼ ðGreen� SWIR1Þ=ðGreenþ SWIR1Þ
where, Green is a band in the green wavelength, NIR is a band

in the near-infrared wavelength, and SWIR1 represents short-
wave infrared.

3.4. Image classification processing

The study of land classification in Eritrea is very limited, and
the information is not clear and detailed. However, the FAO

plays a significant role in classifying the country into different
land use types, and we used this classification as a reference.
According to the FAO’s Forest Resources Assessment

(FRA, 2010) for Eritrea, based on the country’s land use clas-
sification, forest, woodland, and shrub land are defined in
Table 2. Therefore, in this study, we used the forest cover
map of Eritrea from the FAO (2000), forest classification



Figure 2 Distribution of vegetation cover based on VCP in the 1970s, the 1980s, and 2014.

Table 2 Land-use classes based on FAO’s FRA 2010.

S.

No.

Class Description

1 Forest Vegetation or tree cover more than 5 m in height with more than two species, and the canopy or crown ranges from 10% to

40% for open forest and above 40% for closed forest and the forest includes the riverine and mangrove

2 Woodland Vegetation (trees) composed of one or two tree species with mean height of above 5 m and the canopy cover ranges from

10% to 40% for open woodland and above 40%

3 Shrub

land

Shrub land includes the bare soil with sparse vegetation or tree cover and some seasonal grasses, with the vegetation height

not more than 5 m and the canopy ranges above 10% for scattered woody land and less than 10% for grassland and

wooded grassland

4 Water Coast water, rivers, streams, wells, channels, and dams

Extracting and analyzing forest and woodland cover change in Eritrea 41
(http://www.fao.org/forestry/country/18314/en/eri/), which
was extracted from the global forest cover map, where the
country’s land cover was classified into closed forest, open/

fragmented forest, woodland, other land cover, and water.
However, we classified the land cover into forest (open, closed,
riverine, and mangrove), woodland forest (open and closed),

and other land covers (shrub land, grassland, wooded grass-
land, scattered woody trees, barren land, cropland, and
others), and rivers, streams, artificial reservoirs, and other

water bodies are classified as water. We preferred the FRA
2000/11 and 2010 because this classification system has consis-
tency and accuracy and the classification and statistical data
published by the FAO, the FRA 2010, are useful to compare

and contrast with our data (Churches et al., 2014).
In this study, we adopted the supervised method of classifi-

cation with maximum likelihood natural nearby neighbor,

which is the most commonly used method of classification in
remote sensing (Churches et al., 2014; Barrett et al., 2014).
Training sites were created on the basis of field work in the

most recent year (2014). However, field work is usually limited
because of time, cost, and difficulty of reaching some places.
Therefore, the above indexes (NDVI, VCP, SAVI, and NDWI
or MNDWI) and a Google Earth map were used to develop
and control our signatures and the accuracy of our classifica-
tion. Generally, forest and woodland forest are located, respec-

tively, between high and very high and medium and high
vegetation covers. In this research, approximately 401 pixels/
samples were collected to produce signatures, and 100, 102,

170, and 29 samples were selected, respectively, for forest,
woodland, other land, and water. We generated the same sig-
natures for 1970s and 1980s satellite images to extract each

land use type to avoid biases. Once each site was identified
in the combined image, we sketched signatures in each Landsat
image for supervised classification using the maximum likeli-
hood classification method.

3.5. Classification accuracy assessment

The classification accuracy assessment is significant for analyz-

ing and evaluating remotely sensed land use/cover data. It has
been recently used by many researchers to assess the accuracy
of their classification studies (Zhang et al., 2013; Yang et al.,

2014; Comber et al., 2012; Rawat et al., 2013; Barrett et al.,
2014; Baumann et al., 2014; Churches et al., 2014). Several

http://www.fao.org/forestry/country/18314/en/eri/
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methods are applied to measure the accuracy of classification,
such as the cross-tabulation method, the confusion matrix, and
the generation of random samples (Baumann et al., 2014;

Belgiu and Dragut, 2014; Churches et al., 2014). In this study,
we implemented the confusion matrix (error matrix) by use of
ground truth region of interest (ROI) based on the 401 pixels

referenced with the help of ENVI 4.7. The matrix computes
the accuracy of each class directly (Ji and Niu, 2014). Thus,
the statistical value of the overall accuracy, kappa coefficient,

omission error (producer’s accuracy), and commission error
(user’s accuracy) were computed for the 1970s, the 1980s,
and 2014. The kappa statistics showed the probability of an
agreement that could be expected to present by chance

(Yuan et al., 2005), where the value ranges from +1.0 to
�1.0. On the other hand, it ranges, respectively, from strong
agreement to poor agreement (Waal, 1991).

3.6. Classification post-processing

Image post-processing is one of the most important methods

used to analyze and evaluate the remotely sensed data. It is
implemented by computing the land use change in the different
periods (Yuan et al., 2005; Ghebrezgabher et al., 2014). The

Landsat images and the DEM were exported from the ENVI
4.7 software to ArcGIS 9.3 for further analysis, where the
land-use/cover change for each period was computed from
the pixels. The confusion matrices were also exported to a

table function (Excel) for further analysis and interpretation.
The statistical value of overall accuracy, kappa coefficient,
and omission and commission errors were calculated to evalu-

ate the classification accuracy (Foody, 2002). The annual rate
of deforestation in each period between the 1970s–1980s,
1980s–2014, and 1970s–2014 were analyzed and evaluated,
Figure 3 Flow chart for La
and the annual rate of deforestation was expressed either in
rate (area/time) or in percentage (Puyavaud, 2003; Tucker
and Townshend, 2000). Fig. 3 is the flow diagram for the

image processing.

4. Results and discussion

4.1. Land classification change analysis

The study area was classified and quantified into forest, wood-
land, other lands, and water by use of the supervised technique
of classification with maximum likelihood, and the result

demonstrated that the forest and woodland cover declined
from the 1970s to 2014. The result in Fig. 4 and Table 3 reveals
that other lands were the dominant land cover in the east,

northeast, and southeast and in the west, northwest, and some
parts of the southwest, and in the highlands, covering approx-
imately 87.72% of the region in 2014. Forestland occupied the
smallest portion of the region, which was predominantly situ-

ated on the eastern escarpment of the country. A small portion
of forest cover was also found in the central and southern
highlands, along the largest rivers, and in the southwestern

region of the country. Forestland covered approximately
2.37% and 1.12%, respectively, in the 1970s and 2014, and
the woodland forest was located mostly in the highlands and

in a large portion of the southwestern region, where the area
coverage decreased from 14,879 km2 in 1970s to 13,677 km2

in 2014. The result (Table 3) revealed that the woodland cover

was reduced throughout the study period from 11.89% to
10.93% in the past four decades. In the 1970s, approximately
2966 km2 of the total area was covered by forestland, which
declined to 1401 km2 in 2014. Generally, deforestation was a

serious environmental problem in all regions of the country.
ndsat image processing.



Figure 4 Supervised classifications of remote-sensing images of forest, woodland, and other land in Eritrea in the 1970s, the 1980s, and

2014.

Table 3 Summary of each land-cover change in km2 and percentage from the 1970s to 2014.

Category 1970s 1980s 2014

Area (km2) % Area (km2) % Area (km2) %

Forestland 2966 2.37 2646 2.12 1401 1.12

Woodland forest 14879 11.89 14465 11.56 13677 10.93

Other land 106890 85.45 107682 86.08 109725 87.72

Water 357 0.29 298 0.24 289 0.23

Extracting and analyzing forest and woodland cover change in Eritrea 43
4.2. Classification accuracy assessment

In this study, the forest and woodland cover change were
extracted with high average kappa, and overall accuracy was
approximately 0.94 and 96%, respectively. Table 4 illuminates

the confusion matrix with user, producer, and overall accura-
cies and the kappa statistics in percentage for the 1970s, the
1980s, and 2014. Approximately 90% and 98%, 97% and

89%, and 95% and 89% were classified, respectively, as forest
and woodland forest in the 1970s, the 1980s, and 2014. Gener-
ally, an average of 94% of the study area was extracted cor-

rectly as forest area and an average of 91% as woodland
forest, and the highest classification accuracy observed in the
water area and other land type, respectively, was approxi-
mately 98% and 99% as an average. Generally, the overall

classification accuracy was under strong or perfect agreement.
4.3. Land cover change detection

Table 5 shows the annual rate of land cover change in square
kilometers and percentage between the 1970s and the 1980s,
the 1980s and 2014, and the 1970s and 2014. The result
revealed that forest and woodland forest lost throughout the

study period because of deforestation were approximately
1.25% (1565 km2) and 0.96% (1202 km2), respectively; forest-
land and woodland forest were lost in the past four decades;

and the highest forest and woodland forest loss, respectively,
approximately 1245 km2 and 788 km2, was observed between
the 1980s and 2014. Deforestation was also significant between
the 1970s and 1980s, when approximately 734 km2 (0.58%) of

total forest was lost. Generally, approximately 2.21%
(2767 km2) of total forest was lost in the past 44 years. The loss
of forest and woodland forest land cover means large areas

were converted to shrub lands, which expanded by approxi-
mately 2.27% (2835 km2) from the 1970s to 2014. Water area
decreased by approximately 0.05% and 0.01%, respectively,

between the 1970s and the 1980s, and the 1980s and 2014. Gen-
erally, water area decline observed from the 1970s to 2014 was
approximately 0.06%.

Table 6 shows the annual rate of deforestation for
woodland forest and the evergreen forest, where the highest
rate of deforestation observed from the beginning of the
1980s to the end of 2014, for approximately two decades



Table 4 Land-cover change confusion matrix with ground truth ROI (pixels) and user, producer, and overall accuracies with kappa

for the 1970s, the 1980s, and 2014.

Class Forest Woodland forest Other land Water Total User Accuracy (%)

1970s

Forest 90 9 0 0 99 91

Woodland forest 10 91 0 0 101 90

Other land 0 2 170 0 172 99

Water 0 0 0 29 29 100

Total 100 102 170 29 401

Producer accuracy 90 89 100 100

Overall accuracy = 95% Kappa = 0.92

1980s

Forest 98 0 1 0 99 99

Woodland forest 2 97 2 0 101 96

Other land 0 3 167 1 171 98

Water 0 2 0 28 30 93

Total 100 102 170 29 401

Producer accuracy 98 95 98 97

Overall accuracy = 97% Kappa = 0.96

2014

Forest 97 5 0 0 102 95

Woodland forest 3 91 1 0 95 96

Other land 0 6 169 1 176 96

Water 0 0 0 28 28 100

Total 100 102 170 29 401

Producer accuracy 97 89 99 97

Overall accuracy = 96% Kappa = 0.94

44 M.G. Ghebrezgabher et al.
was, respectively, approximately (51.88 km2 y�1) and
(32.83 km2 y�1). The rate of deforestation was also significant

between the end of the 1970s and the 1980s, when approximately
0.54% (16 km2 y�1) and 0.14% (20.70 km2 y�1), respectively,
for forest and woodland forest were recorded. Generally,

approximately 1.20% (35.57 km2 y�1) and 0.18% (27.32 km2

y�1) of forest and woodland, respectively, were lost from the
1970s to 2014. Annually approximately 62.89 km2 (0.35%) of
total forest (including woodland forest) was lost in the past

44 years, and the highest rate of total deforestation, approxi-
mately 84.71 km2 y�1, appeared between the 1980s and 2014.

Land cover change classification assessment and analysis

from remotely sensed images is the most useful technique since
the development of satellite images in the 1970s, when it
became more complex and increased its reliability and cer-

tainty with continuous advancement in remote-sensing tech-
nology. In this study, we have extracted and quantified the
historical forest and woodland forest change for the 1970s,
the 1980s, and 2014 from Landsat MSS and ETM+ images.

The result demonstrates that deforestation is a serious environ-
mental problem in the country, where approximately 2767 km2

of total forest area (including woodland forest) was lost in the
Table 5 Summary of land-cover change in square kilometers and p

Land cover 1970s–1980s 1980s–2014

Area change (Km2) Area change (%) Area change

Forestland �320 �0.25 �1245

Woodland forest �414 �0.33 �788

Other lands 792 0.63 2043

Water �59 �0.05 �9
past four decades. However, the use of remote-sensing technol-
ogy in land use classification in Eritrea and in the Sahel region4

is limited, particularly in forest or deforestation change analy-
sis. This limited use may be the result of a lack of access to
remote-sensing technology, and consequently the knowledge

of it is very low. Thus, it is difficult to compare our result with
others.

Therefore, as discussed in the paper the forest and wood-
land forest cover change was extracted with high accuracy

using the supervised method of classification with maximum
likelihood natural neighbor. Although it is difficult to evaluate
the accuracy of classification with the reality or with the actual

features on the ground, constructing matrix errors may mini-
mize the misclassification that could occur from clustering of
spectral pixels during the classification process. A confusion

matrix is one of the most commonly used methods of classifi-
cation accuracy assessment, but it may not always represent
the reality (Chasmer et al., 2014; Shan-long et al., 2006),
because the accuracy might be affected by different factors.

The different vegetation indexes (NDVI, VCP, SAVI, and
MNDWI) used in this paper were also helpful in enhancing
the accuracy of the classification, generally based on the
ercentage. Negative number indicates area lost.

1970s–2014

(Km2) Area change (%) Area change (Km2) Area change (%)

�1.00 �1565 �1.25

�0.63 �1202 �0.96

1.64 2835 2.27

�0.01 �68 �0.06



Table 6 Rate of deforestation in square kilometers and

percentage (1970s–2014).

Year Forest Woodland forest Total forest

km2y�1 % km2y�1 % km2y�1 %

1970s–1980s 16 0.54 20.70 0.14 36.70 0.21

1980s–2014 51.88 1.96 32.83 0.23 84.71 0.50

1970s–2014 35.57 1.20 27.32 0.18 62.89 0.35

Figure 5 Total forest-cover change (including woodland forest)

in the 1970s, the 1980s, and 2014, the total forest cover from the

FAO, (1990–2010), and the projected forest cover (2020–2030) in

Eritrea.
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DEM, low – very-low, medium, and high – very-high vegeta-
tion cover were, respectively, located below 600 m, between

600 and 1500 m, and above 1500 m. Therefore, in this study,
a limitation might have occurred in the accuracy of the classi-
fication, which is affected by the spatial resolution and topog-

raphy of the study area. The Landsat images used in this study
have 30-m resolution, which is relatively low for use in detailed
land-use classification (Iqbal and khan, 2014). In addition, the

accuracy may be affected by the shadows produced by moun-
tain slopes, especially for water, on the southeastern escarp-
ment of the country, where the landscape is highly rugged
and mountainous topography, or in the satellite scene with

path/raw 168/050 and 169/050.
Generally, forest loss was very significant throughout the

study period from the early 1970s to the end of 2014. The for-

est and woodland forest cover of approximately 2.37% and
11.89% in the 1970s was reduced to 1.12% and 10.93%,
respectively, in 2014. The annual rate of deforestation, or for-

est area lost, was significant over the study period, and our
result is consistent with Ghebrezgabher et al. (2014) and the
FAO, 2010. In this study, the result revealed that annually
approximately 63 km2 (0.35%) of total forest was lost from

the 1970s to 2014, comparatively higher than the annual rate
of deforestation, and approximately 44 km2 (0.28%) of the
total forest lost between 1990 and 2010 (FAO, 2010). Eco-

nomic and ecological activities are the most common causes
of land-cover change (Sexton et al., 2013). In this study, defor-
estation was relatively high along roads and rivers, and at the

top and bottom of some ridges (Ghebrezgabher et al., 2014)
and was mainly caused by human activities. However, forest
loss might be intensified by climate change, such as drought

and inadequate rainfall. In Eritrea, deforestation is commonly
caused by anthropogenic factors, such as cutting trees or forest
for different purposes, including traditional farming practice,
timber, fuel wood, traditional houses (Hidmo) particularly

around the 1970s/80s, population growth and urbanization,
and a border conflict with the neighboring country (Ethiopia)
(MOA, 2002; Waal, 1991; Arayal, 1999; Ghebrezgabher et al.,

2014). In addition, deforestation may be caused by climate
change, including drought, mainly the prolonged drought dur-
ing the 1970s and 1980s, and infrequent, uneven, and erratic

distribution of rainfall (MOA, 2002). The selling of live trees
in the market during drought periods, particularly the drought
period between 1989 and 1991, severely damaged the forest-

land (Waal, 1991). However, the conservation program of
afforestation and reforestation has been conducted by the gov-
ernment, which involves students and the community during
summer through the Warsay Ykalo campaign (MOA, 2002;

Ghebrezgabher et al., 2014). This might play a significant role
in restoring the forest area and decreasing the annual rate of
deforestation. Fig. 5 shows the total forest cover change from

the 1970s, the 1980s, and 2014 based on our study, the statis-
tical value of the total forest of the country estimated by the

FAO from 1990 to 2010, and the projected value of total forest
cover from 2015 to 2030. According to the FAO (2010), the
rate of deforestation is nearly constant at approximately

44 km2 y�1or 220 km2 y�5, and the rate of deforestation for
this study is approximately 63 km2 y�1 or 315 km2 y�5. There-
fore, we applied the average rate of deforestation (53 km2 y�1

or 265 km2 y�5) to predict the future forest cover from the

total forest cover recorded by the end of 2014. According to
Fig. 5, if the annual rate of deforestation and other factors
remain constant, the total forest cover would be approximately

14,760, 14,495, and 14,230 km2, respectively, by the end of
2020, 2025, and 2030.

5. Conclusion

This research uses the supervised approach to extract and ana-
lyze the land cover lost in forest and woodland forest in Eritrea

based on time series Landsat data. The study demonstrated
that deforestation or forest area lost is a very serious environ-
mental concern in the country, where approximately

2767 km2 (21%) of total forest cover has been lost (including
woodland forest) in the past 44 years. The methodology
extracted the forest cover with high accuracy where approxi-
mately 62 km2 forest cover was lost annually from the 1970s

to 2014. Although the figure for the annual rate of deforesta-
tion is different from others, the result is consistent with the
FAO’s reports of deforestation and forest cover, in which the

annual rate of deforestation is very high and serious. Anthro-
pogenic activities might be the main factors of deforestation
in the country, such as subsistence cultivation, gathering fire

wood, cutting timber, urbanization, road construction, and
overgrazing. Climate change, such as prolonged drought might
also intensify deforestation, for which high population growth

might be the main reason. In this study, the annual rate of
deforestation had a decreasing trend that might be the result
of the implementation of afforestation, reforestation, and
soil-conservation methods by the government and communi-

ties. This study may be useful as input data for further studies
at local, regional, or global scales.
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