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Abstract

This paper presents generic pickling and minimization mechanisms that are provided as services
similar to garbage collection. Pickling is used to externalize and internalize data. Minimization
means to maximize the sharing in arbitrary data structures. The paper introduces the notion
of an abstract store as a formal basis for the algorithms, and analyzes design decisions for the
implementation aspects of pickling and minimization. The mechanisms presented here are fully
implemented in the Alice programming system.
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1 Introduction

Pickling, also known as marshalling or serialization, means to externalize data
at runtime. This mechanism is found in many programming languages, from
Java, over .NET and Python to Mozart, Caml, and Alice, to name only a few.
This paper presents a language-independent architecture for pickling.

The Alice ML language is a conservative extension of Standard ML, en-
riching the language with support for concurrency, lazy evaluation, and a rich
component system. In higher-order languages such as Alice, both the compo-
nent system and network distribution can be based on pickling. We therefore
investigate pickling as a fundamental mechanism of a programming system.
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The basis for the discussion of pickling is the abstract store, a language-
neutral memory model that can be used as the foundation of a virtual machine
design. The pickler is, like a garbage collector, introduced as a generic service
of the abstract store. All data, including code, is represented in the abstract
store and can hence be pickled.

The abstract store provides an interface to a graph of primitive objects like
integers, strings, or structured nodes connected to other objects. Apart from
pickling, we introduce graph minimization as another service of the store. This
is particularly well suited for a functional programming language, as many
objects in the store are purely functional and benefit from a larger amount of
sharing.

The Alice system [2] implements Alice ML in a virtual machine that is
based on an abstract store with garbage collection, pickling, and minimization
services.

Contributions of the paper

The abstract store presented in this paper is a model for the heap of a
programming system that is both abstract enough for formal reasoning and
concrete enough for efficient implementation. Based on this model, we present
a detailed description of a generic, platform- and language-independent pick-
ling service. We define its pickle language, develop algorithms for pickling
and unpickling, and show how pickling integrates with ML-like languages. We
further discuss what it needs to make pickling well-defined in a concurrent
language such as Alice. The paper introduces general graph minimization as
a novel service of abstract stores. We give formal as well as implementation
details and show that such a service is both efficient and worthwhile.

Organization of the paper

In the next section, we give an overview of how pickling integrates into
the Alice language and programming system. Section 3 introduces a formal
model for the store, upon which the pickling service is built in Sections 4
and 5. Section 6 develops the minimization service. After that, in Section 7,
we extend the model and algorithms with support for concurrency as present
in Alice. Finally, we discuss related work in Section 8 and conclude and present
ideas for future work in Section 9.

2 Pickling in Alice

The Alice ML language extends Standard ML in a conservative way to support
typed open programming [24]: programs are built from components that can be
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dynamically created and dynamically loaded, from files or over the network.
Components can be created statically by the compiler as well as dynamically,
in the language. This requires three main features:

(i) Components must be able to contain arbitrary values (including functions
and hence code).

(ii) As they are acquired from statically unknown sources, components must
be dynamically type checked.

(iii) Dynamic creation of components calls for a mechanism to externalize
components into a format that is suitable for persistent storage or network
transmission.

The first two points are addressed by an extension of the SML module
system and dynamic type checks. The third point describes what is known as
pickling, marshalling, or serialization.

2.1 Modules and packages

A key feature of Alice is that the components comprising a program are loaded
and linked dynamically. Alice components are based on a rich module system
and support for dynamic type checks to ensure integrity of the runtime system.

A well-known way to introduce dynamic type checks into an otherwise
statically typed language are dynamics [1]. Arbitrary values can be injected
into a universal type dyn. Values of this type carry enough runtime type
information for a projecting type-case operation.

For Alice, we modified this concept slightly: packages (as dynamics are
called in Alice) contain modules. The Alice module system extends Standard
ML modules with support for higher-order functors and local modules, as well
as nested and abstract signatures. Runtime type-checking amounts to match-
ing the package signature against a static one. As packages are proper Alice
values, they introduce first-class modules into the language. The semantics of
packages is formally specified in [23].

A package is basically a pair of a module and its signature. It is created
by injecting a module, expressed by a structure expression strexp in SML:

pack strexp : sigexp

The signature expression sigexp defines the package signature. The inverse
operation, projection, is provided by the module expression

unpack exp : sigexp

This takes a package and extracts the contained module, provided that the
package signature matches the target signature denoted by sigexp. Otherwise,
an exception is thrown.
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2.2 Pickling and unpickling

Packages are used primarily as the basis of the Alice component system. Alice
incorporates a notion of component that is a refinement of the system found
in the Oz language [8]. A component is an externalized package that can be
stored in a file or transferred over a network. This externalization of packages
is called pickling, the reverse operation unpickling.

Alice provides pickling to files through the library structure Pickle:

val save : string × package → unit
val load : string → package

The save operation writes a package to a file with the given name. The
semantics of pickling requires that a pickle comprises the whole transitive
closure of a package:

val p = let
fun f x = List.append (x,x)
structure S = struct val b = (f,"b") end

in
save ("pickle.alc",

pack S : sig val b : (α list → α list) × string end)
end

The resulting pickle contains the complete closure of S, including the code
for f and the List.append function, but not the complete List structure.
The package can be unpickled from a file using load:

structure SCopy = unpack Pickle.load "pickle.alc" :
sig val b : (α → α) × string end

Pickling and unpickling preserve the structure of the pickled value, in par-
ticular sharing and cycles. When the unpickled package is unpacked, the usual
dynamic type check is performed. If type checking succeeds, all operations on
the unpickled and unpacked module are statically type safe again.

3 An Abstract Store

All data that an Alice ML program uses and produces at runtime is represented
in the abstract store (or store, for short). In this section, we formally define
the abstract store and exemplify how Alice data is represented.

The abstract store is a general model of a store for a high-level program-
ming language. We use Alice as an example, because the store was originally
designed with Alice in mind. All abstractions however readily carry over to
other programming languages.
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3.1 A formal model of the store

Formally, an abstract store is an ordered, labelled graph with two types of
nodes: scalars and structured nodes.

Definition 3.1 Given a set of addresses Adr, a set of labels Lab and the set
of byte sequences BSeq, an abstract store is a finite function

g ∈ Adr ⇀ Lab × (BSeq � Adr∗)

Intuitively, a store maps addresses to labelled nodes, which can either be
scalars or structured nodes with a sequence of edges to other nodes. We call
scalar store nodes chunks, and structured nodes blocks. The set of all stores
is denoted with Store.

For simplicity, we do not consider an optimized representation for certain
scalar types such as integers. This definition of a store captures only the static
part – the graph represents a snapshot of the store at some point in time.
Programs of course modify the store dynamically, by creating new nodes and
redirecting edges of existing nodes.

3.2 Representation of Alice data in the store

All data like integers, strings, or tuples can be mapped upon objects in the
abstract store in a straight-forward way.

Integers are chunks with label int.

Strings are chunks with label string.

Tuples are blocks with label tuple and edges to the tuple’s components. Tu-
ples are also used to represent values of algebraic datatypes.

Code is data. This is the fundamental assumption that makes the store
uniform and allows us to present pickling and minimization in terms of
nothing but the store. Possible representations include chunks with byte
code, or nested tuples for abstract syntax trees.

3.3 Stateful data

Stateful data such as references or arrays is implemented in the same way as
stateless data. However, equality on stateful data is defined in terms of token

equality : two references are equal if they actually denote the same memory
cell, whereas two tuples are equal if their structure is the same and their
components are equal (structural equality). To support this, we partition the
set of labels: Lab = Labstructural �Labtoken. This will allow us to treat stateful
data differently during pickling and minimization.
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3.4 Garbage collection

Automatic garbage collection means, in terms of the abstract store, to remove
nodes from the graph that are unreachable from a distinguished root node.
The root node can for example be the stack, from which all live data should
be referred to in some way. Formally, garbage collection is a function

gc ∈ Store × Adr → Store × Adr

such that gc(s, root) = (s′, root ′) and s′ is isomorphic to the subgraph of
s reachable from root , and root ′ is the root node in s′. This formal model
resembles copying garbage collection.

3.5 Implementation

The Alice system is based on Seam, the simple extensible abstract machine
library [6]. Seam provides an abstract store that closely implements the ab-
stractions introduced in this section. For efficiency reasons, integers are opti-
mized, they do not actually require a node that is allocated in the store. Seam
features a generational garbage collector and has built-in support for pickling
and minimization, the store services that are discussed in the following sec-
tions.

4 Basic Pickling and Unpickling

We can now define what pickling and unpickling means in the context of ab-
stract stores: to transform a subgraph of a store into a platform-independent,
external format, and to construct a subgraph that is equivalent to the original
in a possibly different store.

We first develop the unpickler together with a suitable pickle language. In
a second step, we show how a pickle of a subgraph of an abstract store can be
generated.

4.1 The pickle language

We regard a pickle as a sequence of instructions for an interpreter that con-
structs the corresponding graph in the store. The language will be presented
as a bnf grammar, but it should be clear that this language is simple enough
to correspond directly to a sequence of bytes. In the actual implementa-
tion, both pickler and unpickler do not produce or consume an intermediate,
datatype-like term, but binary data.

We will require the pickle language to be able to express sharing in the
store as well as cycles. Cycles are ubiquitous in typical Alice data structures.
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Fig. 1. Graphs in an abstract store and the corresponding pickles

Note that, as opposed to classical ML implementations, Alice data can contain
stateless cycles that are not established through ref cells.

4.2 Constructing graphs in the store: unpickling

For the unpickler, we begin with a pickle language for trees and then generalize
to acyclic and finally cyclic graphs.

The usual way to construct trees is in a bottom-up fashion using a stack
machine. A pickle language for constructing trees in an abstract store needs
the following instructions:

〈pickle〉 ::= 〈instr〉 〈pickle〉 | ε

〈instr〉 ::= block(label, arity)

| chunk(label, string)

An instruction block(l, n) pops n nodes off the stack, constructs a new node
with label l and these n children, and pushes the new node on the stack. Scalar
nodes are constructed by the chunk instruction. After successful construction
of the whole tree, the root node is the only item on the stack. Figure 1(a)
shows a tree in an abstract store and the pickle from which it can be built.

Bottom-up construction also works for directed, acyclic graphs (DAGs),
but the interpreter must be extended by an unbounded set of registers: Each
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node that has more than one predecessor – these nodes are called shared nodes

– must be placed in a register when it is first built, and loaded when it is needed
again. We extend the pickle language with the corresponding instructions:

〈instr〉 += store register

| load register

You can find a DAG with its corresponding pickle in Figure 1(b). For
clarity, registers are written with a leading $.

We cannot construct cyclic data yet, because constructing a node requires
all its children to be already constructed. Hence, cycles must be made explicit:

〈instr〉 += promise (register, label, arity)

| fulfill (register, arity)

A promise instruction creates a node that promises to become one node
on the cycle eventually. Using a promise as a placeholder, all the other nodes
on the cycle can be built before the promise is fulfilled by a corresponding
fulfill instruction. Promises may only be fulfilled once. A cyclic graph with
the pickle constructing it is shown in Figure 1(c).

The unpickler implements the promise and fulfill instructions through back-

patching : A promise for a node with label l and arity n constructs a node with
that label and arity but arbitrary “dummy” children. Fulfilling this promise
then simply means replacing the dummy children by the real children. The
unpickler needs both label and arity when promising a node, so the promise in-
struction gets these as arguments. For fulfilling, it needs to find the previously
created promise, so both instructions require a register.

We omit the details of the low-level pickle format, as it is a straightforward
mapping from instruction sequences to byte sequences.

4.3 Optimized pickle language

The pickle format can be optimized for the resulting pickle size, for efficient
unpickling, or for efficient pickling. If pickles are used mainly for persistent
storage, pickle size and efficient unpickling are important, because pickles
are written once but read often. For network transfer however, pickling can
become the bottleneck.

To optimize the pickle size, the store and block/chunk instructions can be
combined into store block and store chunk instructions.

The unpickler can benefit from knowing the maximum stack height it needs
for unpickling as well as the number of registers used in a pickle, because then
the stack and register bank do not have to be able to grow dynamically.

One could employ liveness analysis and a simple register allocator to min-
imize the number of needed registers. We have not yet further investigated
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〈pickle〉 ::= 〈instr〉 〈pickle〉 | ε

〈instr〉 ::= 〈store〉 block(label, arity)

| 〈store〉 chunk(label, string)

| load register

| promise (register, label, arity)

| fulfill (register, arity)

〈store〉 ::= store register | ε

Table 1
The pickle language

this, as we think that the benefit of slightly fewer registers does not justify
the overhead in the pickler.

The pickle format we present must make a compromise between genericity
and compactness of the pickle language. A less generic system may use type
information to make pickles more compact and provide specialized external
representations for common language entities.

To summarize, Table 1 shows the full pickle language.

4.4 Pickling subgraphs of a store

The remaining problem is to generate a pickle of the above format from a
subgraph of the store. If unpickling means constructing a graph according
to given instructions, pickling means traversing the graph in the same order
and generating these instructions. The pickle can be seen at the same time as
instructions for the unpickler, and as a protocol of the graph traversal.

4.4.1 Sharing and cycles

Maintaining sharing and cycles is a vital property of the pickler we want to
develop. Although detecting sharing and cycles causes an overhead during
pickling, it is essential for making pickling efficient: pickles become bigger
without sharing of nodes, an exponential blowup is possible. Cyclic data
structures cannot be represented without sharing, and trying to pickle them
would diverge.

4.4.2 Depth first search

A standard algorithm for graph traversal is depth first search (DFS), as in-
vented by Tarjan in 1972 [27]. We will now show that the pickle format intro-
duced above is similar to the protocol of a postorder, depth-first left-to-right
traversal of a graph.

Trees are easy to pickle: their pickles correspond exactly to the sequence
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of nodes in a postorder left-to-right DFS traversal. For DAGs and arbitrary
graphs, the pickle corresponds to a postorder sequence of the edges. Depth
first search can order and classify the edges in a graph:

Tree edges are those edges that DFS traverses when first visiting a node.

Back edges are edges that lead from a node to one of its ancestors in the
DFS tree.

Sharing edges are the remaining edges.

The edges are ordered according to the time they are visited (preorder)
and the time DFS finishes the edge (postorder). Nodes are marked as unshared

if they have only one predecessor, promised if they have at least one incoming
back edge, and shared otherwise. The following definition extends abstract
stores with DFS annotations on the edges:

Definition 4.1 A DFS-annotated abstract store is a finite function

g ∈ Adr ⇀ Lab × {unshared,shared,promised} ×

(BSeq � (Adr × N × {tree,back,sharing})∗)

Figure 1(d) shows a postorder-DFS-annotated abstract store. Tree, back,
and sharing edges are abbreviated with t, b, and s. Node annotations are not
shown because they are clear from the incoming edges. For regularity, the root
node has an additional incoming edge. It is a tree edge and gets the highest
postorder number.

In a DFS-annotated store, each edge corresponds to one pickle instruction.
Pickling amounts to reading off these instructions in the postorder of the edges.

A tree edge to an unshared node v corresponds to a block or chunk instruc-
tion, depending on v.

A tree edge to a shared node v needs a store in addition to the block or
chunk.

A tree edge to a promised node v becomes a fulfill. Note that the type of v

is block, as only blocks can lie on a circle.

A back edge to a node v corresponds to a promise if it is the back edge to v

with the lowest postorder number, otherwise to a load.

A sharing edge corresponds to a load instruction.

4.4.3 Interleaving DFS annotation and linearization

DFS can be used to generate the sequence of pickle instructions directly. As
a consequence, the DFS-annotated store is never constructed in memory.

The only difficulty is to determine whether a tree edge points to an un-
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shared or a shared node. This information is not available when DFS assigns
the postorder number to a tree edge. All other edges are not critical: shar-
ing edges are visited after the tree edge pointing to the same node, resulting
in a load after the corresponding store. For back edges, DFS can determine
whether it is the first back edge to that node, and hence whether a promise

or load must be generated. Tree edges to promised nodes are visited after the
promise was generated and can hence produce a fulfill instruction.

To solve the problem with tree edges to not promised nodes, we apply a
two-phase approach: the first phase creates the instruction sequence without
any store instruction, and at the same time maintains an ordered list of pickle
program offsets where store instructions must be inserted afterwards. The
second phase then creates the actual pickle by copying the pickle program
and inserting the store instructions where necessary.

An alternative approach would be to insert store instructions for every
tree edge. With the combined store block instructions, this does not increase
the pickle size. However, many more registers are needed in the unpickling
interpreter. For data structures with little sharing (such as lists), the overhead
is linear in the size of the pickle.

4.4.4 Pickling has the desired semantics

Pickling and unpickling produce copies of a subgraph of the store, much like
copying garbage collection does, or on a lower level the operating system’s
virtual memory system. And just as copying garbage collection does not
change the semantics of the copied data, pickling followed by unpickling is
– in the simplest case – an identity function. If there are no stateful nodes
and no nodes with transform labels, the result of pickling a subgraph and
unpickling it is indistinguishable from the original.

With stateful data, the difference between original and unpickled copy can
be observed. In Alice, this is how the semantics of pickling is currently defined.
If a different semantics is required, stateful nodes must not be pickled.

The second source of difference between original and unpickled copy is the
transformation mechanism. Here it is the responsibility of the implementor
of abstraction and instantiation functions to make sure that the behavior of
these functions fits the language semantics.

4.4.5 Preorder pickling, top-down unpickling

Pickling in postorder is non-standard. Besides Alice, only Python [21] seems to
use postorder linearization and bottom-up construction. The dual approach to
postorder pickling and bottom-up unpickling is to use a preorder linearization
of the edges, which then corresponds to a top-down construction of the graph.
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A preorder linearization of the edges requires a slightly different pickle
language and interpreter: the promise and fulfill instructions are not necessary,
because every node is constructed before its children. The interpreter needs
to back-patch the children into the parent node once their are constructed.

The difference between the two approaches is the kind of recursion that
is needed for pickling and unpickling. Bottom-up unpickling needs a sim-
ple recursion, constructed nodes are pushed on the stack and remain there
until their parent is constructed. Top-down unpickling needs a more com-
plex stack, because a node is pushed before its children are constructed, and
must be popped after the last child is constructed. The situation for pickling is
dual: postorder pickling requires a more complex stack than preorder pickling.
This means that the two approaches are equally efficient only if each pickle is
read exactly once. As soon as unpickling is more frequent than pickling, the
bottom-up approach is superior.

4.4.6 Right-to-left traversal

Depth-first search as presented here usually traverses the children of a node
from left to right (from the first child to the last). Some data structures, for
example lists in ML, are right-recursive. Left-to-right construction as assumed
here requires stack in the size of the list, whereas right-to-left construction
could manage with constant stack space. It may therefore make sense to use
right-to-left traversal and construction for certain nodes (depending on the
label). For Alice, experiments have shown that generally using a right-to-left
strategy can significantly reduce unpickling time.

4.4.7 Breadth-first search

Breadth-first search (BFS) is the algorithm of choice for the classic abstract
store service, copying garbage collection. The Cheney algorithm [7] uses the
store area to which it copies the live nodes as a queue, the control data struc-
ture for BFS. The garbage collector does not need any additional memory.

Pickling and unpickling can be based on a variation of Cheney’s algorithm.
The pickler copies the nodes of a subgraph using a Cheney scan, replacing the
real addresses in the abstract store with abstract addresses, counting from
the start of the memory the graph is copied to. The unpickler can then use
another Cheney scan to recreate a copy of the graph, mapping the abstract
addresses back to real addresses.

For pickling, the advantage of not using any additional memory disappears:
Cheney’s algorithm needs forwarding pointers to mark already copied nodes.
A pickler cannot mark the nodes in place, as they do not become garbage after
pickling. It needs additional memory to store that information. The unpickler
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cannot mark the nodes directly in the pickle either. Still, no additional control
data structure (stack or queue) is needed.

A complication is that during BFS, it is hard to control when exactly
the construction of a subgraph of the pickle is complete. We will need this
information to implement transformations as introduced in the next section.

5 Extensions to Pickling and Unpickling

In this section, we extend pickling to deal with objects that should not be
pickled and to apply transformations during pickling and unpickling.

5.1 Resources

A resource is a node in the store that does not have a well-defined meaning
outside that store. The classical examples are file descriptors or window han-
dles. Resources must not be pickled. This is easily achieved by partitioning
the set of labels into labels for resources and labels for picklable data. The
pickler throws an exception if it finds a resource. The pickler does not try to
rebind resources (as discussed in [9,16]). Rebinding could however be realized
with the transformation mechanism introduced next.

5.2 Transformation

The important design goal for pickling is platform independence. On the other
hand, the important design goal for the implementation of an abstract store
must be efficiency. The pickler and unpickler so far generate exact copies
of subgraphs of the store. This means that the store may not optimize the
representation of data in a platform-dependent way.

An optimized internal representation is however desirable; for instance
floating point numbers have different efficient representations on big- and
little-endian platforms. The solution is a generic transformation mechanism
built into the pickler and unpickler.

To this end we introduce special transform store labels and assume that
for each such label lt , there is a pair of functions abstractlt ∈ Adr → Adr and
instantiatelt ∈ Adr → Adr 2 .

The abstractlt function is applied to a node v with label lt when the pick-
ler descends into it. The function then computes the abstract, external rep-
resentation v′ of v, and the pickler descends into v′. The unpickler applies

2 In a realistic setting, these functions can of course construct new nodes in the store.
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instantiatelt after constructing a node v with label lt . Instantiation produces
a node v′ that the unpickler then uses for further construction instead of v.

Note that both abstraction and instantiation suit the postorder pickling
and bottom-up unpickling approach well: abstraction can happen before vis-
iting a node for the first time, and instantiation after completing its construc-
tion. In a preorder and top-down scenario, the unpickler must introduce a
placeholder for each node with a transform label, unpickle the node and its
subtree, and then fill the placeholder with the result of the instantiation. This
emulates a bottom-up construction using placeholders.

5.2.1 Just-in-time compilation

An advanced application of the transformation mechanism is just-in-time com-
pilation: an external, platform-independent code representation is compiled to
an efficient, internal representation like optimized byte code or native machine
code.

In the current implementation, the Alice compiler generates a component
containing code in an intermediate format called Alice Abstract Code. Code
is tagged with a transform store label, and on unpickling, the abstract code
is compiled to byte code or native machine code. For true just-in-time com-
pilation, code is not compiled when loaded but when first executed. In Alice,
we can use lazy futures (see Section 7) to accomplish this in a straightforward
way: instead of instantiating the unpickled value, a lazy suspension is created
that will perform the necessary transformation when the value is first ac-
cessed. This has the additional benefit that the actual transformation can be
fully concurrent and interrupted by garbage collection, whereas instantiation
in the unpickler must be atomic.

Instantiation often cannot be undone easily. It is for example impossible
to recover Alice Abstract Code from machine code. In this case, instantiation
must keep a copy of the external representation that abstraction can then
simply return.

6 Minimization

A pickle as introduced previously represents exactly the nodes of the subgraph
of the abstract store that was pickled. One could say that a pickle is automati-
cally garbage collected, as only reachable nodes are pickled. To further reduce
the pickle size, redundant nodes can be removed. This section defines formally
which nodes are redundant, relates it to graph minimization algorithms, and
presents further application areas apart from pickling.
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6.1 Redundancy in the abstract store

A node in the abstract store is redundant if it is indistinguishable in the
language from some other node in the store. Consider the example of balanced
binary trees:

datatype t = N | T of t*t
val a = T( T (N,N), T (N,N) )
val b = let val c = T(N,N) in T(c,c) end

The two trees are semantically indistinguishable. However, one of the
children of the root of a is redundant, as the tree b shows. The tree b shares
the two subtrees of the root node. For trees of depth d constructed in this
manner, not sharing anything results in 2d − 1 nodes being allocated, while
complete sharing only requires d nodes. One will hence always try to design
data structures with minimal redundancy.

This is of course hard to achieve, especially from a more global point
of view. Values are typically constructed independently, often in different
components of the system, and there is no central authority to control sharing.
Another limitation, for which there is no workaround as it is immanent in the
language, is that values of different types can never be subject to sharing,
although they may be represented internally in the same way.

6.2 Minimizing acyclic graphs: hash-consing

If the data structures under consideration do not contain cycles, or if all
cycles are established through stateful nodes (as for instance in SML), one
can employ a technique called hash-consing to maximize sharing in the store.
Upon construction of a node v in the store, a hash value of v is computed and
v is stored in a table. If a node w with the same hash value is constructed, a
reference to v is used instead of actually allocating w. The cost of maximizing
sharing is hence amortized during the construction of nodes.

Hash-consing was first introduced in LISP systems. Appel and Gonçalves
discuss how to integrate hash-consing with the SML/NJ garbage collector [3].
Their system only hashes nodes that have survived at least one garbage collec-
tion, such that the cost of hashing is only paid for longer-lived nodes. Another
application area of hash-consing is the efficient representation of type infor-
mation in intermediate languages [25,26].

6.3 General graph minimization

In the following, we develop a general minimization service on the level of the
abstract store. The algorithms are based on automaton and graph minimiza-
tion and remove all redundant nodes in a given subgraph of the abstract store.
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For Alice, it is important that minimization can handle cyclic data, because
stateless cycles are ubiquitous: the representation of runtime types, the code
representation as well as function closures may contain such cycles.

The definition of minimization relies on a definition of equivalence of nodes
in an abstract store. This is captured by an equality relation ∼∈ Adr × Adr
that is defined to satisfy the following conditions:

(i) If v ∼ v′, g(v) = (l, ) and l ∈ Labtoken, then
• v = v′

(ii) If v ∼ v′, g(v) = (l, s) and s ∈ Str, then
• g(v′) = g(v)

(iii) If v ∼ v′ and g(v) = (l, 〈v0, . . . , vn〉), then
• g(v′) = (l, 〈v′

0
, . . . , v′

n
〉) and

• ∀i ∈ {0, . . . , n} : vi ∼ v′

i

The union of two equality relations is again an equality relation. The
relation ∼=, which is defined as v ∼= v′ :⇔ v = v′, is an equality relation.
Let Eq be the set of all equality relations. Then ∼S is defined as the (non-
empty) union of all equality relations:

∼S=
⋃

∼∈Eq

∼

As equality relations are closed under union, ∼S is the unique largest
equality relation. It exactly expresses semantic equality in an abstract store:
two nodes cannot be distinguished except for their address. It is necessary to
consider the largest such relation, because any smaller relation does not yield
the required equivalences for cyclic graphs.

Semantic equality in the store as defined by ∼S is strictly stronger than
semantic equality in Alice:

• Values of non-eqtypes can be considered equal. In particular, values of
functional type can be considered equal.

• Values of different types can be considered equal, as long as their represen-
tations allow this.

• Cyclic values can be considered equal, although the equality operator ap-
plied to them would diverge.

Given a subgraph g, minimization computes the equivalence classes of g

with respect to ∼S. We can then use this information to replace each node
in g by a unique representative of its equivalence class. The resulting graph
g′ is minimal in the sense that for two nodes w and w′ in g′, w ∼S s′ implies
w = w′.
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Graph minimization is a well-know problem: first algorithms for minimiz-
ing finite state automata can be found in textbooks from the sixties. In 1971
Hopcroft gave an algorithm with O(n logn) worst case time complexity [13].
His algorithm easily generalizes to ordered graphs.

The main idea is to refine an initial equivalence relation such that it is
compatible with the graph structure: if v ∼ v′, then for the successor wi of v

at edge number i, v′ has a successor w′

i at edge i such that wi ∼ w′

i. Such an
equivalence relation is called a congruence.

If we start with an equivalence that makes exactly the nodes with different
labels different, it is easy to see that graph minimization will yield a congruence
that describes exactly semantic equivalence of nodes.

To actually minimize the graph, a representative r of each congruence class
c must be chosen, all edges to the other members of c redirected to r, and all
other members of c deleted.

Our implementation of the minimizer is based on the generic approach
of partition refinement as described by Habib et al. [10]. A combination of
Hopcroft’s algorithm with these ideas can be easily adjusted to the abstract
store model. It yields an efficient general purpose minimization service.

6.4 Stateful data

In order to be used in non-pure languages, the minimizer must be able to
deal with stateful data. Stateful data, that is store nodes whose edges can be
redirected, must remain unique. This follows directly from the fact that in
the following example, a and b are distinguishable in the language, while a′

and b′ are not:

val a = ref 3
val b = ref 3
val a’ = SOME 3
val b’ = SOME 3

Graph minimization only refines the initial equivalence relation, it there-
fore suffices to make all stateful nodes distinct in the initial partition, and
they will remain distinct after minimization.

The minimizer is available in the Alice standard library as a function
minimize : ’a -> unit. It takes an arbitrary Alice value and minimizes
its representation in the store.

6.5 Areas of application

Minimization can be seen as a form of semantic garbage collection: it does not
reclaim nodes that are unreachable, but nodes that are redundant. As for any
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form of garbage collection, one has to trade off the runtime it requires against
the benefits of a smaller memory footprint.

It is imaginable to integrate the minimizer with the garbage collector,
much like Appel and Gonçalves did [3]. The minimizer can be applied to only
certain areas of the store, or only at a major collection. We have not yet imple-
mented this scenario, and the benchmarks provided by Appel and Gonçalves
suggest that the space savings were ”not very impressive”. The situation may
be different for Alice, though, because the data that is minimized is rather
different from the data in SML: not only runtime data, but all components
of the system are kept in the heap, including their code representation. This
may provide more potential for the minimizer.

The most straightforward application is to always minimize before pickling.
A pickled value is supposed to be long-lived, so investing into minimization
may pay off. The Alice compiler and static linker provide options for minimiz-
ing the compiled components before pickling them, and this has proved to be
feasible as well as worth the effort (see the benchmarks in the next section).

Minimization together with a test on token equality provide a structural
equality test for cyclic data:

fun cyclic_equal(x,y) = (minimize (x,y); token_eq(x,y))

Other applications are more problem-specific. We are currently investigat-
ing how the runtime representation of dynamic types (as required for packages)
can benefit from minimization. What is especially interesting here is the fast
structural equality test: in a minimized representation, two types are equal if
and only if they are represented by the same node.

6.6 Benchmarks

As a benchmark, we have compiled the Alice library, consisting of 818 com-
ponents, with and without minimization:

component size pickle size compilation time

not minimized 104.29 12.58 22m36s

minimized 71.80 (69% ) 12.51 (99%) 22m26s (99%)

The component size is the size (in megabytes) the components take up
in the store. The minimizer can shrink the components by 30%. Pickle size
(also in megabytes) measures the file size of the pickles. The pickler uses
gzip compression to further shrink pickle file sizes, and in compressed format,
minimized pickles are only slightly smaller than ordinary pickles. This is due
to the fact that gzip compression also eliminates redundancy, and there is less
redundancy to eliminate in minimized pickles.

The last column is the time needed to compile all components. It shows
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that minimization does not incur any runtime overhead, on the one hand
because it is fast, on the other hand because the compiler benefits from loading
smaller components for type checking.

All Alice programs benefit from the minimized library, because of both
reduced startup times and a smaller memory footprint.

The benchmarks were made on a AMD 64 3000+ with 512MB RAM,
running Debian Linux for AMD64. The exact numbers for the component
sizes will differ on a 32bit platform, but the relative compression will remain
the same.

7 Concurrency and Laziness

Alice is a concurrent language, and the fundamental concept that concurrency
is based on is that of a future. A future is a placeholder for a value that
is not yet known, such as the result of a concurrent computation or a lazy
evaluation. Futures provide data-flow synchronization: a thread that needs
to access a future is implicitly blocked until the future is determined. Futures
were first introduced in Multilisp [11]. A formal semantics of futures can be
found in [19].

As an example, consider a function f : int -> int that performs some
complex computation on integers. We can evaluate it in a new thread with the
expression val a = spawn f 3. This immediately returns a future, and f 3

is evaluated concurrently. If we now access a, as for instance in the expression
val b = a + 3, this thread will block until the result of the evaluation of f 3

is available. The result will replace the future, and the thread evaluating b

automatically resumes.

Laziness is similar to concurrent evaluation: the expression val a = lazy

f 3 immediately evaluates to a lazy future. Only when the value is actually
needed, for example in the expression val b = a + 4, the application f 3 is
evaluated and the future is bound to the result.

7.1 Futures in the abstract store

The future semantics requires that a future is replaced with a value when it is
bound. To make this replacement efficient, futures are built into the abstract
store in the form of nodes with special labels: Lab ⊇ {fut,lazy}.

When a concurrent future is created, a block of arity 1 with label fut

is constructed. Replacing a future f with a value v amounts to a become

operation on the store: the label of the node representing f is changed to the
internal label fwd (a forwarding node), and the edge is redirected to point to
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the node representing v. All other operations on the store follow chains of fwd

nodes transparently, and garbage collection performs a path compression of
these chains.

7.2 Concurrent pickling and unpickling

Pickling and unpickling as described so far work well for sequential languages.
In the concurrent setting that we have in Alice, however, we must take care
of futures.

Unpickling is not critical: the root of the constructed subgraph becomes
available only after the graph has been fully constructed.

For pickling, however, we require a snapshot semantics: the pickle shall
represent the subgraph at one particular moment in time. The simplest solu-
tion is to regard futures as resources and just not pickle them. In a language
like Alice, where futures are ubiquitous due to lazy linking, this would however
render pickling considerably less useful.

For lazy futures, there are two possible approaches: force their evaluation,
or pickle the complete lazy suspension (which is also represented in the store).
Pickling concurrent futures would amount to pickling threads, which is more
involved and will not be discussed here. We assume that the evaluation of
concurrent futures must be forced during pickling.

If we consider only stateless graphs, futures guarantee that the graph grows
monotonically. Forcing their evaluation during pickling will hence result in a
snapshot of the graph after pickling.

Once we have a cloning semantics for pickling stateful data, a concurrent
pickler cannot make sure that the graph does not change during pickling.
Pickling itself hence must be atomic. Evaluation of futures can still be forced:
the pickler leaves atomic mode to wait for the future to be bound, and later
starts over the whole atomic pickling process. This can of course imply that
pickling does not terminate.

The Alice pickler is eager, it forces evaluation of lazy futures and waits
for all futures to be bound. Because of lazy linking, a lot of futures whose
suspensions contain resources are in the system, and components could not
easily be pickled. This has the trade-off, however, that lazily constructed
infinite data structures cannot be pickled. Thus, it would be desirable to be
able to choose the pickling mode per data structure.

7.3 Concurrent minimization

Like the pickler, the minimizer must be able to deal with futures. It has two
options to do so: ignore futures (treating them like stateful data) or force their
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evaluation in the same way pickling does (such that minimization is atomic
and always minimizes a snapshot).

Our implementation currently copies our pickler’s behavior. As for the
pickler, one could provide a non-forcing mode for the minimizer, too.

In conjunction with pickling, requesting the futures is necessary. Other-
wise, pickling itself will request the futures, and the pickle may not be minimal.
It is however not clear if this is always the desired semantics: a data structure
that would benefit from minimization but at the same time contains a lot of
lazy futures may actually get bigger if the minimizer requests all futures.

8 Related work

Birrell et al. [5] coined the term pickling in a paper about small databases.
Pickling mechanisms in one form or the other can be found in many program-
ming systems. The first published pickling mechanism for a programming
language is that of CLU by Herlihy and Liskov [12]. It already contains most
of the essential ideas, like customization of the pickling process and a discus-
sion of safety properties. The Modula-3 language [18] inherited some of the
concepts from CLU and also comes with a pickling mechanism.

Mozart/Oz[28] uses pickling for persistence and distribution of arbitrary
data, including the so called functors, which implement the Oz module system.
Mozart pickles can hence contain code. Alice inherits many ideas from Mozart.

SML/NJ uses pickling to generate binary modules for separate compilation
[4]. Pickling is provided through the Unsafe library structure. As the name
suggests, unpickling performs no type checks, the behavior is undefined if
types do not match. A look at the source code reveals that the pickler uses
the garbage collector’s Cheney scan to copy a subgraph to a fresh memory area,
and then adjusts pointers and optimizes the representation of some objects
(as was discussed in the section on BFS in this paper).

Objective Caml [20] offers a library module Marshal which allows for per-
sistence and distribution of all values except objects. Code is not pickled
directly but only as a pointer into the address space. Pickling is thus not plat-
form independent (as the Caml compiler produces native machine code); in
fact a pickle containing function pointers is only valid if loaded from the same
binary that produced it. The pickler has support for detecting resources and
rejects to pickle them. Pickling is unsafe, as unpickling performs no dynamic
type check.

Kennedy presents a library of pickler combinators [15], with implementa-
tions in Haskell and SML. It is implemented in the language itself, and for each
type that is supposed to be pickled, a specific pair of pickling and unpickling
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functions must be implemented. This approach only works for ground values,
functions cannot be pickled. Cyclic data can be dealt with, if the cycle is es-
tablished through a ref cell. Kennedy uses an idea similar to hash-consing to
deal with sharing: the algorithm maintains a dictionary of the byte sequences
of values already pickled, and if a byte sequence appears again, a reference to
the original sequence is pickled instead. The effect is a minimization of the
pickle.

The most prominent implementation of pickling can be found in Java,
where pickling is called serialization. It is described in detail in the Java

Object Serialization Specification [14]. There also is a compact introduction
to the internals [22], revealing the roots of Java serialization in CLU and
Modula-3. Java serialization differs from pickling as we present it: only the
state of the object graph is serialized, not the object definitions (the classes,
and hence the code). Pickling can be customized in the language, one can cut
off branches or define the external (binary) representation of an object.

Microsoft’s .NET Framework [17] offers a library module that provides a
serialization mechanism similar to Java’s. In contrast to Java, it clearly sep-
arates customization of the pickling process from the resulting pickle format,
and it provides different pickle formats (binary, XML, and SOAP [29]).

The object-oriented scripting language Python [21] implements two dis-
tinct methods of serialization: one mechanism can pickle code, but no cyclic
data structures and does not preserve sharing between objects. Another mech-
anism can cope with cycles and sharing, but not with code. The Python pickler
is the only system besides Alice that is known to employ a postorder/bottom-
up strategy.

This list is not exhaustive, because most high-level programming languages
provide some implementation of persistence or distribution. Most of them do
not specify any details though and concentrate on the high-level features like
type-safety and customization.

There has been some work on maximizing sharing of ML runtime data
structures. Most efforts are based on a variation of hash-consing. This solves
a problem that is different from what our minimizer does, as only acyclic data
can be shared. This is feasible in a setting where all cycles go through ref
cells which may not be shared anyway. Appel and Gonçalves describe how to
integrate hash-consing with the garbage collector [3].

The MLTon system features a library function share : ’a -> unit,
very similar to the minimize function introduced here. The mechanism is im-
plemented as a mark-compact garbage collector extended with hash-consing
and cannot minimize cycles. Only fixed-size objects are hashed.
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9 Conclusion and Future Work

We presented a generic pickling and minimization mechanism. We showed how
Alice, as a conservative extension of Standard ML, uses pickling in a type-safe
way for its component system. To build a formal base for the algorithms,
we introduced abstract stores as a universal memory model. Unpickling and
pickling are based on this model, allowing us to analyze and evaluate our
design decisions such as bottom-up versus top-down unpickling and right-to-
left versus left-to-right traversal. Minimization can be used to decrease the size
of pickled data. However, the general mechanism presented here seems suitable
for other applications such as efficient representation of runtime types. Finally,
we extended the system with support for concurrency as present in Alice. We
analyzed how pickler and minimizer must behave in such a concurrent setting.

9.1 Conclusions

The abstract store presented in this paper is a powerful layer of abstraction,
both for implementation as for formalizing aspects of a programming system.
It is the basis of advanced store services, pickling and minimization. Pickling
as presented here is especially well suited for functional programming lan-
guages, where the closure semantics and the ability to pickle code is essential.
We have shown that minimization, as a store service, helps reduce pickle sizes
considerably.

All the concepts introduced here were implemented in the Alice program-
ming system, proving that the presented design decisions lead to an efficient
implementation.

9.2 Future work

Future work on the pickling mechanism must address the lower-level safety
issues: how can a pickle be verified on the byte level? The directions to explore
include cryptographic methods and advanced techniques such as typed pickles,
typed abstract stores, and proof carrying code.

The minimizer suggests to explore more data structures that would ben-
efit from automatic minimization. Our exploration of the representation of
dynamic type information will give more insight into this. Coupling the min-
imizer with the garbage collector may be worth a try – especially if this is
done in the presence of special store areas that are always kept minimal.
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