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a b s t r a c t

This work extends studies of Angluin, Lange and Zeugmann on the dependence of
learning on the hypothesis space chosen for the language class in the case of learning
uniformly recursive language classes. The concepts of class-comprising (where the learner
can choose a uniformly recursively enumerable superclass as the hypothesis space) and
class-preserving (where the learner has to choose a uniformly recursively enumerable
hypothesis space of the same class) are formulated in their study. In subsequent
investigations, uniformly recursively enumerable hypothesis spaces have been considered.
In the present work, we extend the above works by considering the question of whether
learners can be effectively synthesized from a given hypothesis space in the context of
learning uniformly recursively enumerable language classes. In our study, we introduce
the concepts of prescribed learning (where there must be a learner for every uniformly
recursively enumerable hypothesis space of the same class) and uniform learning (like
prescribed, but the learner has to be synthesized effectively froman index of the hypothesis
space). It is shown that while for explanatory learning, these four types of learnability
coincide, some or all are different for other learning criteria. For example, for conservative
learning, all four types are different. Several results are obtained for vacillatory and
behaviourally correct learning; three of the four types can be separated, however the
relation between prescribed and uniform learning remains open. It is also shown that every
(not necessarily uniformly recursively enumerable) behaviourally correct learnable class
has a prudent learner, that is, a learner using a hypothesis space such that the learner learns
every set in the hypothesis space. Moreover the prudent learner can be effectively built
from any learner for the class.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Human learning is a process in which general principles, which are useful for reasoning about human activities and
the external environments, are synthesized from a limited amount of data. Illustrative examples include the acquisition of
languages by children and the discovery of scientific laws. What is the mechanism that enables human beings to learn so
many different and apparently unrelated things that they are able to learn? Understanding such mechanism, and hopefully
automating such mechanism using machines, are of fundamental importance.
Although it is still not yet clear how human beings learn, it is generally agreed that an important mechanism in human

learning is inductive inference [2,26], which is the process of observing more and more examples, and forming a sequence
of conjectures which eventually converges to one single conjecture that explains all the examples. A natural question is
how powerful inductive inference is. Put it in another way, what are the classes of concepts that can be learned using
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inductive inference? To answer this question, Gold formulated a recursion-theoretic framework of inductive inference [11].
A recursion-theoretic framework is natural and significant in two ways.

• First, if we assume that human learning is a computational process and we accept the Church–Turing thesis, then a
recursion-theoretic model for inductive inference is sound and suitable for answering what classes of concepts are
learnable using inductive inference.
• Second, a recursion-theoretic model at least tells us the limits of what computers can learn automatically, irrespective
of any assumption on the nature of human learning.

Since the publication of Gold’s framework, many works have been done to extend it. We briefly mention a few examples
below. Gold considered only the simplest success criteria for learning: the sequence of conjectures eventually converges
to a single correct conjecture. But just as done in machine learning, it is natural to require some performance metrics in
the learning process, and thus various natural success criteria have been studied, such as conservative learning [1] and
monotonic learning [24]. While Gold used acceptable numberings of r.e. languages as possible hypothesis spaces, Angluin
considered using indexed families (or uniformly recursive language classes) as hypothesis spaces for learning of indexed
families [1], and she characterized learnable indexed families. Many other interesting questions have been studied and a
survey of the subject can be found in [12].
A basic characteristic of inductive inference is that inductive inference is always based on some inductive bias, which is

the assumption on what kinds of hypotheses are possible. For example, in machine learning, when we use decision trees
or neural networks to learn some concepts, we are assuming that the concepts can be represented using decision trees or
neural networks. The same remark applies to human learning as well.
A natural question stemming from this observation is whether the inductive bias, that is, the choice of hypothesis space

is critical in learning. In addition, are we able to learn in some systematic way such that whenever we have a hypothesis
space covering the concepts to be learned, then we are guaranteed to learn the target concepts correctly? That is, are we
able to effectively synthesize a correct learning method for any given hypothesis space covering all target concepts?
Lange andZeugmannhave shown that the choice of hypothesis space canbe critical, in the sense that the hypothesis space

chosen can affect whether a language class is learnable, even when the hypothesis space covers all target languages. In this
paper, we extend the work of Lange and Zeugmann and study the question of synthesizing learners from hypothesis spaces
in the context of learning uniformly r.e. language classes. It is shown that although it is not always possible to effectively
synthesize learners from hypothesis spaces, there indeed exist non-trivial language classes for which this can be done.
Note that previously learnability of uniformly r.e. classes had been considered by de Jongh, Kanazawa [8] and Zilles [28,

29]. De Jongh and Kanazawa [8] gave a characterization of when uniformly r.e. classes of languages are learnable in the limit.
Zilles [28,29] had considered effective synthesis of learners from indices for r.e. classes of languages (although in her case,
it was the target class which varied with the index, rather than the hypothesis space as in our case).
Another interesting question on inductive inference is whether a learnable class can always be learned by a prudent

learner, that is, a learner which only outputs conjectures for languages which can be learned by it. A general observation
is that machine learning algorithms are generally prudent. It has already been shown that for several learning criteria, a
prudent learner exists for a learnable class.Weprove that the answer is positive for the case of behaviourally correct learning,
which has been open since 1988.
We proceed formally in the following paragraphs.

Remark 1. We first introduce some basic recursion-theoretic notations and some basic notations for inductive inference.
Let W0,W1,W2, . . . be an acceptable enumeration of all r.e. subsets of the set of natural numbers N. A language is an r.e.
subset of natural numbers. Let ϕe denote the e-th partial-recursive function, again from an acceptable numbering. For more
information on recursion theory, the reader is referred to standard textbooks like the ones of Odifreddi [19] and Soare [23].
The function 〈e, x〉 = 1

2 · (e+ x)(e+ x+ 1)+ x is Cantor’s pairing function. A family L0, L1, L2, . . . is uniformly recursively
enumerable iff {〈e, x〉 : x ∈ Le} is a recursively enumerable set. For ease of notation, uniformly r.e. classes are just called
r.e. classes. Note that in this paper, notations like {L0, L1, L2, . . .} are used as a short-hand for both, the family as well as for
the class of the sets; so set-theoretic comparisons like {L0, L1, L2, . . .} ⊆ {H0,H1,H2, . . .} and {L0, L1, L2, . . .} = {H0,H1,
H2, . . .} ignore the ordering of the sets inside the class. Furthermore, letWe,s, Le,s,He,s be the elements enumerated within
time s intoWe, Le,He, respectively. Without loss of generality,We,s, Le,s,He,s are subsets of {0, 1, . . . , s}.
Let σ , τ range over (N∪ {#})∗. Furthermore, let σ ⊆ τ denote that τ is an extension of σ as a string. content(σ ) denotes

the set of natural numbers in the range of σ . T is a text if T mapsN toN∪{#} and T is a text for La iff the numbers occurring in
T are exactly those in La. content(T ) denotes the set of natural numbers in the range of T . T [n] denotes the string consisting
of the first nmembers of the text T , so T [0] is the empty string and T [2] = T (0)T (1).

Definition 2. A learner is a recursive function from (N∪ {#})∗ to N∪ {?}. In the following, letM be a learner and let {L0, L1,
L2, . . .}, {H0,H1,H2, . . .} be r.e. classes. Here {L0, L1, L2, . . .} is the classM should learn and {H0,H1,H2, . . .} is the hypothesis
space used byM .
The learnerM converges on T to b if there is an nwithM(T [m]) = b for allm ≥ n.
The learnerM is finite [11] if for every text T there is one index e such that for all n, eitherM(T [n]) = ? orM(T [n]) = e.
The learnerM is confident [21] ifM converges on every text T to a hypothesis.
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The learnerM is conservative [1] if for all σ , τ withM(στ) 6= M(σ ) there is an x occurring in στ such that x /∈ HM(σ ).
The learnerM semantically identifies La if, given any text T for La, HM(T [n]) = La for almost all n. The learnerM syntactically

identifies La if, given any text T for La, there is a bwith Hb = La andM(T [n]) = b for almost all n.
The learner M is a behaviourally correct learner for {L0, L1, L2, . . .} iff M semantically identifies every La [4,7]. M is an

explanatory learner for {L0, L1, L2, . . .} if M syntactically identifies every La [5,11]. M is a vacillatory learner for {L0, L1,
L2, . . .} iffM is a behaviourally correct learner for {L0, L1, L2, . . .}which on every text for a language La outputs only finitely
many syntactically different hypotheses [6].
The learnerM is prudent [10,21] if it learns all languages in its hypothesis space {H0,H1,H2, . . .}.

In the first three sections, all classes considered are recursively enumerable, only in Section 4 learnability of general classes
is investigated.
Remark 3. Let M be a learner for {L0, L1, L2, . . .} using {H0,H1,H2, . . .} as the hypothesis space. A sequence σ is called a
syntactic stabilizing sequence forM on a set L iff σ ∈ (L ∪ {#})∗ and for all τ ∈ (L ∪ {#})∗,M(στ) = M(σ ). A sequence σ is
called a semantic stabilizing sequence forM on a set L iff σ ∈ (L∪ {#})∗ and for all τ ∈ (L∪ {#})∗, HM(στ) = HM(σ ). Stabilizing
sequences are called locking sequences forM on L, if in addition to the above conditions it holds that HM(σ ) = L. Note that, if
M learns L then stabilizing sequences forM on L are also locking sequences forM on L.
Let K denote the halting problem. Let K ′ denote the halting problem relative to K . There is a partial-K -recursive function

Γ which assigns to each e the length-lexicographically least syntactic stabilizing sequence for M on Le; Γ (e) is defined iff
such a sequence exists. Γ has a two-place approximation γ (e, t) which converges to Γ (e) if Γ (e) is defined and diverges
otherwise. Note that Γ and γ can be obtained effectively from an index forM and an index e′ withWe′ = {〈e, x〉 : x ∈ Le}.
Blum and Blum [5] introduced the notion of locking sequences and Fulk [10] introduced the notion of stabilizing sequences.
Angluin [1] initiated the study of learning indexed families with respect to uniformly recursive hypothesis spaces, rather
than uniformly r.e. hypothesis spaces. Lange and Zeugmann [16,25,26] considered the effect of allowing hypothesis spaces
to contain languages not in the target language class and allowing the ordering of languages in the hypothesis space to be
changed. They investigated the relationship between three types of learning: exact learning, where the hypothesis space is
just the language class to be learned; class-preserving learning, where the hypothesis space consists of the same sets as {L0,
L1, L2, . . .}; and class-comprising learning, where the hypothesis spacemay contain besides the sets from {L0, L1, L2, . . .}, also
some other sets. Later, Lange, Kapur and Zeugmann [17,27] extend these studies. In the present work, we extend the study
on the dependence of learnability on hypothesis space by introducing the new notions of uniform and prescribed learning to
address the problem of synthesizing learners from any given class-preserving hypothesis space. In the following definition,
let I range over properties of learners as defined in Remark 2; that is, I can stand for ‘‘finite’’, ‘‘explanatory’’, ‘‘conservatively
explanatory’’, ‘‘confidently explanatory’’, ‘‘vacillatory’’ and ‘‘behaviourally correct’’.
Definition 4. {L0, L1, L2, . . .} is class-comprisingly I learnable (see [16]) iff it is I learnable with respect to some hypothesis
space {H0,H1,H2, . . .}; note that learnability automatically implies {L0, L1, L2, . . .} ⊆ {H0,H1,H2, . . .}.
{L0, L1, L2, . . .} is class-preservingly I learnable (see [16]) iff it is I learnable with respect to some hypothesis space {H0,

H1,H2, . . .} satisfying {H0,H1,H2, . . .} = {L0, L1, L2, . . .}.
{L0, L1, L2, . . .} is prescribed I learnable iff it is I learnable with respect to every hypothesis space {H0,H1,H2, . . .} such

that {L0, L1, L2, . . .} = {H0,H1,H2, . . .}.
{L0, L1, L2, . . .} is uniformly I learnable iff there is a recursive enumeration of partial-recursive functionsM0,M1,M2, . . .

such that the following holds: Whenever {H0,H1,H2, . . .} = {L0, L1, L2, . . .} andWe = {〈d, x〉 : x ∈ Hd} thenMe is total and
an I learner for {L0, L1, L2, . . .}with respect to this hypothesis space {H0,H1,H2, . . .}.
Remark 5. Note that exact learning requires the ordering of the languages in {L0, L1, L2, . . .} be taken into account, while all
other definitions hold without paying attention to the specific ordering of the sets inside {L0, L1, L2, . . .}. Exact learning and
prescribed learning are related : a class {L0, L1, L2, . . .} is prescribed I learnable iff every family {H0,H1,H2, . . .} with {H0,
H1,H2, . . .} = {L0, L1, L2, . . .} is exactly I learnable.
The question whether a class can be learned using any given representation is quite natural. It reflects the situation where
a company building learners cannot enforce its representation of the data/hypothesis on the clients but has to make for
each client a learning algorithm using the client’s representation. The difference between prescribed and uniform learning
would then be that in the first case the programmers have to adjust for each client the learning program by hand, while in
the second case there is some synthesizer which reads the client’s requirements from some file and then adapts the learner
automatically.
Remark 6. Note that in the case of learningwith respect to r.e. families, uniform learning andprescribed learning are defined
in a class-preserving way. Jain and Stephan [14] showed that there is a one–one numbering of all r.e. sets (that is a Friedberg
numbering [9]) such that only classes with finitely many infinite sets can be behaviourally correctly learned with respect to
this numbering as hypothesis space.
Furthermore, the above result can be strengthened to uniform learning by showing that only classes consisting of

finite sets are class-comprising uniformly behaviourally correct learnable. To see this, let {H0,H1,H2, . . .} be a Friedberg
numbering [9]. For a given parameter e, a family {G0,G1,G2, . . .} is constructed from {H0,H1,H2, . . .} such that the following
hold for all a:

• For all b, G〈a,b〉 ⊆ Ha;
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• G〈a,b〉 = Ha if either b = 0 ∧ |We| = ∞ or b = |We| + 1;
• G〈a,b〉 is finite if either b > 0 ∧ |We| = ∞ or b 6= |We| + 1 ∧ |We| <∞.

Suppose byway of contradiction that there is an r.e. infinite setHa such that some class containingHa can be class-comprising
uniformly behaviourally correctly learned. Note that for any fixed e and the class {G0,G1,G2, . . .} with parameter e built
as above, there exists exactly one index 〈f (e), g(e)〉 with G〈f (e),g(e)〉 = Ha. By construction, f (e) = a. By the assumption on
uniform learnability, there is a recursive enumeration of learnersN0,N1,N2, . . . such that eachNe learns the given classwith
respect to the hypothesis space {G0,G1,G2, . . .} built with parameter e. As there is a fixed recursive text T forHa and one can
simulateNe on T , the function g is limit-recursive (that is, there exists a recursive functionh such that g(x) = limt→∞ h(x, t)).
Note that We is infinite iff g(e) = 0. As {e : |We| = ∞} 6≤T K , this gives a contradiction. So class-comprising uniform
behaviourally correct learning only permits learning classes of finite sets.
Thus it is reasonable to restrict oneself to the class-preserving versions of prescribed and uniform learning; this

convention has already been adapted in Definition 4.
The next result is obvious from the definitions.
Proposition 7. For any notion I of learning and any classL, the following implications hold:L is uniformly I learnable⇒L is
prescribed I learnable⇒L is class-preservingly I learnable⇒L is class-comprisingly I learnable.
It depends on the chosen learning criterion I , which of the implications can be reversed. For finite and explanatory learning,
all four notions are the same, as shown in Theorems 8 and 9. A lot of research [12] deals with requiring additional constraints
on how hypotheses are chosen during explanatory learning. Such requirements change also the relations between the
four types of learning. For confident learning, Theorem 10 shows that the uniform, prescribed and class-preserving types
coincide while class-comprising confident learning is more general. For conservative learning, Example 11 gives classes
which separate all four types of conservative learning. Theorems 12, 13, 15 and 16 deal with vacillatory and behaviourally
correct learning. They give classes which, for these criteria, are class-comprisingly but not class-preservingly learnable as
well as classes which are class-preservingly but not prescribed learnable. The separation of prescribed from uniform is open
for these two criteria.
The concept of prudent learning in inductive inference was first formalized by Osherson, Stob and Weinstein [20]. Fulk

showed that prudence is not restrictive for explanatory learning [10]. Jain and Sharma [13] showed that prudence is not
restrictive for vacillatory learning. In Theorem 17 it is shown that prudence is not restrictive for behaviourally correct
learning. In 1988, Kurtz and Royer [15] had claimed to have this result, but their proof had a bug and the problem had
remained open since then. Furthermore, the construction of the prudent learner is effective in the original learner for
a behaviourally correct learnable class. It is still open whether prudence for explanatory and vacillatory learning can be
effectivized.

2. Finite and explanatory learning

Finitely learnable classes can be learned uniformly, because a finite learner essentially associates each language with a
characteristic finite subset.
Theorem 8. Every class-comprisingly finitely learnable class is also uniformly finitely learnable.
Proof. Let M be a finite learner for {L0, L1, L2, . . .} using a class-comprising hypothesis space. Let e be an index for a
hypothesis space {H0,H1,H2, . . .}. That is, We = {〈b, x〉 : x ∈ Hb}. Further suppose {H0,H1,H2, . . .} = {L0, L1, L2, . . .}.
Then a learnerMe is defined as follows.Me(T [n]) is defined by the first case below which applies:

• If there is anm < nwithMe(T [m]) 6= ? thenMe(T [n]) = Me(T [m]) for the least suchm;
• If there arem ≤ n and b ≤ nwithM(T [m]) 6= ? and content(T [m]) ⊆ Hb,n thenMe(T [n]) = b;
• OtherwiseMe(T [n]) = ?.

The first condition guarantees that Me outputs on T at most one hypothesis besides the symbol ?. Hence every Me is a
finite learner. It follows from the definition of finite learning that Hb = Hc whenever M(T [m]) 6= ?, content(T [m]) ⊆ Hb
and content(T [m]) ⊆ Hc . Hence the b chosen in the second case is a correct hypothesis whenever this case applies.
Furthermore, this case eventually applies on texts for languages in {L0, L1, L2, . . .}. This completes the proof that {L0, L1,
L2, . . .} is uniformly finitely learnable. �

The same result holds for explanatory learning.
Theorem 9. Every class-comprisingly explanatorily learnable class is also uniformly explanatorily learnable.
Proof. Let L be given and let M be a learner using a hypothesis space {L0, L1, L2, . . .} containing L and perhaps other
languages. Choose i such thatWi = {〈a, x〉 : x ∈ La}.
Fix any j and assume that j is an index of a hypothesis space {H0,H1,H2, . . .} forL, that is, assume {H0,H1,H2, . . .} = L

and Wj = {〈b, x〉 : x ∈ Hb}. Let Γj be the function from Remark 3 which assigns to the members of {H0,H1,H2, . . .}
the length-lexicographically least syntactic stabilizing sequences with respect to the learner M . γj(b, t) is then the t-th
approximation of Γj(b) as defined in Remark 3.
The learnerMj is constructed as follows:Mj(σ ) is the least b such that either γi(M(σ ), |σ |) = γj(b, |σ |) or b = |σ |. The

latter condition is just to makeMj total and to terminate the search.
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Assume that M converges on some text T to an index a of a language La ∈ L. As La ∈ L, there is a b with Hb = La;
assume that b is the least such index. As {H0,H1,H2, . . .} = L and M is a learner for {H0,H1,H2, . . .}, an index c satisfies
Γj(c) = Γi(a) iff Hc = La. Hence Mj converges on T to b as, for all c < b and almost all s, γj(b, s) = γi(a, s) and
γj(c, s) 6= γi(a, s). It follows thatMj learnsL using the hypothesis space {H0,H1,H2, . . .}. �

The next result shows that class-preserving confident learning coincides with uniform confident learning. The proof of the
second part shows that class-preserving confident learning is not closed under taking subclasses.

Theorem 10. (a) Every class-preservingly confidently learnable classL is also uniformly confidently learnable.
(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly but not class-preservingly confidently learnable.

Proof. (a) Reviewing the proof of Theorem 9, the additional constraints to those given there on M and {L0, L1, L2, . . .} are
that {L0, L1, L2, . . .} = L andM converges on every text to some index. Assume again that j and {H0,H1,H2, . . .} satisfy {L0,
L1, L2, . . .} = {H0,H1,H2, . . .} and Wj = {〈b, x〉 : x ∈ Hb}. Assume that T is any text. Then M converges on T to some
index a as M is confident. By construction, Mj converges then to the least index b with La = Hb. Hence Mj also converges
on all texts and henceMj is confident. Furthermore,Mj learnsL explanatorily with respect to the hypothesis space {H0,H1,
H2, . . .}.
(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly confidently learnable as follows. On a text for a

set with up to two elements, the learner converges to an index for this set using {W0,W1,W2, . . .} as the hypothesis space.
The learner does not revise its hypothesis after seeing three elements in the input, in order to obtain confidence.
Note that {D : |D| = 2∨ (|D| = 1∧ D ⊆ K ′)} is an r.e. class. To see this, note that there is a two-place recursive function

g with x ∈ K ′ iff g(x, y) = 1 for almost all y and x /∈ K ′ iff g(x, y) = 0 for infinitely many y. Now let

L2〈x,y〉 = {x, x+ y+ 1} and

L2〈x,y〉+1 =
{
{x, x+ z + 1} if z is the least number with z > y and g(x, z) 6= 1;
{x} if g(x, z) = 1 for all z > y.

It is easy to verify that {L0, L1, . . .} = {D : |D| = 2∨(|D| = 1∧D ⊆ K ′)}. It is easy to see that {L0, L1, L2, . . .} is even an indexed
family for the given class. Now assume that some confident learner M for {L0, L1, L2, . . .} uses some hypothesis space {H0,
H1,H2, . . .} with {H0,H1,H2, . . .} = {L0, L1, L2, . . .}. Then one can define the K -recursive function f with f (x) being the
hypothesis to whichM converges on the text x∞. If x ∈ K ′ then Hf (x) = {x} asM learns this set. If x /∈ K ′ then Hf (x) 6= {x} as
no member of {H0,H1,H2, . . .} equals {x}. The test whether Hf (x) = {x} is also K -recursive. This would give a contradiction
to K ′ 6≤T K . Thus there is no class-preserving confident learner for {L0, L1, L2, . . .}. �

For conservative learning, a strict hierarchy can be established. Note that the following example can be transferred to many
related notions like monotonic [24] and non-U-shaped learning [3] without giving more insight. Therefore, these learning
criteria are not considered in the present work.

Example 11. (a) The class {D : |D| ≤ 1} is prescribed conservatively but not uniformly conservatively learnable.
(b) The class {D : |D| <∞} is class-preservingly conservatively but not prescribed conservatively learnable.
(c) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly conservatively but not class-preservingly

conservatively learnable.

Proof. (a) The prescribed learner knows the index a of ∅ in the given numbering {H0,H1,H2, . . .}. So it conjectures Ha
until a number x occurs in the input and an index b is found with x ∈ Hb. Then the learner makes one mind change to b
and keeps this index forever. This learner is conservative and correct as {x} is the only set in {H0,H1,H2, . . .} containing x.
For the second part, let S be a simple set [22], that is, S is r.e., co-infinite and intersects every infinite r.e. set. For each e, let
Se = S∪{0, 1, . . . , e} and let se0, e

e
1, s

e
2, . . . be a uniformly recursive one–one enumeration of S

e. Now define class-preserving
hypothesis spacesH0,H1,H2, . . ., whereH e

= {He0,H
e
1,H

e
2, . . .}with H

e
x = {y} if x = s

e
y and H

e
x = ∅ if x /∈ S

e.
If {D : |D| ≤ 1} is uniformly conservatively learnable, then there exists a recursive family of learners N0,N1,N2, . . . such

that for all e ∈ N, Ne conservatively learns the class {D : |D| ≤ 1} with respect to H e. The r.e. set A = {x : for some e, Ne
outputs x on #∞} is infinite (as for all e, Ne outputs an index larger than e) and disjoint to S. This contradicts the fact that S
is simple.
Note that the hypothesis spacesH e constructed above are uniformly recursive. Thus, {D : |D| ≤ 1} is not even uniformly

class-preservingly conservatively learnable when the hypothesis spaces must be uniformly recursive. A similar observation
holds for part (b), too.
(b) The class of all finite sets is clearly conservatively learnable in the canonical numbering of the finite sets. Now let

I0, I1, I2, . . . be a recursive partition of the natural numbers into intervals such that there is a simple set A with In 6⊆ A for
all n. Let At denote A enumerated within t steps. Let {L0, L1, L2, . . .} be the canonical numbering of the finite sets and let
Hm = Ln form ∈ In−A andHm = Ln∪{m+n+ t,m+n+ t+1} form ∈ In∩A, withm ∈ At−At−1. It is easy to see that {H0,
H1,H2, . . .} is also a numbering of all finite sets. Assume now that M is a learner using the hypothesis space {H0,H1,
H2, . . .}. Let Tx denote the text x∞. Then one defines a recursive function f as follows: f (x) = b for the first b found such that
x ∈ Hb andM(Tx[k]) = b for some k. As all Hb are finite, the set {f (0), f (1), f (2), . . .} contains infinitely many indices and is
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recursively enumerable. Hence there is an xwith f (x) ∈ A. It follows that {x} ⊂ Hf (x) as Hf (x) contains at least two elements.
So the learnerM overgeneralizes on Tx[k] and is not conservative.
(c) In Theorem 10, it has been shown that the class {D : |D| = 2∨(|D| = 1∧D ⊆ K ′)} is an r.e. class. The class-comprising

confident learner given there is also conservative. Now assume that some conservative learner M for this class uses some
class-preserving hypothesis space {H0,H1,H2, . . .}. Then one can again define f (x), this time only partial-recursive, to be the
b found such thatM outputs b on the text x∞ and x ∈ Hb. Now x ∈ K ′ iff f (x) is defined and Hf (x) = {x}. This condition can
be checked with oracle K although K ′ 6≤T K . From this contradiction it follows that there is no class-preserving conservative
learner for {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)}. �

3. Vacillatory and behaviourally correct learning

For vacillatory and behaviourally correct learning, a strict hierarchy from prescribed to class-preserving to class-
comprising learning can be established. It remains open whether uniform learning is more restrictive than prescribed
learning.
Theorem 12. Let L2a = {〈a, b〉 : b ∈ N} and L2a+1 = {〈a, b〉 : b ≤ |Wa|}. Then {L0, L1, L2, . . .} is uniformly behaviourally
correct learnable and class-preservingly vacillatorily learnable but neither prescribed vacillatorily learnable nor class-comprisingly
explanatorily learnable.

Proof. Assume that {H0,H1,H2, . . .} = {L0, L1, L2, . . .} andWe = {〈b, x〉 : x ∈ Hb}. Let s be the length andD be the content of
the input. Now, uniformly in e, a behaviourally correct learnerMe using the hypothesis space {H0,H1,H2, . . .} is constructed.
Me first computes the sets

• A = {c ≤ s : D = Hc,s} and
• B = {c ≤ s : D ∩ Hc,s 6= ∅};

thenMe follows the first of the following cases which applies:

• If D = ∅ thenMe outputs ?;
• If A 6= ∅ thenMe outputs min(A);
• If B 6= ∅ thenMe outputs some c ∈ B for which Hc,s has the largest number of elements;
• OtherwiseMe repeats the previous conjecture.

The first case, togetherwith the last, makes sure thatMe is total, startswith ? and never returns to ? once it has taken another
hypothesis. Assume now that Me sees a text for a language Hb ∈ {L2a, L2a+1} and that b is the least index of Hb in {H0,H1,
H2, . . .}. Furthermore, assume that so much data have been observed such that the following four conditions hold:

• s ≥ b;
• The datum 〈a, 0〉 is in both, D and Hb,s;
• If Hb 6= L2a+1 (and thus,Wa and L2a+1 are finite), then |Hb,s| > |L2a+1| and |D| > |L2a+1|;
• If Hb is finite then Hb = Hb,s = D and, for all d < b and t ≥ s, Hd,t 6= D.

Note that D 6= ∅ and B 6= ∅ and therefore Me outputs a hypothesis c different from ?. Now it is shown that Hc = Hb: First
note that 〈a, 0〉 ∈ D and b ∈ B, hence the algorithm chooses c either by the second or the third condition in the algorithm.
It follows that Hc = L2a or Hc = L2a+1. If Hb is finite, it follows directly from the learning algorithm that b = min(A) for the
set A considered there and hence c = b. If Hb is infinite and L2a+1 is finite, then |Hc | ≥ |Hb,s| > |L2a+1| and Hc = L2a = Hb.
If Hb and L2a+1 are both infinite then Hb = L2a = L2a+1 and Hc = Hb. So Me is a behaviourally correct learner for {L0, L1,
L2, . . .} using the hypothesis space {H0,H1,H2, . . .}.
To see that {L0, L1, L2, . . .} is class-preservingly vacillatorily learnable, take Hb = Lb for all b. For each language there are

at most 2 indices in {H0,H1,H2, . . .} and therefore the above described behaviourally correct learner is also a vacillatory
one.
To see that {L0, L1, L2, . . .} is not prescribed vacillatory learnable, one constructs a suitable hypothesis space as follows:

H〈a,b〉 =
{
L2a+1 if b = min({s : |Wa,s| = |Wa|});
L2a otherwise.

For each a there is a b with H〈a,b〉 = L2a+1; if Wa is finite then one can take b as the minimum of the non-empty set
{s : |Wa,s| = |Wa|}; if Wa is infinite then one can take b = 0. The reason for the latter case is that then L2a = L2a+1.
Furthermore, all but at most one of the b satisfy L2a = H〈a,b〉. Hence {H0,H1,H2, . . .} is a hypothesis space for {L0, L1,
L2, . . .}. If there were a prescribed vacillatory learner using {H0,H1,H2, . . .} as the hypothesis space then there would also
be a K -recursive function f such that f (a) is the maximal element output by this learner on the canonical text for L2a+1. It
would follow that Wa is finite iff Wa,f (a) = Wa; note that f (a) ≥ 〈a, b〉 ≥ b for the least b such that L2a+1 = H〈a,b〉. But
then a K -recursive procedure could check, given a, whether Wa is finite. As such a procedure does not exist [23], {L0, L1,
L2, . . .} is not vacillatorily learnable with respect to the hypothesis space {H0,H1,H2, . . .}.
As just seen, {L0, L1, L2, . . .} is not prescribed vacillatorily learnable and hence also not prescribed explanatorily learnable.

It follows using Theorem 9 that {L0, L1, L2, . . .} is also not class-comprisingly explanatorily learnable. �
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Theorem 13. For all a, b let

L〈a,b〉 =


{〈a, c〉 : c ∈ N} if b = 0;
{〈a, c〉 : c ≤ |Wa|} if b = 1;
{〈a, c〉 : c ≤ |Wa,d|} ∪ {〈a+ 1, |Wa,d| + e+ 1〉} if b = 2+ 〈d, e〉.

The class {L0, L1, L2, . . .} is class-preservingly behaviourally correct learnable but not prescribed behaviourally correct learnable.

Proof. Recall that |Wa,d| ≤ d+ 1 for all d. It is easy to see that {L0, L1, L2, . . .} is a uniformly r.e. class. Assume that an input
of length s and content D is given. A behaviourally correct learner takes now the first case which applies.

• If there is a pair 〈a, b〉 such that 〈a+ 1, a+ b+ 2〉 < s and L〈a,b〉,s = D then output 〈a, b〉 for the least pair where these
conditions are true.
• If there is an a such that {〈a, 0〉} ⊆ D ⊆ L〈a,0〉 then output 〈a, 0〉.
• Otherwise output ?.

In this context it is assumed that for b > 1 and s > 〈a + 1, a + b + 2〉, L〈a,b〉,s = L〈a,b〉 as one can compute all members
directly from the parameters a, b. It is easy to see that this learner succeeds on all finite sets from {L0, L1, L2, . . .}. So assume
that an infinite set L〈a,0〉 is given. If L〈a,1〉 = L〈a,0〉 then the learner will eventually vacillate between these two indices. If
L〈a,1〉 ⊂ L〈a,0〉 then L〈a,1〉 is finite and as the learner eventually sees an element of L〈a,0〉−L〈a,1〉, it will converge to 〈a, 0〉. So {L0,
L1, L2, . . .} is class-preservingly behaviourally correct learnable.
Now a hypothesis space is constructed using which {L0, L1, L2, . . .} cannot be behaviourally correctly learned. For all a,

b let

H〈a,0〉 = L〈a,0〉;
H〈a,2b+1〉 = L〈a,b+2〉;

H〈a,2b+2〉 =
{
{〈a, c〉 : c ≤ |Wa,b|} ifWa,b = Wa;
{〈a, c〉 : c ≤ |Wa,b|} ∪ {〈a+ 1, |Wa,b| + s+ 1〉} if s is the least number withWa,b ⊂ Wa,s.

It is easy to check that this class is an indexed family, that is, {H0,H1,H2, . . .} is uniformly recursive. Thus, if one could
behaviourally correctly learn {L0, L1, L2, . . .} using {H0,H1,H2, . . .} as the hypothesis space, one could also explanatorily
learn {L0, L1, L2, . . .} using {H0,H1,H2, . . .} (this folklore result is based on the observation that, for the hypothesis space
being an indexed family, the mind changes can be delayed until it can be verified that the latter hypothesis differs from
the earlier one). Using Theorem 9, this would imply that the class from Theorem 12 (which is contained in {L0, L1, L2, . . .})
is prescribed explanatorily learnable and hence prescribed vacillatory learnable. This contradicts Theorem 12. So {L0, L1,
L2, . . .} is not prescribed behaviourally correct learnable. �

Corollary 14. Let {L0, L1, L2, . . .} be as defined in Theorem 13. Then {L0, L1, L2, . . .} ∪ {N} is class-preserving behaviourally
correct learnable. Furthermore, no {F0, F1, F2, . . .} ⊇ {L0, L1, L2, . . .} ∪ {N} is prescribed behaviourally correct learnable.

Proof. The class-preserving behaviourally correct learner for {L0, L1, L2, . . .} from Theorem 13 can easily be extended to
one for {L0, L1, L2, . . .} ∪ {N}. Let {H0,H1,H2, . . .} be the uniformly recursive hypothesis space for {L0, L1, L2, . . .} from
Theorem 13. Now define

G0 = N;
G2a+1 = Ha;

G2〈a,b〉+2 =


N if there are c, e, t with t > b+ c + (e+ 7)2

and Fa,t 6= ∅ and either Fa,t = He ∩ {0, 1, . . . , t}
or {〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .};

Fa otherwise.

Note that the bound (e + 7)2 is used in the formula above to ensure the condition max(H〈a,2b+1〉) ≤ (〈a, 2b + 1〉 + 7)2 for
all a, bwhich is used implicitly in Case (e) below.
Clearly {L0, L1, L2, . . .} ∪ {N} ⊆ {G0,G1,G2, . . .}. Furthermore, if ∅ ∈ {F0, F1, F2, . . .} then ∅ ∈ {G0,G1,G2, . . .}.
Assume now that Fa is not in {L0, L1, L2, . . .}∪{∅,N}. Let c be the least number such that there is some dwith 〈c, d〉 ∈ Fa;

fix this d as well. There are five cases.
Case (a): Fa contains two elements 〈c ′, d′〉, 〈c ′′, d′′〉with c ′ > c , d′′ ≥ d′ and 〈c ′, d′〉 6= 〈c ′′, d′′〉. Then let b be so large that

〈c, d〉, 〈c ′, d′〉, 〈c ′′, d′′〉 ∈ Fa,b. Now it follows that Fa,b 6⊆ He for all e and G2〈a,b〉+2 = Fa.
Case (b): Fa is a union of {〈c ′, d′ + 1〉}with a subset of {〈c, 0〉, 〈c, 1〉, . . . , 〈c, d′〉} for some c ′, d′ with c ′ > c. It is easy to

verify that Fa 6= He ∩ {0, 1, . . . , 〈c ′, d′ + 1〉} for all e. Let b be so large that Fa,b = Fa and b ≥ 〈c ′, d′ + 1〉. Then, for all t > b,
Fa,t 6= He ∩ {0, 1, . . . , t}. Hence G2〈a,b〉+2 = Fa.
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Case (c): Fa ⊂ {〈c, 0〉, 〈c, 1〉, . . .} and there are d′, d′′ with d′ < d′′, 〈c, d′〉 /∈ Fa and 〈c, d′′〉 ∈ Fa. Let b be so large
that 〈c, d′′〉 ∈ Fa,b and b > 〈c, d′′〉. Then, for all e and all t > b, Fa,t 6= He ∩ {0, 1, . . . , t}. Furthermore, the condition
{〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .} does not hold. Hence G2〈a,b〉+2 = Fa.
Case (d): Fa = {〈c, 0〉, 〈c, 1〉, . . . , 〈c, d′〉} and d′ > |Wc |. Then there is no He with Fa = He∩{0, 1, . . . , 〈c, d′+1〉}. Taking

b so large that Fa,b = Fa and b ≥ 〈c, d′ + 1〉, the condition {〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .} becomes
false and thus G2〈a,b〉+2 = Fa.
Case (e): Fa = {〈c, 0〉, 〈c, 1〉, . . . , 〈c, d′〉} and d′ < |Wc |. Let s be so large that d′ + 1 ≤ |Wc,s| and take b so large that

〈c + 1, |Wc,s| + s + 1〉 ≤ b, 〈c, d′ + 1〉 ≤ b and Fa,b = Fa. Then Fa,t 6= He ∩ {0, 1, . . . , t} for all e and t > b + (e + 7)2.
Furthermore, the condition {〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .} does not hold. Hence G2〈a,b〉+2 = Fa.
Note that the sets in {H0,H1,H2, . . .} have only odd indices in the numbering {G0,G1,G2, . . .}. Hence, given a

behaviourally correct learnerM for {F0, F1, F2, . . .} using the hypothesis space {G0,G1,G2, . . .}, one can build the following
new learner N for {H0,H1,H2, . . .} using the hypothesis space {H0,H1,H2, . . .} itself:

N(σ ) =
{ 1
2 (M(σ )− 1) ifM(σ ) is odd;
? ifM(σ ) is even or ?.

This contradicts Theorem 13 which showed that such a learner does not exist. �

For the next result, let In = {2n−1, 2n, 2n+1, . . . , 2n+1−3, 2n+1−2} form a partition of the natural numbers into intervals
of length 2n and let C denote the plain Kolmogorov complexity [18]: C(x) = min({n : ∃y ∈ In [U(y) = x]}), where U is a
fixed universal machine such that the Kolmogorov complexity does not improve by more than an additive constant when
U is replaced by some other partial-recursive function. Furthermore, let

A = {m : ∃n [m ∈ In ∧ C(m) < 0.4n]} and
B = {m : ∃n [m ∈ In ∧ C(m) > 0.8n]}

be the sets of numbers of small and large Kolmogorov complexity, respectively.

Theorem 15. Let A and B be the sets of numbers of small and large Kolmogorov complexity as above. Then the class consisting
of N, A and all sets A ∪ {b} with b ∈ B is uniformly r.e. and is class-comprisingly but not class-preservingly behaviourally correct
learnable.

Proof. Note that A is recursively enumerable and B is co-r.e.; an indexing of the class is now given by fixing one index a ∈ A
and then letting La = A, Lb = A ∪ {b} for all b ∈ B and Lb = N for all b ∈ N− B− {a}.
Assume without loss of generality that C(0) = 0. Thus, 0 /∈ A ∪ B. Hence N is the only member of {L0, L1, L2, . . .}

containing 0. Furthermore, let D0,D1, . . . be a canonical enumeration of all finite sets. Now let

Hb =
{

N if 0 ∈ Db;
Db ∪ A if 0 /∈ Db.

Furthermore, one can build a behaviourally correct learner using the hypothesis space {H0,H1,H2, . . .} by conjecturing Hb
for the unique bwith Db = content(σ ) on input σ . It is easy to verify that this learner succeeds on all languages in {H0,H1,
H2, . . .}. Therefore {L0, L1, L2, . . .} is class-comprisingly behaviourally correct learnable.
Now assume thatM is a class-preserving behaviourally correct learner for {L0, L1, L2, . . .}. There is a family T0, T1, . . . of

texts and an n such that:

• Tx[n] is a fixed semantic locking sequence forM on A;
• Tx(n) = x;
• for all x, the subsequence Tx(n+ 1), Tx(n+ 2), Tx(n+ 3), . . . of Tx is the same recursive enumeration of A.

Now one defines two sets X and Y according to the behaviour ofM on Tx.

• X is the set of all x such that, for somem > n,M(Tx[m]) conjectures a set containing x;
• Y is the set of all x such that, for somem > n,M(Tx[m]) conjectures a set containing 0.

Both sets are recursively enumerable. The set Y is disjoint to A as, for all x ∈ A and allm > n,M(Tx[m]) is an index of A. As A
is a simple set [18], Y is finite. As A∪ B ⊆ X ⊆ A∪ B∪ Y , the set A∪ B is recursively enumerable. For each sufficiently large
n, at least half of the elements of In are in A ∪ B. Now let Jn be the first 20.6n elements of In to be enumerated into A ∪ B. The
Jn are uniformly r.e. and there is a constant c with C(x) ≤ 0.6n+ 2 log(n)+ c for all x ∈ Jn. It follows from the definition of
B that Jn ∩ B = ∅ for all sufficiently large n. Hence Jn ⊆ A ∩ In in contradiction to the fact that |A ∩ In| ≤ 20.4n. This shows
that the learnerM cannot exist and {L0, L1, L2, . . .} is not class-preservingly behaviourally correct learnable. �

Theorem 16. There exists an r.e. classL which is class-comprisingly but not class-preservingly vacillatorily learnable.
Proof. In the following, let 〈x, y, z〉 denote 〈x, 〈y, z〉〉. The classLwill be a suitable subclass of the following:

L〈e,2a〉 = {〈e, a, b〉 : b ∈ N}
L〈e,2a+1〉 = {〈e, a, b〉 : b ≤ |Wa|}.
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The proof of Theorem 12 can be adapted to show thatL is class-comprisingly vacillatorily learnable. Let
Gea = {x : 〈a, x〉 ∈ We}

be the a-th set in the e-th recursively enumerable hypothesis space. Now define a limit-recursive predicate P as follows:

P(e, a, b) =
{
1 if ∀c < b [Gec 6= {〈e, a, d〉 : d ≤ b}];
0 if ∃c < b [Gec = {〈e, a, d〉 : d ≤ b}].

and let
L = {L〈e,2a〉 : e, a ∈ N} ∪ {L〈e,2a+1〉 : e, a ∈ N ∧ |Wa| <∞∧ P(e, a, |Wa|)}.

It is easy to verify that L is an r.e. class. Suppose by way of contradiction that {H0,H1,H2, . . .} = L and a learner M
vacillatorily learns L using {H0,H1,H2, . . .} as the hypothesis space. Let e be such that We = {〈c, x〉 : x ∈ Hc}. So
Gec = Hc for all c. Note that P(e, a, |Wa|) = 1 for all a whereWa is finite; the reason is the following chain of implications:
P(e, a, |Wa|) = 0⇒ ∃c < |Wa| [Gec = L〈e,2a+1〉] ⇒ L〈e,2a+1〉 ∈ L⇒ P(e, a, |Wa|) = 1. Thus L〈e,2a+1〉 ∈ L wheneverWa is
finite. Furthermore, L〈e,2a+1〉 ∈ LwheneverWa is infinite, as then L〈e,2a+1〉 = L〈e,2a〉. ThusM learns L〈e,2a+1〉 for all a.
Let Ta be a text for L〈e,2a+1〉 uniformly recursive in the parameter a. Then M on Ta outputs only finitely many indices;

let g(a) be the greatest among these indices. It follows that g(a) ≥ |Wa| whenever Wa is finite; the reason is that
P(e, a, |Wa|) = 1, thus no Hc with c < |Wa| equals L〈e,2a+1〉. This gives that Wa is finite iff |Wa| ≤ g(a). As g ≤T K ,
{a : |Wa| <∞} ≤T K , a contradiction. �

4. Prudence for behaviourally correct learning

Osherson, Stob andWeinstein [21] were interested in the question whether every learnable class is prudently learnable.
Fulk [10] showed that every explanatory learnable class is prudently explanatory learnable. Jain and Sharma [13] showed
the corresponding result for vacillatory learning. The next theorem shows this result for behaviourally correct learning.
Furthermore, the construction of the prudent learner in the next theorem is effective in the original learner. It is still open
whether prudence for explanatory and vacillatory learning can be effectivized.
Theorem 17. If L is a (not necessarily uniformly r.e.) behaviourally correct learnable class then L is a subclass of an r.e. class
which is class-preservingly behaviourally correct learnable.
Proof. For any set A, let TA be the ascending text which is given by TA(x) = x for all x ∈ A and TA(x) = # for all
x /∈ A. Furthermore, let δ∅ be the empty string and δA = TA[max(A) + 1] for all finite non-empty sets A. For example,
δ{0,2,3} = 0 # 2 3.
There is a behaviourally correct learner for the class L using the acceptable numbering {W0,W1,W2, . . .} as the

hypothesis space and satisfying the following constraints:

• M is consistent, that is, content(σ ) ⊆ WM(σ ) for all σ ;
• M is rearrangement-independent, that is,WM(σ ) = WM(τ ) whenever σ , τ have the same content and length;
• WM(σ ) is finite whenever σ is not a semantical locking sequence forM onWM(σ ).

Kurtz and Royer [15] showed that the first two conditions can be satisfied and such a learner can be found effectively from
any given learner. The third condition can also be effectively added since the complement of the set of semantical locking
sequences is K -r.e.; that is, σ is not a semantical locking sequence iff there are a τ in (WM(σ ) ∪ {#})∗ and an x ∈ N with
x ∈ WM(στ) ⇔ x /∈ WM(σ ). For that reason,M is a behaviourally correct learner for all infinite sets for which some index is
output byM . So, to prove the theorem, one has to mainly take care of finite sets.
Now the following new learner N is constructed. N is defined by mapping σ to a hypothesis Hσ ; thus the hypothesis

space is given directly instead of N . Hσ takes the first case which applies.
Intuitively, Case (2) below handles learnability of all infinite sets behaviourally learned byM , besides ensuring some nice

properties of HδD (the main one being that HδD does not contain any element in {0, 1, . . . ,max(D)} − D or it follows HδF for
some appropriate proper subset F of D). During this process, Case (2) might introduce some finite sets into the hypothesis
space. Case (3) ensures learnability of all the finite sets learned byM aswell as those introduced by Case (2) in the hypothesis
space — for all other finite sets D, Case (3) would mimic Case (2). Case (4) just maps the remaining sequences to one of Case
(2) or (3). We now formally define Hσ .

Case (1): H#s = ∅ for all s.
Case (2): HδD first enumerates all elements of D.

Let D′ = {0, 1, . . . ,max(D)} − D. Let S = {s : WM(δD#max(D)),s ∩ D
′
= ∅}.

For all s ∈ S, enumerate all elements ofWM(δD#max(D)),s into HδD .
IfWM(δD#max(D)) ∩ D

′ is not empty, let s = max(S),
let E = D ∪WM(δD#max(D)),s, let x = min(WM(δD#max(D)),s+1 ∩ D

′) and let F = D ∩ {0, 1, . . . , x}.
Now, if HδF ⊇ E then HδD = HδF else HδD = E.

Case (3): HδD#s with s > 0 is defined as follows. If there is an x such that HδEx ,s = HδEx = D for the set Ex = D∩{0, 1, . . . , x}
or ifWM(δD#t ) = D for all t ≥ s then HδD#s = D else HδD#s = HδD .

Case (4): Hσ = HδD#s if Hσ is not defined by Cases (1), (2), (3), s = max({|σ | −max(D)− 1, 0}) and D = content(σ ).
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Note that the only infinite sets in the hypothesis space are the ones which are conjectured byM . SoM learns all the infinite
sets in the hypothesis space.
Furthermore, for any A in the hypothesis space, if Ex = {0, 1, . . . , x} ∩ A and δEx#

max(Ex) is a semantic locking sequence
forM on A, then for all finite D such that Ex ⊆ D ⊆ A, HδD = A. This can be easily seen by induction on cardinality of D− Ex,
as in Case (2), either HδD is made equal to A or HδD would simulate HδF for some F such that Ex ⊆ F ⊂ D.
It will be shown first that the hypothesis space covers all sets learned byM and then it will be shown that all sets in the

hypothesis space are learned by N .
Clearly if M learns a finite set D then HδD#s = D for almost all s. Now consider an infinite set A learned by M . Let

Ex = A ∩ {0, 1, 2, . . . , x} for all x. As M learns A, there is a semantic locking sequence τ for M on A. Now let x ∈ A be such
that x > |τ |+max(content(τ )). Then, for the sequence δEx#

max(Ex), there is an η ∈ (Ex ∪{#})∗ such that |τη| = |δEx#
max(Ex)|

and content(τη) = content(δEx#
max(Ex)) = Ex. AsM is rearrangement-independent, one has thatWM(δEx#max(Ex)) = A. Hence

HδEx = A. This completes the first part of the verification.
For the second part of the verification consider any set A occurring in the hypothesis space of N . There are three cases,

those where A is empty, where A is finite but not empty and where A is infinite.
Case (a): A = ∅. N learns A as H#s = ∅ for all s by Case (1) in the algorithm to enumerate the hypothesis space.
Case (b): A is finite but not empty. Let D be the smallest set such that HδD#s = A for some s. By Case (1) in the algorithm

for Hσ , D is not empty.
Assume the subcase A = HδD#s ⊂ HδD . By Case (3) and D being the smallest set such that HδD#t = A for some t , this can

happen only if A = D andWM(δD#t ) = D for all t ≥ s. So HδD#t = D for all t ≥ s and hence N learns A in this subcase as well.
Assume the subcase A = HδD#s = HδD . Hence, by Case (2) it follows that there is no element in A−D belowmax(D) since

otherwise HδF = A for some F ⊂ D. Thus, D = A ∩ {0, 1, . . . ,max(D)}. It follows that HδA#t = A for almost all t . Therefore,
N learns A.
Case (c): A is infinite. Again, let Ez = A ∩ {0, 1, . . . , z} for all z. AsM is rearrangement-independent, there is a semantic

locking sequence for M on A of the form δEx#
max(Ex). Hence only finitely many sets HδEz are finite. So there is a y ∈ A

such that y > x and y is greater than all elements of these finite sets HδEz . Let F be any finite set with Ey ⊆ F ⊆ A. Let
Gz = F ∩ {0, 1, . . . , z}. If z ≥ y then HδGz = A (as Ex ⊆ Gz ⊆ A) and HδGz 6= F . If z < y then Gz = Ez and HδGz 6= F
again. Furthermore,M does not learn F . Hence HδF#s = HδF = A for all s. So δEy is a semantic locking sequence for N on A. It
follows that N learns A. This completes the verification that N is a behaviourally correct learner for all the languages in its
hypothesis space. �
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[4] Janis Bārzdiņš, Two theorems on the limiting synthesis of functions, in: Theory of Algorithms and Programs, Volume 1, Latvian State University, Riga,
210, 1974, pp. 82–88.

[5] Lenore Blum, Manuel Blum, Toward a mathematical theory of inductive inference, Information and Control 28 (1975) 125–155.
[6] John Case, The power of vacillation in language learning, SIAM Journal on Computing 28 (1999) 1941–1969.
[7] John Case, Christopher Lynes, Inductive inference and language identification, in: M. Nielsen, E.M. Schmidt (Eds.), Ninth International Colloquium on
Automata, Languages and Programming, ICALP, Aarhus, Denmark, 1982, Proceedings, in: Lecture Notes in Computer Science, vol. 140, Springer, 1982,
pp. 107–115.

[8] Dick de Jongh, Makoto Kanazawa, Angluin’s theorem for indexed families of r.e. sets and applications, in: Proceedings of the Ninth Annual Conference
on Computational Learning Theory, ACM Press, 1996, pp. 193–204.

[9] Richard Friedberg, Three theorems on recursive enumeration, Journal of Symbolic Logic 23 (1958) 309–316.
[10] Mark Fulk, Prudence and other conditions on formal language learning, Information and Computation 85 (1990) 1–11.
[11] E. Mark Gold, Language identification in the limit, Information and Control 10 (1967) 447–474.
[12] Sanjay Jain, Daniel Osherson, James S. Royer, Arun Sharma, Systems That Learn: An Introduction to Learning Theory, MIT-Press, Boston, 1999.
[13] Sanjay Jain, Arun Sharma, Prudence in vacillatory language identification, Mathematical Systems Theory 28 (1995) 267–279.
[14] Sanjay Jain, Frank Stephan, Learning in Friedberg numberings, Information and Computation 206 (2008) 776–790.
[15] Stuart Kurtz, James S. Royer, Prudence in language learning, in: Proceedings of the First Annual Workshop on Computational Learning Theory, MIT,

Cambridge, United States, 1988, pp. 143–156.
[16] Steffen Lange, Thomas Zeugmann, Language learning in dependence on the space of hypotheses, in: Proceedings of the Sixth Annual Conference on

Computational Learning Theory, Santa Cruz, California, United States, 1993, pp. 127–136.
[17] Steffen Lange, Thomas Zeugmann, Shyam Kapur, Monotonic and dual monotonic language learning, Theoretical Computer Science 155 (1996)

365–410.
[18] Ming Li, Paul Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Springer, Heidelberg, 1993.
[19] Piergiorgio Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1989.
[20] Daniel Osherson, Michael Stob, Scott Weinstein, Learning strategies, Information and Control 53 (1982) 32–51.



1806 S. Jain et al. / Theoretical Computer Science 410 (2009) 1796–1806

[21] Daniel Osherson, Michael Stob, Scott Weinstein, Systems That Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists,
Bradford — The MIT Press, Cambridge, Massachusetts, 1986.

[22] Emil Post, Recursively enumerable sets of positive integers and their decision problems, Bulletin of the American Mathematical Society 50 (1944)
284–316.

[23] Robert Soare, Recursively Enumerable Sets and Degrees, Springer, Heidelberg, 1987.
[24] Rolf Wiehagen, A thesis in inductive inference, in: J. Dix, K. Jantke, P. Schmitt (Eds.), Proceedings First International Workshop on Nonmonotonic and

Inductive Logic, Karlsruhe, Germany, Proceedings, in: Lecture Notes in Artificial Intelligence, vol. 543, Springer, 1990, pp. 184–207.
[25] Thomas Zeugmann, Algorithmisches Lernen von Funktionen und Sprachen, Habilitationsschrift, Technische Hochschule Darmstadt, 1993.
[26] Thomas Zeugmann, Steffen Lange, A guided tour across the boundaries of learning recursive languages, in: K.P. Jantke, S. Lange (Eds.), Algorithmic

Learning for Knowledge-Based Systems, GOSLER final report, in: Lecture Notes in Artificial Intelligence, vol. 961, Springer, 1995, pp. 193–262.
[27] Thomas Zeugmann, Steffen Lange, ShyamKapur, Characterizations ofmonotonic anddualmonotonic language learning, Information andComputation

120 (1995) 155–173.
[28] Sandra Zilles, Separation of uniform learning classes, Theoretical Computer Science 313 (2004) 229–265.
[29] Sandra Zilles, Increasing the power of uniform inductive learners, Journal of Computer and System Sciences 70 (2005) 510–538.


	Prescribed learning of r.e. classes
	Introduction
	Finite and explanatory learning
	Vacillatory and behaviourally correct learning
	Prudence for behaviourally correct learning
	Acknowledgements
	References


