
 Procedia Computer Science 96 (2016) 540 – 549

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2016.08.232

ScienceDirect
Available online at www.sciencedirect.com

aManouba University,RIADI-GD Laboratory, Manouba, Tunisia
bManouba University,RIADI-GD Laboratory, Manouba, Tunisia

Abstract

Cloud computing is an economical solution for industry which is highly scalable and useful of virtualized resources that can be
used on demand. It will have a significant impact on companies with the introduction of orchestration platforms as a Service
(OaaS) to perform the services that support a variety of business processes such as BPEL. It's becoming an adoptable technology
for many of the organizations, thanks to its flexibility and because it reduces total cost of ownership. Thus, an effective OaaS
must meet several requests simultaneously; ensuring scalability and optimizing the use of shared resources in order to minimize
energy consumption. In this paper, we will investigate three issues i) exploiting the minimum of resources to execute a
maximum number of processes, ii) Preventing possible overload to the server, and iii) minimizing dynamic energy
consumption which becomes one of the main challenges for large-scale computing, such as in cloud data center. As a solution
for these challenges, we propose to use Workflow partitioning technique and this based on temporal dynamic reconfiguration
approach. Our work aims to reduce the dynamic energy consumption; especially in communication buffers between partitions of
BPEL process during partitioning. The proposed approach is based on two main steps: 1) Estimate the energy consumption of
BPEL processes 2) Temporal and dynamic partitioning of BPEL process based on reconfigurable architecture in order to
minimize overall energy consumption on each BPEL process.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: OaaS; BPEL process; Dynamic energy consumption; Temporal partitioning; Buffers.

1. Introduction

With the rapid development of processing and storage technologies, computing resources have become
cheaper, more powerful and more ubiquitously available than ever before. This technological trend has
enabled the realization of a new computing model called cloud computing 12. This model has been raised as
a cost effective solution for

 Corresponding author. Tel.: +216-95-966-999
E-mail address: emnahos@gmail.com

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82441555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.232&domain=pdf

541 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

businesses, especially small and medium enterprises (SMEs). Its main features are scalability, resources on
demand, virtualization, pay-per use model and multi-tenancy. The integration of different information systems,
services and cost saver have been a crucial challenge for companies. However, Cloud Computing provides a
solution that satisfies this need; OaaS. The orchestration as a service is a new term that allows outsourcing
Information Technology (IT) systems and services into Cloud infrastructures that can guarantee a quality of
services that the original enterprises could not provide. Hence, enterprises can deploy its workfows and
execute on demand without sacrificing the functionality and reliability they are accustomed to from traditional
architecture. The main advantage is that companies can concentrate on their core business and they do not
have to pay for infrastructure, its installation and maintenance. OaaS requires an efficient scalable
orchestration engines; the less the customers must pay, the more they can be served, and it is an economical
solution for company thanks to reducing total cost of ownership. There are few studies in which the authors
have paid attention to the problem of efficient orchestration engines like the Bis-Grid Engine 6, the Guarana
RT 5 and TPBPEL 3. In this paper we propose an OaaS based on temporal dynamic recon- figuration approach.
The proposed approach is based on two main steps: 1) the estimation of energy consumption of a BPEL
process: That determines the energy consumption of a process which refers to the total power consumed by
hardware resources. 2) Apply the temporal partitioning algorithm based on energy efficiency: This step allows
partitioning process while minimizing the energy produced by communication buffers during the partitioning
process. The temporal partitioning algorithm used in this work is based on dynamic reconfigurable architecture
that has gained much popularity among the scientists because of its flexibility and high performance. This
algorithm is based on the method of max-flow/min-cut that provides the best cut with the minimum energy
consumption between partitions. This temporal partitioning algorithm can be very useful in Cloud field, since
it can adapt to real-time applications in the reconfigurable architecture.
The remainder of this paper is organized as follows: in Section 2, we make a study of the related work. We
focus in Section 3 on the basic concepts used and the formulation of the problem of temporal dynamic
reconfiguration. Then, we present our orchestration engine in Section 4. Section 5 shows the evaluation of our
approach. Finally, we conclude.

2. Related Work

There are a few numbers of papers in which the authors have paid attention to the problem of designing
efficient orchestration engines. In the next section, we will present some of these approaches but also we will
consider the related works on reconfigurable partitioning approaches.

Orchestration Engines

The goal of Bis-Grid 6 is to combine BPEL (The Business Process Execution Language) standard for
orchestration services and network technologies with comprehensive security mechanism to provide secure
integration platforms that uses orchestration as a service. In 5, the authors propose an orchestration engine called
Guarana RT. This sub- sequently assembled engine is an effective implementation that uses a configurable thread
pool that works at the granularity of tasks; Instead of allocating threads to process instances, it allocates threads to
individual tasks inside processes. We notice that the missing things in 6,5 is neglecting some important features in
cloud field especially scalability, dynamicity and energy consumption. the Bis-Grid 5 creates an instance in the
Active BPEL engine which affects in turns a thread for each instance so, the orchestration between various tasks of
a process is centralized. The orchestrator can easily become a bottleneck when the number of instances increases in
performance which is highly handled and hence, the response time becomes longer. Guarana RT 5 cannot be
executed in a dynamic environment that means this orchestration engine is not able to maintain its functionality in
case of high demand at the execution time of BPEL. Guarana RT is not effective for the cloud environment.
However, TPBPEL 3 orchestration engine is based on the temporal reconfiguration through partitioning of BPEL
process. This architecture requires buffers to store data between partitions during the partitioning. In the case of
insufficient resources and high demand, TPBPEL produces extra energy to partition BPEL. In order to minimize
this extra energy, we propose an OaaS that maintains the energy consumption produced during temporal
partitioning. To achieve this goal, it's necessary to choose the right temporal partitioning a l g o r i t h m .

542 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

The Temporal Reconfiguration Approach

The temporal partitioning problem based on reconfigurable architectures deserves more attention in
reconfigurable computing. In 1,2, the authors showed a temporal partitioning algorithm by using the mathematical
method based on the eigenvectors of graph to find the partitioning with a minimum number of partitions. The
aim of partitioning algorithm in 1 is to reduce the communication cost between partitions for full reconfigurable
architecture. The authors have not taken into account the energy consumption constraints. However, in 2 the authors
have applied temporal partitioning in partially reconfigurable environment to optimize the latency in the
reconfigurable unit. In 10, the authors proposed a temporal partitioning algorithm which is based on architectural
synthesis method. This algorithm is used to reuse shared functional units. However, the results of this synthesis
(Inter Partition Synthesis) can be different. If we consider a high level of granularity the synthesis process (IPS) is
effective for optimizing the additional resources. This requires less additional resources. If we consider a low level
of granularity, this needs more additional resources. However, the partitioning level based on architectural
synthesis may not be effective, which generates an additional energy consumption. In 7, the authors used a list
of minimum cuts of various sizes via the mixed min-cut graph method. This method aims to extend the partitioning
process by iterative search for minimum weight paths. Indeed, this partitioning algorithm requires match time to
find the final partitioning which produce extra energy. So, the authors do not focus on energy produced during
partitioning. However, in 9 the authors present a temporal partitioning algorithm for an embedded system in which
its energy consumption is correctly evaluated. The authors have used the temporal partitioning approach to divide
the application into temporal partitions, which are configured one after another on the dynamically reconfigurable
FPGA device (DRFPGA). This algorithm satisfies the temporal constraints for the reconfigurable architecture. This
algorithm uses a sequence of bi-partitioning based on max-flow/min-cut 4 methods. This approach is effective in an
elastic environment. Indeed, it’s useful for real-time applications. So, this algorithm can maintain the changes
without losing any time to resume the entire algorithm. Thus, the energy consumption constraint is a critical factor
for the Cloud. This is our main motivation to use this algorithm in our context.

3. Problem Statement

Definition 1 (BPEL process): is a quadratic BPEL = (PL, Var, O, C) where Var is used to define data relating
to the internal state of the process and transform messages with web services invoked. Orchestration O gives
the definition of the process in terms of the different types of activities that offer BPEL. The cost of energy
consumption C represents the amount of resources requested by a process. We propose the following formula
to calculate the cost of energy consumed by a BPEL process Pi.

CE Pi = × CEai

Where m denotes the different types of activities ai in the process Pi. n is the number of activities having type m,
CEai refers to the cost of energy consumption. The types of the structural activities are: {Sequence, Flow, if,
while, repeat until...}. The types of the basic activities are: {receive, invoke, reply,assign...}.

Definition 2: The temporal reconfiguration problem of BPEL process (TRPP) is to execute a set of processes
BPEL P={P1, P2...Pn} on a Cloud server S while respecting the maximum capacity of server Umax and the
minimum capacity of server Umin at time ti . Each sub-process admits a cost represented by w(x). Formally, we
can present the TRPP problem as follows:

PRTP =< P, S , w x >, S = {Umax, Umin}
Definition 3 (Partitioning problem): An s-t cut (X,X̄) of a flow network which is a partition of V into two
separate parts such as s X and t X̄ then C = s t. The capacity or size of a cut (X,X̄) is the sum of the
capacities on the forward cut-edges. The well-known max-flow/min-cut theorem 4 says that the value of a
maximum flow is equal to the capacity of a minimum cut (or min-cut for short) on the flow network.

543 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

To deduce the additional power consumption caused by the buffers during the partitioning, we use the
following theorem.
Theorem: The additional power consumption incurred by the buffers inserted in partitioning is equal to the total
capacity of the forward cut-edges9.
In our context, during partitioning of the workflow the communication buffers used (b) between partitions
produce the extra energy that is equal to the total data capacity transfer of the previous partition which contain
activities (a1,...an). The energy consumption (EC) of buffers is presented in Fig.1. At this level, we present the

Fig. 1. Energy consumption of buffers

partitioning constraints used in this work.

• Precedence constraints7: Constraints define a temporal ordering on the node in G and are called
precedence constraints. For two nodes v and u, we define P (v) P (u), v must be scheduled before u
when partitioning.

• Area constraints: A temporal partitioning is feasible in accordance to a reconfigurable device if the
following condition is verified:

Xi X Umin w Xi Umax (3)

Where w (Xi) denoted the area of partition Xi, Umax denotes the maximum resource capacity of a
reconfigurable unit and Umin denotes the minimum resource capacity of a reconfigurable unit. The area
of partition X equals the area of vertices vi belong to partition Xi and w (vi) denotes the area of vi.

W Xi = (4)

Based on (3) and (4) to satisfy the area constraint.

Xi X Umin Umax (5)

The balanced area of the device

Umin + Umax / (6)

• Capacity constraint 9: The capacity of a cut or Size(c) denotes the number of buffers inserted in the
partition K. Rmax is the upper bound on the size of partitions. The capacity constraint is defined
when the following condition is satisfied:

 Size c Rmax (7)

4. Orchestration Engine as a service based on Temporal Reconfigurable Architecture

In this section, we propose an orchestration engine as a service in the Cloud (OaaS) based on temporal
partitioning that minimizes energy consumption. Our approach is based on two ideas:

544 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

Estimation of the energy consumption of a BPEL process: this step determines that the energy
consumption is the total power consumed by hardware resources.
Apply the temporal partitioning algorithm based on energy efficiency: This step allows the partitioning
process while minimizing the energy caused by communication buffers in the server.

Estimation of the energy consumption of a BPEL process

 In this paper we estimate the aggregation rules to infer the energy consumed of BPEL process, inspired from the
aggregation rules presented in 8. For a sub-process (S p) that contains a sequence of successive activities, we
calculate the sum of energy caused by (a1,a2), for a sub-process Flow which provides a parallelism among
activities, we suppose that the request can only be routed to the a1,a2, or simultaneously, to both. Each routing
occurrence has a known probability por1, por2 and por ll 8. For each sub-process which contains an if-type
activity, we assume a probability pi for a request to be routed towards one sub-process that contain (, . . ,).
For a loop sub-process, we presume that there is a maximal number of loops nl and a probability pli to loop i
times. The energy consumption by process Pi respecting all types of activities is shown Algorithm 1.

Algorithm 1 Algorithm

Input: ={ , … }
 Output: = The energy consumed by a process .
begin
for each activity do

 Receive invoke reply assign
 Seq flow if while pick

 0
if then
E (m-basic) ni

 + CE(m-basic)
else if Seq then
E (Seq) ni

 + CE(Seq)
else if flow then
E (Seq) ni (Por1 + Por + Por ll

 + CE (flow)
else if if then
E (if) ni (P)

 + CE (if)
else if while then
E (while) ni (pli)

 + CE (while)
else if pick then
E (pick) ni (P)

 + CE (pick)
end if

=
end for
end

545 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

Temporal partitioning based on constraint energy efficiency

In order to partition a BPEL process, we have inspired our approach from the work presented in 9, while
respecting the specificity of our research work. Since this algorithm reduces the energy consumption in
real time as respecting the area and capacity constraints. In 9, the authors use as input a Data Flow Graph.
However, The BPEL process is a specific programming language. So, we have to use a BPEL Flow Graph
(BFG) in order to treat effectively the characteristics of BPEL. We used the intermediate modeling (BFG)
11. Then, we analyze the energy caused by the buffers. Next, we apply the temporal partitioning
algorithm which reduces the overall energy consumption without exceeding the buffer number limit.
Finally we present an illustrative example.

The intermediate representation

BPEL Flow Graph is an extension of Control Flow Graph which is used to represent a BPEL program in a
graphical mode. BFG does not only contain information structure, but also specifies all the information
about control flow of BPEL program, data flow information and semantic information such as dead paths.
This method is well modularized to support different phases of BPEL testing 11.

The energy consumption caused by the bu ers at temporal partitioning
Our paper is mainly concerned with the dynamic power consumption model which corresponds to the
energy consumed during a transition of data at time ti. Indeed, we have adopted the same philosophy
presented in 9 in order to reduce extra energy during partitioning. To minimize energy consumption, we
have taken into account the capacity transfer of each activity when partitioning in the reconfigurable
architecture. The additional power consumption is proportional to the capacity of transferring data of
activities that feeds the output signal to the inserted buffer that is associated with cut (X,X̄). We suppose
that the energy consumed by the activity is E (ai), the capacity transfer is cap(ai, j) and the capacity of the
inserted buffers is cap(bi). For each activity, we associate a bi-dimensional 0-1 variable yi j such that:
yi j {0, 1}, 1i f ai is an executed activity, 0 otherwise.
We assume that the additional energy consumption caused by the buffer is proportional to the transfer
capacity between activities (ai, aj) such that) and (). The buffers bi receiving the output
data of a partition consume energy as follows:

 = [] . (8)

Temporal Partitioning BPEL
The temporal partitioning algorithm is used to find a partitioning with an optimal number of partitions (K)
where the energy consumption has the lowest value with a minimum number of buffers used. The algorithm
is composed of two steps: The first is to find an initial partition of the graph. This step gives an optimal
solution in terms of energy consumption using max flow/min-cut method. Then, if the area constraint and
the upper bound on the size of a partition are satisfied, we adapt the initial partitioning. The aim of the
second step is to find the final partitioning of the graph that satisfies both the area and capacity
constraints. This step is recursively partitioned until the number of sub-process is equal to K. Every sub-
process is loaded into one stage scheduled. If the second step cannot find a feasible scheduling then we
relax the number of partitions by one and the algorithm goes to the first step, and then we restart to find a
feasible solution with the new number of partitions. The function of transformBFG(Pi) is to transforms
each process Pi into a BPEL Flow Graph Gi. CE+() aims to calculate the additional energy consumption
caused by the inserted buffers between partitions while respecting the types of activities (see Algorithm1).
The function Sum(Size(c)) returns the number of buffers obtained by cutting. Nb- buffer is used to store
the total number of buffers that have been calculated by Sum(Size(c)). Rmax is the upper bound on the cut
size in partition; Rmax denotes the great number of buffers that can be inserted between two partitions. K
is the minimum number of partitions. Cmin is used to store all the graphs that have been partitioned with
minimum energy consumption. w(x) denotes is the total area of all nodes in X. The temporal partitioning
algorithm based on constraint energy efficiency is shown Algorithm 2.

546 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

Algorithm 2
Input: P = {P1, P2 . . . Pn} Umax: maximum capacity of server, Umin: minimum capacity of server, Rmax:
maximum size of a partition.
Output: Cmin
begin
Cmin
Nb bu f f er 0

For each process P Pi do
Gi trans f or BFG(Pi)
2.For each Gi do

 K ((Gi) / ((+)/2)
3. repeat
Cmin max f low/mincut(Gi)

K K 1
i f (S ize(c) > Rmax) then
Return Cmin

i f (Umin w(x) Umax) then
i f (CE+(C) < CE+(Cmin)) then
Cmin C

end if
Nb bu f f er S um(S ize(c))

Until (K 1)
Cmin Cmin Cmin (Gi)
return at the stage 2
end for

end for
end

Example
The following example explains the proposed engine mechanism. We assume that the server S allows a
maximum resource capacity 5000. At time t0, the server is running 10 processes. A new BPEL process is
executed in the server S. But at this moment, the server does allow a maximum capacity Umax which is
equal to 3000 and a minimum capacity is Umin =10. The new process is shown in fig.2.This process

Fig. 2. Example of BPEL program of Loan approval process 11.

begins with the receipt of a loan application. For small amounts (less than $ 20,000) and those at low
risk, approval is automatic. For large amounts or high-risk individuals, each credit request must be
examined in more detail. The use of risk assessment

547 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

and loan approval services are represented by elements of invoke. Note that the transition conditions
granted to determine the links active links, all join conditions using the default setting. Finally, the
process responds with a”loan approved” message or a”loan rejected”. For this, at time t1 server capacity is
insufficient to run the new process. To apply our algorithm, the new process should be transformed into a
BPEL Flow Graph. In order to check the effectiveness of our approach we presented two partitioning
models illustrating BFG as shown in Fig.3.

Fig. 3. Temporal partitioning of Bpel Flow Graph (BFG) during the temporal partitioning.

The cost of each partition must be less or equal to 3000. We assume for BFG1 the energy consumption
(EC) of partitions P1, P2, P3 is equal to 800, 1000, 3200 respectively, and for BFG2 energy consumption of
the partitions P1, P2, P3 is equal to 1100, 3000, 900 respectively. For BFG1, we need 7 buffers for
sending data between partitions. However, for BFG2 only 5 buffers are needed when partitioning.
Therefore, to reduce the extra energy caused by buffers, the partitioning associated with BFG2 is the best
one because it reduces the energy consumption with a minimum number of buffers.

5. Complexity Analysis

The complexity of our approach depends on:

The complexity of temporal partitioning algorithm:
In 9, the authors have a time complexity equal to O(|V||E|) in order to find a feasible cut with minimum
energy consumption.
The complexity of the BPEL transformation BFG, for this transformation method, the authors in 11

can estimate the worst case complexity of node explosion in BFG, which depends on the activities
that have more than one outgoing link. Assume in a given BPEL file, there are m activities that have
more than one outgoing link and each activity has Ai outgoing links, then the worst-case complexity
of nodes number explosion is:

 O ()
But in most situations, the worst case will not hold and the transformed result BFG will not have so
many nodes for two reasons; 1) in the worst case, each BPEL activity is assumed to be transformed
to execution scenarios. But in most cases, the scenarios can be reduced greatly by removing those
invalid ones. 2) In the

548 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

worst case, the nodes number is calculated by multiplication. But in most cases, the number is
calculated by addition 11. The following equation calculates the complexity of our approach :
C = O O |V||E| + O NA × n = NA

NA represents the m activities that have more than one outgoing link

6. Implementation and Evaluation

The experiments conducted in this work were performed on a 6 GB of RAM with an Intel Core
CPU frequency I5- 4200U 2.30 GHz Windows 7. We used our temporal partitioning algorithm (PT
MINEC BPEL) to solve every tests problem. The size of the problem is depended on the number of
activities in the BPEL process. We vary the size of BPEL program in order to generate a necessary
number of buffers for each BPEL at run time. Fig. A shows the evolution of our approach based on
the number of buffers. The extra

(A) The number of buffers in size function of BPEL program during the temporal partitioning, (B) The Energy consumption
produced during the temporal partitioning of each size BPEL.

energy depends on the number of buffers which are responsible for storing and transitioning the
intermediate data when partitioning. Then, the data must be buffered from partition to another in
order to minimize the data transfer cost and the cost of energy produced of BPEL program, our
algorithm finds the appropriate partitioning which minimizes the energy consumption caused during
the execution of BPEL. So the energy consumption of each size of problem is shown in Fig.B. In
the test, it can be seen from the results in Fig. A and Fig.B that the process 50 A and 62 A generated
a minimum number of buffers which varies between 2 and 4 respectively, with 4388 and 6809 as a
cost of energy consumption. According to the results of the above experiments, we can conclude
that the energy consumption slowly increases when the problem size increases. In addition, the
reconfigurable architecture of our orchestration engine requires the use of buffers that dissipate the
additional energy, which implies an increase in response time as well as data processing and storage
data. For this we have partitioned the workflow with a minimum number of used buffers which
reduces thereafter the energy produced during transition data. We show that the energy consumption
and the data transport represent a significant percentage of energy consumption in Cloud
Computing. Thus, we have reduced the total energy consumption that represents the high
performance of our approach.

7. Conclusion and Future Works

In our work, we have investigated an orchestration as a cloud service (OaaS) that is based on a
reconfigurable partitioning BPEL processes, and in order to exploit the available resources to
execute a maximum number of processes and prevent possible overload to the server. The aim of
our work is to reduce dynamic energy consumption caused by buffers during partitioning.
Experimental results have shown that

549 Emna Hosni and Zaki Brahmi / Procedia Computer Science 96 (2016) 540 – 549

the PT Min_EC_BPEL algorithm can effectively reduce the power consumption without exceeding
the buffer number limit, we can generalize our work to another type of workflow and especially
intensive workflows. In our future works we will focus on the access control structure to save
confidential data for the competing companies which execute their workflow in the same cloud
server.

References

Ramzi Ayadi, Bouraoui Ouni, and Abdellatif Mtibaa, A partitioning methodology that optimizes the communication cost for
reconfigurable computing systems, International Journal of Automation and Computing 9 (2012), no. 3, 280–287.
 Ramzi Ayadi, Bouraoui Ouni, and Abdellatif Mtibaa . Integrated temporal partitioning and partial reconfiguration
techniques for design latency improvement, Evolving Systems 5 (2014), no. 2, 133–141.
Zaki Brahmi and Chaima Gharbi, Temporal reconfiguration-based orchestration engine in the cloud computing, Business
Information Systems, Springer, 2014, pp. 73–85.
LR Ford and Delbert Ray Fulkerson, Flows in networks, vol. 1962, Princeton Princeton University Press, 1962.
Rafael Z Frantz, Rafael Corchuelo, and José Luis Arjona, An efficient orchestration engine for the cloud, Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on, IEEE, 2011, pp. 711–
716.
André Hö ing, Guido Scherp, Stefan Gudenkauf, Dirk Meister, and André Brinkmann, An orchestration as a service
infrastruc- ture using grid technologies and ws-bpel, Service-Oriented Computing, Springer, 2009, pp. 301–315.
Yung-Chuan Jiang and Jhing-Fa Wang, Temporal partitioning data flow graphs for dynamically reconfigurable
computing, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 15 (2007), no. 12, 1351–1361.
Yanik Ngoko, Alfredo Goldman, and Dejan Milojicic, Service selection in web service compositions optimizing energy con-
sumption and service response time, Journal of Internet Services and Applications 4 (2013), no. 1, 1–12.
Tzu-Chiang Tai and Yen-Tai Lai, Power minimization for dynamically reconfigurable fpga partitioning, ACM Transactions
on Embedded Computing Systems (TECS) 12 (2013), no. 1s, 52.
LIU Ting, Optimisation par synthese architecturale des methodes de partitionnement temporel pour les circuits
reconfigurables, Ph.D. thesis, These de doctorat, These de doctorat, UHP-Universite Henri Poincare, 2008.
Yuan Yuan, Zhongjie Li, and Wei Sun, A graph-search based approach to bpel4ws test generation, Software
Engineering Advances, International Conference on, IEEE, 2006, pp. 14–14.
Qi Zhang, Lu Cheng, and Raouf Boutaba, Cloud computing: state-of-the-art and research challenges, Journal of internet
services and applications 1 (2010), no. 1, 7–18.

