
Life Sciences 96 (2014) 7–17

Contents lists available at ScienceDirect

Life Sciences

j ourna l homepage: www.e lsev ie r .com/ locate / l i fesc ie

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Anthocyanins restore behavioral and biochemical changes caused by
streptozotocin-induced sporadic dementia of Alzheimer's type
Jessié M. Gutierres a,⁎, Fabiano B. Carvalho a, Maria Rosa C. Schetinger a, Patrícia Marisco a, Paula Agostinho d,
Marília Rodrigues a, Maribel A. Rubin a, Roberta Schmatz a, Cassia R. da Silva a, Giana de P. Cognato b,
Julia G. Farias a, Cristiane Signor a, Vera M. Morsch a, Cinthia M. Mazzanti a, Mauricio Bogo b,
Carla D. Bonan b, Roselia Spanevello c,⁎
a Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
b Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
c Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário-Capão do Leão, 96010-900 Pelotas, RS, Brazil
d Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
⁎ Corresponding authors. Tel.: +55 55 32209557.
E-mail address: jessiegutierres@hotmail.com (J.M. Gut

0024-3205/$ – see front matter © 2013 Elsevier Inc. All ri
http://dx.doi.org/10.1016/j.lfs.2013.11.014
a b s t r a c t
a r t i c l e i n f o
Article history:

Received 2 August 2013
Accepted 14 November 2013

Keywords:
Anxiety-like behavior
Nitric oxide production
Acetylcholinesterase
Anthocyanin
ICV-streptozotocin
Memory
Rats

Aims: The aim of this study was to analyze if the pre-administration of anthocyanin on memory and anxiety
prevented the effects caused by intracerebroventricular streptozotocin (icv-STZ) administration-induced spo-
radic dementia of Alzheimer's type (SDAT) in rats. Moreover, we evaluated whether the levels of nitrite/nitrate
(NOx), Na+,K+-ATPase, Ca2+-ATPase and acethylcholinesterase (AChE) activities in the cerebral cortex (CC)
and hippocampus (HC) are altered in this experimental SDAT.
Main methods: Male Wistar rats were divided in 4 different groups: control (CTRL), anthocyanin (ANT),
streptozotocin (STZ) and streptozotocin + anthocyanin (STZ + ANT). After seven days of treatment with ANT
(200 mg/kg; oral), the rats were icv-STZ injected (3 mg/kg), and four days later the behavior parameters were
performed and the animals submitted to euthanasia.
Key findings: A memory deficit was found in the STZ group, but ANT treatment showed that it prevents this im-
pairment of memory (P b 0.05). Our results showed a higher anxiety in the icv-STZ group, but treatment with

ANT showed a per se effect and prevented the anxiogenic behavior induced by STZ. Our results reveal that the
ANT treatment (100 μM) tested displaces the specific binding of [3H] flunitrazepam to the benzodiazepinic site
of GABAA receptors. AChE, Ca+-ATPase activities and NOx levels were found to be increased in HC and CC in
the STZ group, which was attenuated by ANT (P b 0.05). STZ decreased Na+,K+-ATPase activity and ANT was
able to prevent these effects (P b 0.05).
Significance: In conclusion, these findings demonstrated that ANT is able to regulate ion pump activity and
cholinergic neurotransmission, as well as being able to enhance memory and act as an anxiolytic compound in
animals with SDAT.
© 2013 Elsevier Inc. All rights reserved.
Introduction

Anthocyanins (ANTs) belong to the flavonoid family, which present
phenolic groups in their chemical structure and give colors to a great va-
riety of flowers and fruits (Table 1) (Veitch and Grayer, 2011; Williams
and Grayer, 2004; Yoshida et al., 2009). It has been shown that ANTs are
potent antioxidants, and are effective scavengers of reactive oxygen
species (ROS) and reactive nitrogen species (RNS) (Kahkonen and
Heinonen, 2003; Kahkonen et al., 2001), having a clear neuroprotective
role (Min et al., 2011). There is evidence that ANTs have beneficial
effects on memory and cognition (Shukitt-Hale et al., 2009) improving
ierres).
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the memory in old rats and humans (Andres-Lacueva et al., 2005;
Krikorian et al., 2010).

Acetylcholinesterase (AChE) is an important regulatory enzyme that
rapidly hydrolyzes the neurotransmitter acetylcholine (ACh) released
by the cholinergic neurons (Paleari et al., 2008). Several experimental
and clinical studies clearly indicate an undisputed major role of ACh in
the regulation of cognitive functions (Blokland, 1995). Recently, several
therapeutic strategies that enhance AChE activity have been imple-
mented to ameliorate cognitive disorders. Cognitive disorders also af-
fect the generation of membrane potentials and the influx of neuronal
Ca2+ (Berrocal et al., 2009; Mata et al., 2011).

The Na+,K+-ATPase and the Ca2+-ATPase are key enzymes in the
maintenance of electrolyte gradients in excitable cells and neurons
(Jimenez et al., 2010; Panayiotidis et al., 2010). The former enzyme is
responsible for the active transport of Na+ and K+, and it is necessary
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Table 1
Structural identification of anthocyanins.

Anthocyanins R1 R2 Formula M.W.

Cyanidin OH H C15H11O6 322.72
Malvidin OCH3 H C16H13O6 336.74
Delphinidin OH OH C15H11O7 338.72
Petunidin OCH3 OH C16H13O7 352.74
Malvidin OCH3 OCH3 C17H15O7 366.77

Scheme 1. Exposure design.

8 J.M. Gutierres et al. / Life Sciences 96 (2014) 7–17
to maintain the ionic gradient acrossmembranes and thus it is essential
to regulate neuronal excitability (Jimenez et al., 2010; Jorgensen et al.,
2003; Kaplan, 2002). The Ca2+-ATPase is one of the most powerful
modulators of intracellular Ca2+ levels (Casteels et al., 1991; Huang
et al., 2010; Raeymaekers and Wuytack, 1991). The transient changes
in intracellular Ca2+ levels regulate a wide variety of cellular processes
and cells employ both intracellular and extracellular sources of Ca2+ for
the activation of signaling pathways and regulation of many physiolog-
ical and pathological processes (Huang et al., 2010; Missiaen et al.,
2000a,b; Ruknudin and Lakatta, 2007).

Alzheimer's disease (AD) is the most common cause of dementia in
the elderly, and this disease is characterized by abnormalities in glucose
metabolism, reduced glucose utilization and levels of energy rich phos-
phates (Hoyer, 2004a,b). The intracerebroventricular (icv) injection of
STZ in rats has been used as a model of sporadic dementia of AD
(Sharma and Gupta, 2001) since it mimics many pathological processes
of the disease as impaired brain glucose and energy and leads to pro-
gressive deficits in learning and memory (Lannert and Hoyer, 1998).

Considering that AD is the most prevalent neurodegenerative dis-
ease worldwide in older adults, we sought to investigate if anthocyanin
has the ability to preventmemory deficits induced by icv administration
of STZ.We also evaluated the levels of nitrite/nitrate and the activities of
enzymes AChE, Na+,K+-ATPase and Ca2+-ATPase, which are known to
be altered in AD.

Material and methods

Chemicals

Acetylthiocholine, Trizma Base, acetonitrile, Percoll, Coomassie
Brilliant Blue G and streptozotocin (STZ) were purchased from Sigma
Chemical Co. (St. Luis, MO, USA). Anthocyanins were extracted and pu-
rified from grape skin and are commercially available by Christian
Hansen A/S. All other reagents used in the experiments were of analyt-
ical grade and of the highest purity.

Animals

MaleWistar rats (3 month year old)weighing350–400 gwere used
in the study. They were kept in the Central Animal House of the Federal
University of Santa Maria in colony cages at an ambient temperature of
25 ± 2 °C and relative humidity 45–55% with 12 h light/dark cycles.
They had free access to standard rodent pelleted diet and water
ad libitum. All procedures were carried out according to the NIH Guide
for Care and Use of Laboratory Animals, and the Brazilian Society for
Neuroscience and Behavior (SBNeC) recommendations for animal
care. This work was approved by the ethical committee of the Federal
University of Santa Maria (23081.003601/2012-63).

Administration of drugs to animals

Intracerebroventricular (icv) injection of streptozotocin
Adult male Wistar rats (300–350 g) were anesthetized with thio-

pental (180 mg/kg). The head was placed in position in the stereotaxic
apparatus and amidline sagittal incisionwasmade in the scalp. The ste-
reotaxic coordinates for the lateral ventricle (Paxinos and Watson,
1986) were measured accurately as anterio-posterior−0.8 mm, lateral
1.5 mm and dorso-ventral, −4.0 mm relative to bregma and ventral
from dura with the tooth bar set at 0 mm. Through a skull hole, a
28-gauge Hamilton® syringe of 10 μL attached to a stereotaxic appara-
tus and piston of the syringe was lowered manually into each lateral
ventricle. We used 4 different groups: control (CTRL), anthocyanin
(ANT), streptozotocin (STZ), and streptozotocin plus anthocyanin
(STZ + ANT). The STZ groups received bilateral icv injection of
streptozotocin (3 mg/kg, body weight) which was dissolved in citrate
buffer (pH 4.4) (Tiwari et al., 2009). The concentration of STZ in citrate
buffer was adjusted so as to deliver 5 μL/injection site of the solution.
Rats in the control group received icv injection of the same volume
of citrate buffer as in the STZ treated (Scheme 1).

Drug administration
Seven to ten animals per group were usually tested in the experi-

ments. Rats were treated by gavage with anthocyanin (200 mg/kg
bodyweight) daily per 7 days (around 10 am). The dose of anthocyanin
was chosen on the basis of previous studies indicating neuroprotec-
tion (Gutierres et al., 2012b; Manach et al., 2004; Saija et al., 1990;
Varadinova et al., 2009). The control groups received only vehicle
(2 mL/kg gavage of saline, daily per 7 days).

Behavioral procedure

Elevated plus maze task
At the last day of anthocyanin treatment (7th day), the anxiolytic-

like behavior was evaluated using the task of the elevated plus maze
as previously described (Frussa-Filho et al., 1999; Rubin et al., 2000a).
The apparatus consists of a wooden structure raised 50 cm from the
floor. This apparatus is composed of 4 arms of the same size, with two
closed-arms (walls 40 cm) and two open-arms. Initially, the animals
were placed on the central platform of the maze in front of an open
arm. The animal had 5 min to explore the apparatus, and the time
spent and the number of entries in the open- and closed-arms were
recorded. The apparatus was thoroughly cleaned with 30% ethanol
between each session.

Inhibitory avoidance task
The animals were subjected to training in a step-down inhibitory

avoidance apparatus as previously described (Rubin et al., 2000b).
After that the animals received icv-STZ (3 mg/kg). Twenty four hours
after the training the animals were subjected to test in a step-down
inhibitory avoidance task. Briefly, the rats were subjected to a single

image of Scheme�1


Table 2
The primers used for the gene amplification.

PCR primers design

Proteins Primer sequences (50–30) Accession number (mRNA)

β-Actina F-TATGCCAACACAGTGCTGTCTGG
R-TACTCCTGCTTCCTGATCCACAT

ENSDRT-0000055194

AChEa F-GACTGCCTTTATCTTAATGTG
R-CGGCTGATGAGAGATTCATTG

NP_571921

a According to da Silva et al. (2008).
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training session in a step-down inhibitory avoidance apparatus, which
consisted of a 25 × 25 × 35-cm boxwith a grid floor whose left portion
was covered by a 7 × 25-cmplatform, 2.5 cmhigh. The ratswere placed
gently on the platform facing the rear left corner, and when the rat
stepped down with all four paws on the grid, a 3-s 0.4-mA shock was
applied to the grid. Retention test took place in the same apparatus
24 h later. Test step-down latency was taken as a measure of retention,
and a cut-off time of 300 s was established.

Open field
Immediately after the inhibitory avoidance test session, the animals

were transferred to anopen-fieldmeasuring 56 × 40 × 30 cm,with the
floor divided into 12 squares measuring 12 × 12 cm each. The open
field session lasted for 5 min and during this time, an observer, who
was not aware of the pharmacological treatments, recorded the number
of crossing responses and rearing responsesmanually. This testwas car-
ried out to identify motor disabilities, which might influence inhibitory
avoidance performance at testing (Gutierres et al., 2012a).

Foot shock sensitivity test
Reactivity to shockwas evaluated in the same apparatus used for in-

hibitory avoidance, except that the platformwas removed andwas used
to determine the flinch and jump thresholds in experimentally naïve
animals (Berlese et al., 2005; Rubin et al., 2000a). The animals were
placed on the grid and allowed a 3 min habituation period before the
start of a series of shocks (1 s) delivered at 10 s intervals. Shock inten-
sities ranged from 0.1 to 0.5 mA in 0.1 mA increments. The adjustments
in shock intensity were made in accordance with each animal's re-
sponse. The intensitywas raised by oneunitwhenno response occurred
and lowered by one unit when a response was made. A flinch response
was defined as withdrawal of one paw from the grid floor, and a jump
response was defined as withdrawal of three or four paws. Two mea-
surements of each threshold (flinch and jump) were made, and the
mean of each score was calculated for each animal.

Brain tissue preparation

After behavioral tests, the animals were anesthetized under a halo-
thane atmosphere, euthanized by decapitation and the brain was
removed and separated into cerebral cortex and hippocampus and
placed in a solution of Tris–HCl 10 mM, pH 7.4, on ice. The brain struc-
tures were gently homogenized in a glass potter in Tris–HCl solution.
Aliquots of resulting brain structure homogenates were stored at
−20 °C until utilization (Gutierres et al., 2012a). Protein was deter-
mined previously in a strip that varied for each structure: cerebral cor-
tex (0.7 mg/mL) and hippocampus (0.8 mg/mL), and determined by
Coomassie blue method as previously described (Bradford, 1976),
using bovine serum albumin as standard solution.

Isolation of synaptosomes with a discontinuous Percoll gradient

Synaptosomeswere isolated essentially as previously described (Nagy
and Delgado-Escueta, 1984), with a minor modification (Gutierres et al.,
2012c) using a discontinuous Percoll gradient. The cerebral cortex and
hippocampus were gently homogenized in 10 volumes of an ice-cold
medium (medium I) containing 320 mM sucrose, 0.1 mM EDTA and
5 mM HEPES, pH 7.5, in a motor driven Teflon-glass homogenizer and
then centrifuged at 1000 ×g for 10 min. An aliquot of 0.5 mL of the
crude mitochondrial pellet was mixed with 4.0 mL of an 8.5% Percoll
solution and layered into an isosmotic discontinuous Percoll/sucrose
gradient (10%/16%). The synaptosomes that banded at the 10/16%
Percoll interfacewere collectedwith awide-tip disposable plastic trans-
fer pipette. The synaptosomal fraction was washed twice with an
isosmotic solution consisting of 320 mM sucrose, 5.0 mM HEPES,
pH 7.5, and 0.1 mM EDTA by centrifugation at 15,000 ×g to remove
the contaminating Percoll. The pellet of the second centrifugation was
resuspended in an isosmotic solution to a final protein concentration
of 0.4–0.6 mg/mL. Synaptosomes were prepared fresh daily and
maintained at 0°–4° throughout the procedure and used to measure
Ca2+-ATPase and AChE activities.

Assay of lactate dehydrogenase (LDH)

The integrity of the synaptosome preparationswas confirmed by the
lactate dehydrogenase (LDH) activity, which was obtained after synap-
tosome lysis with 0.1% Triton X-100 and comparing it with an intact
preparation, using the Labtest kit (Labtest, Lagoa Santa, MG, Brazil).

Determination of AChE activity in brain

The AChE enzymatic assay was determined by a modification of
the spectrophotometric method (Rocha et al., 1993) as previously de-
scribed (Ellman et al., 1961). The reaction mixture contained 100 mM
K+-phosphate buffer, pH 7.5 and 1 mM 5,5′-dithiobisnitrobenzoic
acid (DTNB). The method is based on the formation of the yellow
anion, 5,5′-dithio-bis-acid-nitrobenzoic, measured by absorbance at
412 nm during 2 min incubation at 25 °C. The enzyme (40–50 μg
of protein) was pre-incubated for 2 min. The reaction was initiated
by adding 0.8 mM acetylthiocholine iodide (AcSCh). All samples were
run in triplicate and the enzyme activity was expressed in μmol
AcSCh/h/mg of protein.

Analysis of gene expression using semiquantitative RT-PCR

The analysis of AChE expressionwas carried out using semiquantita-
tive reverse transcriptase polymerase chain reaction (RT-PCR). The hip-
pocampus and cerebral cortex were dissected under sterile conditions,
and total RNA was extracted using the TRIzol® Reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer's instructions. The
RNA was quantified by spectrophotometry, and cDNA was synthesized
using the ImProm-II™Reverse Transcription System(Promega). PCR re-
actions for the AChE and β-actin genes were performed using 0.1 μM of
the appropriate primers (AChE forward: 5′-GAC TGC CTT TAT CTT AAT
GTG-3′ and reverse: 5′-CGG CTG ATG AGA GAT TCA TTG-3′; β-actin for-
ward 5′-TAT GCC AAC ACA GTG CTG TCT GG-3′ and reverse 5′-TAC TCC
TGC TTC CTG ATC CAC AT-3′) (see Table 2), 0.2 μM dNTP, 2 mMMgCl2,
and 0.1 U Platinum Taq DNA polymerase (Invitrogen) in a total volume
of 25 μL for AChE and 20 μL for β-actin (Da Silva et al., 2008). The
following conditions were used for the PCR reactions: 1 min at 94 °C;
1 min at the annealing temperature (54 °C for β-actin and 55 °C for
AChE) and 1 min at 72 °C for 35 cycles. Post-extension at 72 °C was
performed for 10 min. For each set of PCR reactions, a negative control
was also included. The PCR products (AChE, 785 bp; β-actin, 210 bp)
were analyzed on a 1.5% agarose gel containing GelRed® (Biotium)
and visualized under ultraviolet light. The Low DNA Mass Ladder
(Invitrogen) was used as a molecular marker, and normalization was
performed using β-actin as the constitutive gene. All PCR analysis was
run in triplicates, including negative controls (in which no reverse tran-
scriptase nor cDNA-containing samples were added in the PCR mix).
No background fluorescence was observed when control samples
were analyzed (data not shown).

ncbi-tnm:0000055194
ncbi-p:NP_571921


Table 3
Effects of anthocyanin (200 mg/kg) treatment and icv-STZ (3 mg/kg)
injection on glucose (mg/dL) levels. Data are reported as means ± -
S.E.M. with 8–10 rats for group. ANOVA (one-way) followed by Tukey
test.

Groups Glucose levels (mmol/L)

CTRL 109.36 ± 2.20
ANT 102.66 ± 2.13
STZ 110.44 ± 1.92
STZ + ANT 106.77 ± 2.09
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Na+,K+-ATPase activity measurement

Na+,K+-ATPase activity was measured as previously described
(Wyse et al., 2000) with minor modifications (Carvalho et al., 2012).
Briefly, the assay medium consisted of (in mM) 30 Tris–HCl buffer
(pH 7.4), 0.1 EDTA, 50 NaCl, 5 KCl, 6 MgCl2 and 50 μg of protein in the
presence or absence of ouabain (1 mM), in a final volume of 350 μL.
The reaction was started by the addition of adenosine triphosphate
to a final concentration of 3 mM. After 30 min at 37 °C, the reaction
was stopped by the addition of 70 μL of 50% (w/v) trichloroacetic acid.
Saturating substrate concentrations were used, and reaction was linear
with protein and time. Appropriate controls were included in the assays
for non-enzymatic hydrolysis of ATP. The amount of inorganic phos-
phate (Pi) released was quantified colorimetrically, as previously
described (Fiske and Subbarow, 1927), using KH2PO4 as reference stan-
dard. Specific Na+,K+-ATPase activity was calculated by subtracting the
ouabain-insensitive activity from the overall activity (in the absence of
ouabain) and expressed in nmol of Pi/min/mg of protein.

Ca2+-ATPase activity measurement

Ca2+-ATPase activity was measured as previously described (Rohn
et al., 1993) with minor modifications (Trevisan et al., 2009). Briefly,
the assay medium consisted of (in mM) 30 Tris–HCl buffer (pH 7.4),
0.1 EGTA, 3 MgCl2 and 100 μg of protein in the presence or absence of
0.4 CaCl2, in a final volumeof 200 μL. The reactionwas started by the ad-
dition of adenosine triphosphate to a final concentration of 3 mM. After
60 min at 37 °C, the reaction was stopped by the addition of 70 μL of
50% (w/v) trichloroacetic acid. Saturating substrate concentrations
were used, and reaction was linear with protein and time. Appropriate
controls were included in the assays for non-enzymatic hydrolysis of
ATP. The amount of inorganic phosphate (Pi) released was quantified
colorimetrically, as previously described (Fiske and Subbarow, 1927),
using KH2PO4 as reference standard. The Ca2+-ATPase activity was de-
termined by subtracting the activity measured in the presence of Ca2+

from that determined in the absence of Ca2+ (no added Ca2+ plus
0.1 mM EGTA) and expressed in nmol of Pi/min/mg of protein.

[3H] Flunitrazepam binding assay

To determine if the effect of anthocyanins can be mediated by the
GABAA/BDZ complex, we performed a specific binding assay of the BDZ
site of GABAA receptors using [3H] flunitrazepam according to a previous
study (Della-Pace et al., 2013). Cerebral cortex from each animal was
thawed and homogenized in 10 mL of homogenization buffer A
(10 mM Tris–HCl, 300 mM sucrose, and 2 mM EDTA, pH 7.4) per gram
of tissue. This homogenate was centrifuged at 1000 ×g for 10 min
at 4 °C. The resulting supernatant was centrifuged at 16,000 ×g for
20 min at 4 °C. The resulting pellet was then resuspended in 1 mL of
homogenization buffer and frozen at−70 °C until analyzed.

Radioligand binding assay
[3H] Flunitrazepam binding to the benzodiazepinic site of GABAA re-

ceptors was determined by first washing the cell membrane prepara-
tion as follows: individual aliquots were diluted with five volumes of
wash buffer B (50 mM Tris–HCl and 2 mM EDTA, pH 7.4), mixed, and
centrifuged at 16,000 ×g for 10 min at 4 °C, and the sampleswere incu-
bated for 30 min at 37 °C. This washing procedure was repeated twice,
and the final pellet was resuspended in binding assay buffer C (20 mM
HEPES and 1 mM EDTA, pH 7.4). The protein concentration of each
sample was determined by a spectrophotometric protein dye-binding
assay based on the method of Bradford (1976), using bovine serum
albumin as the standard. The incubation was carried out in duplicate
in polycarbonated tubes (total volume 500 μL) containing 50 mM
Tris–HCl (pH 7.4), and 0.5 mg of protein membrane. Diazepam
(0.1 μM) was used as a positive control. Incubation was started
by adding 1 nM [3H] flunitrazepam (85.8 Ci/mmol), and run in ice
for 60 min. The reaction was stopped by vacuum filtration and
each filter was washed with 15 mL of cold 10 mM Tris–HCl buffer.
Filters were individually placed in polycarbonated tubes and 1 mL of
scintillation liquid was added. Radioactivity was determined using
a Packard Tri-Carb 2100TR liquid scintillation counter. Non-specific
binding was determined by adding 1 μM diazepam to the medium in
parallel assays. Specific binding was considered as the difference be-
tween total binding and non-specific binding. Results were expressed
as percentage of specific binding.

Assay of nitrite plus nitrate (NO2 plus NO3)

For NOx determination, an aliquot (200 μL of samples) was homog-
enized in 200 mM Zn2SO4 and acetonitrile (96%, HPLC grade). After,
the homogenate was centrifuged at 16,000 ×g for 20 min at 4 °C and
supernatantwas separated for analysis of theNOx content as previously
described (Miranda et al., 2001). The resulting pellet was suspended in
NaOH (6 M) for protein determination.

Glucose analysis

The glucose levels were measured using standard enzymatic
methods from Ortho-Clinical Diagnostics® reagents on the fully auto-
mated analyzer (Vitros 950® dry chemistry system; Johnson & Johnson,
Rochester, NY, USA).

Statistical analysis

Statistical analysis of training and test step-down latencies was car-
ried out by the Scheirer–Ray–Hare extension of the Kruskal–Wallis test
(nonparametric two-way ANOVA). The open field, binding assay and foot
shock sensitivity was analyzed by one-way ANOVA followed by student
Newman–Keuls. The other tests were analyzed by two-way ANOVA,
followed by Tukey test, and considered P b 0.05 or P b 0.001 as signifi-
cant difference in all experiments.

Results

Glucose levels

During the complete study therewere no differences in bodyweight
and water consumption in all groups (data not shown). There was no
significant difference between the mean peripheral glucose levels
after 3 mg/kg icv-STZ groups and citrate buffer (pH 4.4) icv injection
groups. The mean peripheral glucose levels were 109.36 ± 2.20 for the
CTRL group, 102.66 ± 2.13 for the ANT group, 110.44 ± 1.92 for the
STZ group and 106.77 ± 2.09 for the STZ + ANT group, respectively,
indicating that the dose was subdiabetogenic (Table 3).

Behavioral tests

Anthocyanin prevents the impairment of memory induced by STZ
In this study we used 4 groups of animals: control (CTRL), anthocy-

anin (ANT), streptozotocin (STZ), and streptozotocin plus anthocyanin
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Fig. 1. Oral administration of anthocyanin (200 mg/kg) once a day during 7 days prevents the impairment of memory induced by icv-STZ (3 mg/kg) in adult rats. (A) Number of crossing,
(B) number of rearing and (C) latency of training (s)were reported asmeans ± S.E.M. and analyzed by one or two-way ANOVA, followed by Tukey test. (D) Latency of test (s)was reported
asmedian ± interquartile rangewith 8–10 rats for a group. *Denotes P b 0.05 as compared to the other groups, # denotes P b 0.05 as comparedwith icv-STZ group by Scheirer–Ray–Hare
test (nonparametric two-way ANOVA); H2 = 9.75; P b 0.01.
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(STZ + ANT). Fig. 1 shows the effect of ANT treatment on the STZ-
inducedmemory deficits, in the step-down latencies. Statistical analysis
of Scheirer–Ray–Hare test (nonparametric two-way ANOVA) showed
a significant difference between STZ (3 mg/kg) vs ANT (200 mg/kg)
or vehicle interaction (CTRL), revealing that treatment with ANT
prevented the impairment of memory induced by STZ [H2 = 9.75;
P b 0.01; Fig. 1D]. Statistical analysis of the data obtained during
training showed no difference between the different groups (Fig. 1C).

Although, motivational disparities in the training session may ac-
count for differences in inhibitory avoidance testing, experiments
were performed to assess whether STZ or ANT affected shock sensi-
tivity threshold and locomotor capacity of the animals. Statistical
analysis of open-field data (one-way ANOVA) revealed that STZ did
not alter the number of crossing (F (3,42) = 0.11, P N 0.05; Fig. 1A)
or rearing (F (3,42) = 1.82, P N 0.05; Fig. 1B) responses in a subse-
quent open-field test session, suggesting that neither STZ nor ANT
caused gross motor disabilities in this task. Moreover, STZ did not
alter foot shock sensitivity, as demonstrated by the similar flinch
Table 4
Effect of anthocyanin (200 mg/kg) and icv-STZ (3 mg/kg) on foot shock sensitivity (flinch,
jump and vocalization). Data are reported as means ± S.E.M. with 8–10 rats for group.
ANOVA (two-way) followed by Tukey test.

Group Flinch (mA) Jump (mA) Vocalization (mA)

CTRL 0.18 ± 0.01 0.22 ± 0.02 0.42 ± 0.01
ANT 0.20 ± 0.01 0.23 ± 0.02 0.41 ± 0.02
STZ 0.21 ± 0.01 0.21 ± 0.02 0.43 ± 0.01
STZ + ANT 0.18 ± 0.01 0.24 ± 0.01 0.44 ± 0.01
Statistical analysis F(3.30) = 1.33;

p N 0.05
F(3.30) = 1.66;
p N 0.05

F(3.30) = 1.76;
p N 0.05

Data are means ± S.E.M. for 6–10 animals in each group.
and jump thresholds exhibited by the animals. In Table 4 it can
be seen that neither ANT + STZ animals nor STZ animals were af-
fected in their motor performances and foot shock sensitivity: flinch
[F (3,30) = 1.33; P N 0.05], jump [F (3,30) = 1.66; P N 0.05] and vo-
calization [F (3,30) = 1.76; P N 0.05].
Effect of STZ and anthocyanin treatment on anxiolytic-like behavior
Fig. 2 shows the effect of the treatmentwith anthocyanin and STZ on

anxiolytic-like behavior in the elevated plus maze task. Statistical anal-
ysis (two-way ANOVA) showed a significant CTRL or STZ (3 mg/kg)
vs CTRL or ANT (200 mg/kg) interaction to time spent (s) in open
arms [F (1,41) = 6.264; P b 0.05; Fig. 2D] and time in closed arms
[F (1,41) = 4.925; P b 0.05; Fig. 2C], revealing that treatment with
ANT prevented the anxiogenic behavior induced by STZ. However,
no significant differences in the number of entries in open arms
[F (1,41) = 0.279; P N 0.05; Fig. 2B] and in the number of entries in
all arms [F (1,41) = 0.68; P N 0.05; Fig. 2A]were observed. The number
of total entries in arms suggests that neither icv-STZ nor ANT animals
had altered locomotor activity in the elevated plus maze task.
Binding of [3H] flunitrazepam to benzodiazepinic site assay

Since we observed an anxiolytic effect of ANT in the elevated plus
maze task, we decided to investigate whether the compound can alter
the binding of [3H] flunitrazepam to the benzodiazepinic site of
a GABAA receptor. The results presented in Fig. 3 reveal that the
ANT (100 μM) reduced by 43% the [3H] flunitrazepam binding to
the benzodiazepinic site of GABAA receptors [F (2,17) = 47.890;
P b 0.0001] and this result demonstrates that ANT can interact with
GABAA receptors.
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Fig. 2.Effects of anthocyanin (200 mg/kg) treatment and icv-STZ (3 mg/kg) injection on anxiety-like behavior in the elevatedplusmaze task: (A) number of entries in arms; (B) number of
entries in open arms; (C) time in closed arms (s) and (D) percentage of time in open arms. Data are reported asmeans ± S.E.M. with 8–10 rats for a group. *Denotes P b 0.05 as compared
to the control (CTRL) group; ANOVA (two-way) followed by Tukey test.
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Activity and expression of acetylcholinesterase

Anthocyanin prevents the increase in AChE activity induced by STZ
Previous studies report cholinergic impairments in cognitive disor-

ders by quantification of acetylcholinesterase (AChE) activity. There-
fore, we investigated whether ANT restores AChE activity in the model
of SDAT. Fig. 4 shows the effect of ANT and STZ on the AChE activity in
the cerebral cortex and hippocampus, both in S1 and synaptosomes of
rats. We found a significant CTRL or STZ (3 mg/kg) vs CTRL or ANT
(200 mg/kg) interaction, suggesting that the ANT treatment prevents
the increase in AChE activity in the S1 fraction of the cerebral cortex
[F = (1,28) = 7.973; P b 0.05] and hippocampus [F (1,28) = 4.995;
P b 0.05] (Fig. 4A) induced by icv-STZ.
CTRL 100 0.1
0

50

100

150

Diazepam (μM)ANT (μM)

***

*

%
 s

p
ec

if
ic

 b
in

d
in

g
[3 H

]F
lu

n
it

ra
ze

p
an

Fig. 3. Anthocyanin (100 μM) reduced the specific [3H] flunitrazepam binding to the
benzodiazepinic site of GABAA receptors. Data are reported as means ± S.E.M. *P b 0.05
compared with the diazepan (0.1 μM) and control groups; ***P b 0.01 compared with
control and ANT groups; ANOVA (one-way) followed by Tukey test.
Importantly, synaptosome fraction analysis showed a significant
CTRL or STZ (3 mg/kg) vs CTRL or ANT (200 mg/kg) interaction, sug-
gesting that the ANT treatment prevents the increase in AChE activity
in the synaptosomes of the cerebral cortex [F (1,28) = 4.760;
P b 0.05] and hippocampus [F (1,28) = 8. 434; P b 0.01](Fig. 4B)
induced by icv-STZ.

Effect of STZ and anthocyanin treatment on the AChE expression in the
cortex and hippocampus of rats

Fig. 5 shows the effect of ANT and STZ on the AChE expression in the
cerebral cortex and hippocampus of rats. No significant differences
in AChE expression between groups were observed in the cerebral
cortex [F (1,8) = 0.423; P N 0.05] and hippocampus [F (1,8) = 0.140;
P N 0.05].

Anthocyanin prevents the decrease of Na+,K+-ATPase and increase of
Ca2+-ATPase activity induced by STZ

Na+,K+-ATPase and Ca2+-ATPase are enzymes involved in the con-
trol of neurotransmission, regulating the membrane potential and ex-
tracellular calcium concentrations, respectively. Fig. 6 shows the effect
of ANT and STZ on the activity of Na+,K+-ATPase and Ca2+-ATPase
in the cerebral cortex and hippocampus of rats. Statistical analysis
(two-way ANOVA) showed a significant CTRL or STZ (3 mg/kg) vs
CTRL or ANT (200 mg/kg) interaction, suggesting that the ANT
treatment prevents the decrease in Na+,K+-ATPase activity in the
cerebral cortex [F (1,28) = 17.760; P b 0.001] and hippocampus
[F (1,28) = 4.978, P b 0.05] induced by icv-STZ (Fig. 6A).

Additionally, two-way ANOVA showed a significant CTRL or STZ
(3 mg/kg) vs CTRL or ANT (200 mg/kg) interaction, suggesting that
the ANT treatment prevents the increase of Ca2+-ATPase activity
in the cerebral cortex [F (1,28) = 5.671; P b 0.05] and hippocampus
[F (1,28) = 5.272; P b 0.05] induced by icv-STZ (Fig. 6B).
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NOx level determination

Anthocyanins are known by their antioxidant properties, so in this
set of experiments we investigated if ANT alters nitrite/nitrate content
in the brain of rats. Fig. 7 shows the effect of ANT and STZ on the NOx
level production in the cerebral cortex and hippocampus. Statistical
analysis (two-way ANOVA) showed a significant CTRL or STZ (3 mg/kg)
vs CRTL or ANT (200 mg/kg) interaction, suggesting that the ANT treat-
ment prevents the increased NOx levels both in the cerebral cortex
[F (1,28) = 8.583; P b 0.05] and hippocampus [F (1,28) = 23.350;
P b 0.0001] induced by icv-STZ.
Discussion

Anthocyanins are flavonoids found in fruits and fruit juices, and have
the capacity to improve memory (Harborne and Williams, 2001;
Williams and Grayer, 2004; Williams et al., 2008). Several evidence
have demonstrated that ANTs are able to improve the memory of old
rats in Morris water maze (Andres-Lacueva et al., 2005), and of mice
in the inhibitory avoidance task (Barros et al., 2006) and elderly humans
(Krikorian et al., 2010). There is evidence that ANTs prevent neurotoxic-
ity induced by: i) ethanol in developing brain mice (Ke et al., 2011),
ii) reperfusion damage model of cerebral ischemia (Min et al., 2011;
Shin et al., 2006), and iii) deleterious effects found in models of
Parkinson's (Kim et al., 2010) andAlzheimer's disease (Shih et al., 2010).

Additionally, there was a large number of studies' indicating the neu-
roprotective role of ANT, since studies have shown that ANT can be
transported across biological membranes (Passamonti et al., 2005;
Talavera et al., 2005). There are studies announcing gastric absorption
and neuroprotective effects of ANT-rich foods, but there is a gap in the
knowledge concerning, for example, gastric or ANT transport across the
blood–brain barrier (BBB) (Kalt et al., 2008). Another important factor
affecting ANT bioavailability and pharmacokinetic properties are their
possible ingestion as pigments (anthocyanin derivatives), especially
when considering wine consumption. A recent work had already indi-
cated that anthocyanin pyruvic-acid adducts can rapidly reach rat plas-
ma 15 min after oral administration of 400 mg/kg (Faria et al., 2009a,b).
Thus, we investigated whether this natural compound could prevent
some alterations found in a model of SDAT induced by icv-STZ injection.
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test. No significant changes were observed between groups.
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Fig. 6. Na+,K+-ATPase (A) and Ca+-ATPase (B) activity in the hippocampus and cerebral
cortex in CTRL, ANT, STZ and STZ + ANT groups. Data are reported as means ± S.E.M.
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(two-way) followed by Tukey test.
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Furthermore, a subdiabetogenic dose of STZ (3 mg/kg) to ro-
dents causing a progressive memory impairment, loss and synaptic
dysfunction (Lannert and Hoyer, 1998; Pinton et al., 2010). Thus, there
was no significant difference on the mean peripheral glucose levels
between CTRL and icv-STZ groups (Table 3). Our results indicated that
icv-STZ impaired the acquisition ofmemory in rats trained on the inhib-
itory avoidance task. Interestingly, we found out that ANT at 200 mg/kg
for 7 days, did not affect thememory of rats and prevented thememory
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Fig. 7. Effects of anthocyanin and icv-STZ administration onNOx levels in thehippocampus
and cerebral cortex of rats. Data are reported asmeans ± S.E.M.with 8–10 rats for a group.
*P b 0.05 compared with the other groups; ANOVA (two-way) followed by Tukey test.
deficits induced by icv-STZ (Fig. 1D), as assessed by the inhibitory avoid-
ance task. Furthermore, previous studies from our laboratory demon-
strated that the dose of 200 mg/kg ANT antagonized scopolamine-
induced performance deficits in rats (Gutierres et al., 2012b) suggesting
that ANTs have a close interaction with the cholinergic system.

Immediately after inhibitory avoidance test, the animals were sub-
jected to an open-field test which is widely used for evaluating motor
abnormalities (Belzung and Griebel, 2001). The open field session re-
vealed that the treatmentwith icv-STZ or ANTdid not alter spontaneous
locomotor activity (Fig. 1A, B). Moreover, we observed that the rats of
different groups did not show altered shock sensitivity (Table 4), as ver-
ified by their similar flinch, jump and vocalization thresholds. These
data suggest that neither STZ nor ANT administration caused motor
disabilities or altered foot shock sensitivity, excluding their possibility
of interference in step-down latencies of inhibitory avoidance task.

Besides assessing the acquisition memory in the inhibitory avoid-
ance task,we alsomeasured the anxiolytic-like behavior by the elevated
plusmaze task, commonly used to study anxiety-related behavior in ro-
dents (Belzung and Griebel, 2001). Our results showed a higher anxiety
in the icv-STZ group (3 mg/kg) (Fig. 2C; D) which is in accordance with
previous observations that mice subjected to icv-STZ, in short time
(7 days) and long time (21 days) treatments, have an increase in
anxious behavior (Pinton et al., 2011). We found an anxiolytic effect
of the treatment of ANT thatwas observed by time in closed arms. How-
ever, ANT did not change the number of entries and time spent in open
arms. We suggest that investigating anxiolytic effects of anthocyanins
per sewould be important in the selection of a range of doses. Addition-
ally, the dose chosen in this study was able to prevent the anxiogenic
behavior caused by icv-STZ administration (Fig. 2C, D). We believe
that the mechanism by which ANT plays an anxiolytic effect results in
part from an interaction with the GABAergic system, because ANT sig-
nificantly displaces the specific binding of [3H] flunitrazepam to the
benzodiazepinic site of the GABAA receptor (Fig. 3). Several molecular
interactions can be addressed to explain the displacement of the specific
binding of [3H] flunitrazepam to the benzodiazepinic site of the GABAA

including the indirect effect of ANT on GABA receptor currents and the
binding of ANT at orthosteric or allosteric GABAA binding sites. So,
even if we can not assert where ANT is specifically binding, it is clear
that it is closely related to the GABAergic pathway. This work is the
first to describe a possible location where this compound may act to
promote an anxiolytic effect, suggesting that ANT may be considered
an important pharmacological agent in situations of anxiety.

The pivotal role of the cholinergic system in memory is further
underlined by the use of AChE inhibitors in AD to prevent memory de-
cline. In this study, we found that an icv-STZ group showed an increase
in AChE activity in supernatant and synaptosomes in relation to all
tested groups (Fig. 4). This finding is in conformity with the previous
studies showing an increase in AChE activity upon icv-STZ administra-
tion (Awasthi et al., 2010; Tota et al., 2009, 2010), but not AChE expres-
sion (Fig. 5). However, we cannot exclude that the icv-STZ injection can
cause changes in the AChEmRNA expression, since studies with the ad-
ministration of icv-STZ for 21 days was able to alter AChE expression in
the cerebral cortex and hippocampus of rats (Tota et al., 2012) and the
exposure to STZ in this study was 7 days. In addition, the impairment
in insulin signaling, reduced cholineacetyltransferase (ChAT) activity
and increased oxidative stress induced by icv-STZ injectionwere associ-
ated with the upregulation of AChE in the brain of rats (de la Monte
et al., 2006; Lester-Coll et al., 2006). In the present study, we observed
that ANT was able to prevent the AChE upregulation in the hippocam-
pus and cerebral cortex of icv-STZ animals, without affecting per se
the AChE activity. This effect of ANT can be attributed, at least in part,
to its potent antioxidant effect.

While it is not evaluated whether glial or neuronal Na+,K+-ATPase
and Ca2+-ATPAse are preferentially affected by STZ, it is conceivable
that STZ may alter both cell types. If this was the case, icv-STZ could
alter Na+, K+ and Ca2+ intracellular gradients, facilitating neuronal
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depolarization and impairing sodium and potassium gradient-
dependent transport processes, such as neurotransmitter uptake
(Benarroch, 2011; Gether et al., 2006; Gouaux, 2009). In this view, it is
known that a decreased activity and expression of Na+,K+-ATPase, di-
rectly affects the signaling of neurotransmitters, impairing learning
and memory, as well as locomotor activity and anxiety behavior of
rats (dos Reis et al., 2002; Lingrel et al., 2007; Moseley et al., 2007). In
vitro studies showed that the inhibitor of Na+,K+-ATPase, ouabain, in-
creases the Ca2+ influx into slices of rat brain (Fujisawa et al., 1965), in-
duces the release of glutamate by reverse transport of Na+ (Li and Stys,
2001) and cause excitotoxicity in hippocampal neurons (Lees et al.,
1990). Corroborating these findings, our study showed that icv-STZ
administration decreased Na+,K+-ATPase activity and increased
Ca2+-ATPase activity (Fig. 6), suggesting that a disturbance in the
electrolytic concentrations of Na+ and Ca2+ could lead to excitotoxicity
and neuronal death in icv-STZ injected animals.

Furthermore, it was also found that the inhibition of Na+,K+-ATPase
increases NMDA-mediated currents in the hippocampus (Zhang et al.,
2012). It is known that NMDA receptor activation increases the nitric
oxide (NO) synthesis by increasing nitric oxide synthase activity
(NOS) (Prast and Philippu, 2001; Sattler et al., 1999). NO is a retrograde
messenger which diffuses through the cellular membranes and activa-
tion of guanylate cyclase and PKG (East andGarthwaite, 1991). Previous
studies have demonstrated that activation of NOS and synthesis of NO
are related with the reduction of Na+,K+-ATPase activity (Boldyrev
et al., 2003, 2004; Carvalho et al., 2012). Our results, show that icv-STZ
administration increases the nitrate/nitrite levels (Fig. 7), so these
findings may be related to the reduction of Na+,K+-ATPase in two
ways: 1—NO can inhibit theNa+,K+-ATPase activity through its binding
to thiol groups, generating S-nitrosothiol and consequently leading to
the formation of nitrous compounds (Boldyrev and Bulygina, 1997;
Boldyrev et al., 1997; Lipton et al., 1993, 1994; Takeguchi et al., 1976);
2—activation of a signaling pathway related with NOS/cGMP/PKG
(Carvalho et al., 2012).

These studies have stated that in addition to ANT antioxidant effects,
these compounds decrease the levels of NO (Blokland and Jolles, 1993;
Juranic and Zizak, 2005). The data presented in this paper demonstrates
that ANT prevented the augmentation of NOx levels induced by icv-STZ.
Previous studies have shown that ANT is able to decrease the iNOS
expression as well as NO production in macrophages and JC77 cells ex-
posed to lipopolysaccharide induced inflammation (Pergola et al., 2006;
Wang et al., 2008). This leads us to believe that the ANT might prevent
excitotoxic mechanisms related with NO synthesis, since the overpro-
duction of reactive nitrogen species (RNS) results in “nitrosative” stress
that contributes to several pathological processes that underlie neuro-
degenerative and inflammatory diseases (Rutkowski et al., 2007;
Valko et al., 2007).

Besides ANT antioxidant properties we can not discard other
ANT neuroprotective mechanisms in the prevention of the increase in
NOx induced by STZ such as for the affinity of ANT to GABAA receptors.
Studies have shown that compoundswhich potentiate GABAA receptors
(benzodiazepines) prevent the increase of NO induced by NMDA ad-
ministration in the cerebellumof rats (Fedele et al., 2000). Furthermore,
the activation of GABAA receptors protects neurons against Aβ toxicity
in AD-affected regions in mammalian brain (Paula-Lima et al., 2005).
Recent studies have found a significant reduction of GABA currents in
AD brains, associated with reductions of mRNA and protein of the prin-
cipal GABA receptor subunits normally present in the temporal cortex,
and these findings can support a functional remodeling of GABAergic
neurotransmission in the human AD brain (Limon et al., 2012).

Thus, our results suggest that the ANT could exert beneficial actions,
preventing the increase in AChE activity and memory loss induced
by icv-STZ. Interestingly, our results showed, for the first time that
ANT has affinity for GABAA receptors, which may explain the anxiolytic
effect per se and counteract the increased anxiety of icv-STZ animals.
Moreover, additional therapeutic implications can be attributed to
ANT through its capacity to modulate NO production and regulate
Na+,K+-ATPase and Ca+-ATPase activities in pathological situations.
More experiments are already being conducted to investigate possible
biochemical targets of flavonoids, as ANT, in the SDAT.
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