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The main goal of the present paper is to present a penalty based cuckoo search (CS)

algorithm to get the optimal solution of reliability e redundancy allocation problems

(RRAP) with nonlinear resource constraints. The reliability e redundancy allocation

problem involves the selection of components' reliability in each subsystem and the

corresponding redundancy levels that produce maximum benefits subject to the sys-

tem's cost, weight, volume and reliability constraints. Numerical results of five bench-

mark problems are reported and compared. It has been shown that the solutions by the

proposed approach are all superior to the best solutions obtained by the typical ap-

proaches in the literature are shown to be statistically significant by means of unpaired

pooled t-test.

Copyright 2015, Beni-Suef University. Production and hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

With the advance of technology and growing complexity of an

industrial system, it has become imperative for all production

systems to perform satisfactorily during their expected life

span. However, failure is an unavoidable phenomenon asso-

ciated with the technological advancement of the equipments

used in all industries. Any unfortunate consequences of un-

reliable behavior of such equipments or systems have led to

the desire for reliability analysis (Garg et al., 2013a, b).

Therefore, in recent years system reliability becomes an

important issue in evaluating the performance of an
.
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engineering system. The optimal reliability design aims to

determine a system structure that achieves higher levels of

reliability at the minimum cost to the manufacturer either by

exchanging the existing components with more reliable

components or/and using redundant components in parallel.

In the former way, the system reliability can be improved to

some degree, but the required reliability enhancement may

never be attainable even though the highest available and

reliable components are used. In the latter approach, system

reliability can be enhanced by choosing the redundant com-

ponents, but the cost, weight, volume etc. will be increased as

well. Besides the above twoways, the system reliability can be
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enhanced through both reliability allocation and redundancy

allocation. Such problem of allocation is known as reliability-

redundancy allocation problem (RRAP) which aims is to maxi-

mize the system reliability under the several constraints like,

cost, weight and volume (Kuo and Prasad, 2000; Hikita et al.,

1992). In order to solve the reliability-redundancy allocation

problem, several heuristic, global optimization as well as

meta-heuristic methods exist in the literature which includes

heuristic methods, Lagrangianmultiplier method, branch and

bound method, linear programming, and so on (Hikita et al.,

1992; Kuo et al., 1978; Gopal et al., 1978; Dhingra, 1992; Hikita

et al., 1978). But these approaches do not guarantee exact

optimal solutions, but they achieve reasonably good solutions

for hard problems in relatively short time periods.

However, the heuristic techniques require derivatives for

all non-linear constraint functions, that are not derived easily

because of the high computational complexity. To overcome

this difficulty meta-heuristics have been selected and suc-

cessfully applied to handle a number of reliability optimiza-

tion problems. These heuristics include genetic algorithms

(Yokota et al., 1996; Painton and Campbell, 1995), simulated

annealing (Kim et al., 2006), particle swarm optimization (Yeh,

2009; Garg and Sharma, 2013; Coelho, 2009), artificial bee col-

ony (Hsieh and Yeh, 2012; Yeh and Hsieh, 2011; Garg et al.,

2013a,b), harmony search (Zou et al., 2010) etc. Yokota et al.

(1996); Painton and Campbell (1995) and Hsieh et al. (1998)

applied genetic algorithms (GA) to solve these mixed-integer

reliability optimization problems. Coit and Smith (1996)

combined GA and neural network (NN) to tackle the series-

parallel redundancy problem. Chen (2006) applied the im-

mune algorithm (IA) for solving the reliabilityeredundancy

allocation problem. It can search over promising feasible and

infeasible regions to find the feasible optimal/near optimal

solution effectively and efficiently. Gen and Yun (2006)

employed a soft computing approach for solving various

reliability optimization problems. This method combined

rough search techniques and local search techniques, which

can prevent the premature convergence situation of its solu-

tion. Coelho (2009) proposed an efficient particle swarm opti-

mization (PSO) algorithm based on Gaussian distribution and

chaotic sequence (PSO e GC) to solve the reliability e redun-

dancy optimization problems. Zou et al. (2010) proposed a

novel global harmony search algorithm (NGHS) to solve reli-

ability problems. The NGHS is an improved version of the

harmony search algorithmGeemet al. (2001), and it is inspired

by the swarm intelligence of the particle swarm optimization

algorithm. Agarwal and Sharma (2010) presented an ant col-

ony optimization algorithm to address the constrained

redundancy allocation problem tomaximize system reliability

for complex binary systems. Yeh and Hsieh (2011) developed a

penalty guided artificial bee colony algorithm (ABC) for solving

the reliability optimization problems. In addition, they also

proposed a local search to improve the solutions. Wang and Li

(2012) proposed an effective coevolutionary differential evo-

lution with harmony search algorithm for solving the relia-

bilityredundancy optimization problems by dividing the

problem into a continuous part and an integer part. Wu et al.

(2011) proposed an improved particle swarm optimization

algorithm for solving the reliability problems. Hsieh and You

(2011) proposed an immune based two-phase approach to
solve the reliability-redundancy allocation problem. In the

first phase, an immune based algorithm (IA) is developed to

solve the allocation problem, and in the second phase a new

procedure is presented to improve the solutions by the IA.

Garg et al. (2014) solved the various multi-objective reliability

optimization problem using intuitionistic fuzzy optimization

technique in interval environment. The conflicting nature

between the objective are handled with the help of defining

their membership functions corresponding to each objective

function and then corresponding problem has been solved

with the particle swarm optimization. Zou et al. (2011) pro-

posed global harmony search algorithm for solving bridge and

overspeed protection system optimization problem. In it, they

combine the harmony search algorithm with concepts from

the particle swarm optimization to solve optimization prob-

lems. Valian et al. (2013) proposed an improved version of

cuckoo search for solving the reliability optimization prob-

lems. Garg and Sharma (2012) presented a novel technique for

analyzing the behavior of an industrial system after quanti-

fying the uncertainties in the data. Various reliability param-

eters are computed are comparing their results with

traditional and existing techniques and gave a recommenda-

tion for improving the performance of the system.

Recently, a cuckoo search (CS) has been a new meta-

heuristic approach proposed by Yang and Deb (2009) in 2009.

Recent studies show that CS is potentially far more efficient

than PSO and GA (Rajabioun, 2011). Moreover the number of

parameters in CS to be tuned is less than GA and PSO, and thus

it is potentially more generic to adapt to a wider class of

optimization problems. In the light of the advantages of CS

technique, in the presented paper the five benchmark prob-

lems of reliability-redundancy allocation have been solved

and it has been observed that the results of the new approach

are all superior to the existing results in the literature. The rest

of the paper is organized as follows: Section 2 describe the

assumptions as well as notations that have been used in the

entire paper. Section 3 deals with the benchmark problems of

the reliability e redundancy allocation. In Section 4, the pen-

alty based guided cuckoo search methodology is described.

The final results by CS approach have been obtained and

discussed in Section 5 while conclusions drawn are presented

in Section 6.
2. Assumption and notations

Before introducing the reliability-redundancy allocation

problem, we define the following assumptions and notations

that have been used in the entire paper.
2.1. Assumptions

� If a component of any subsystem fails to function, the

entire system will not be damaged or fail.

� All redundancy is active redundancy with out repair.

� Reliability, cost, weight and volume of each components in

one subsystem are same.

� The state of components and system has only two states

like operating state or failure state.

http://dx.doi.org/10.1016/j.bjbas.2015.02.003
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2.2. Notations
m number of subsystems in the

system.

M number of constraints.

ni the number of components in

subsystem i,1 � i � m.

n ¼(n1,n2,…,nm), the vector of

redundancy allocation for the

system.

ri reliability of each components in

subsystem i,1 � i � m.

r ¼(r1,r2,…,rm), the vector of

component reliabilities for the

system.

gj the jth constraint function,

j ¼ 1,2,…,M.

wi the weight of each component in

subsystem i,1 � i � m.

ci the cost of the each component in

subsystem i,1 � i � m.

vi the volume of each component in

subsystem i.

Ri ¼ 1� ð1� riÞni is the reliability of the

ith subsystem 1 � i � m.

Qi 1 � Ri is the unreliability of the ith

subsystem.

ni,max maximum number of components

in subsystem i,1 � i � m.

Rs the system reliability.

C,W the upper limit of the system's cost,

weight respectively.

S set of feasible solution.
3. Reliability-redundancy allocation problem

The general mathematical formulation of the reliability-

redundancy allocation problem is:

Maximize
subject to

Rsðr1; r2;…; rm;n1;n2;…;nmÞ
gðr1; r2;…; rm;n1;n2;…;nmÞ � b
0 � ri � 1 ; i ¼ 1;2;/;m
1 � ni � ni;max; ni2Zþ; ri2½0; 1�3ℝ

where gð,Þ is the set of constraint functions usually associated

with the system's weight, volume and cost; Rsð,Þ is the

objective function for the overall system reliability; ri and ni
are the reliability and the number of redundant components

in the ith subsystem, respectively; m is the number of sub-

systems in the system and b is the vector of resource limita-

tion. This problem is an NP problem and belongs to the
Maximize Rsðr;nÞ
s:t:

where

¼ 1� ð1� R1R2Þ½1� ðR3 þ R4 � R3R4ÞR5Þ
g1ðr;nÞ; g2ðr;nÞ; g3ðr;nÞ ðas specified byð1Þ; ð2Þ; ð3ÞrespectivelyÞ
0:5 � ri � 1 ; ri2½0;1�3ℝþ 1 � ni � 5 ; ni2Zþ i ¼ 1;2;/; 5
Ri ¼ 1� ð1� riÞni
category of constrained nonlinearmixed-integer optimization

problems because the number of redundancy ni are the
positive integer values and the component reliability ri are the

real values between 0 and 1. The goal of the problem is to

determine the number of components ni and the components'
reliability ri in each subsystem so as to maximize the overall

system reliability.

Five benchmark problems of the reliability e redundancy

allocation have been taken. The first three examples with

non-linear constraints used by authors (Hikita et al., 1992;

Hsieh et al., 1998; Chen, 2006; Yeh and Hsieh, 2011; Garg

et al., 2013a,b; Zou et al., 2010; Wu et al., 2011; Valian et al.,

2013; Kim et al., 2006; Coelho, 2009) are a series system,

series-parallel system and complex (bridge) system, respec-

tively. The fourth example is an overspeed protection system,

which was investigated by authors (Yokota et al., 1996; Chen,

2006; Coelho, 2009; Yeh and Hsieh, 2011; Dhingra, 1992) and

last one is the 15 unit system reliability optimization problem

(Agarwal and Sharma, 2010; Valian et al., 2013).

All the above problems are shown to maximize the sys-

tem's reliability subject to multiple nonlinear constraints and

can be stated as the mixed-integer nonlinear programming

problems. For each problem both, the component reliabilities

and redundancy allocations are to be decided simultaneously

and are formulated as below.

Problem 1. Series System (Fig. 1(a)) (Hikita et al., 1992; Hsieh

et al., 1998; Chen, 2006; Yeh and Hsieh, 2011; Garg et al.,

2013a,b; Kim et al., 2006; Wu et al., 2011; Valian et al., 2013)

Maximize Rsðr;nÞ ¼
Y5
i¼1

�
1� ð1� riÞni

�

s:t: g1ðr;nÞ ¼
X5

i¼1

vin
2
i � V � 0 (1)

g2ðr;nÞ ¼
X5

i¼1

aið � 1000=lnriÞbi ½ni þ expðni=4Þ� � C � 0 (2)

g3ðr;nÞ ¼
X5

i¼1

wini expðni=4Þ �W � 0 (3)

0:5 � ri � 1; ri2½0;1�3ℝþ; 1 � ni � 5; ni2Zþ ;

i ¼ 1;2;/;5

Problem 2. Series-parallel system (Fig. 1(b)) (Hikita et al., 1992;

Hsieh et al., 1998; Chen, 2006; Yeh and Hsieh, 2011; Garg et al.,

2013a,b; Kim et al., 2006; Wu et al., 2011; Valian et al., 2013)
Problem 3. Complex(bridge) system (Fig. 1(c)) (Hikita et al.,

1992; Hsieh et al., 1998; Chen, 2006; Coelho, 2009; Garg et al.,

http://dx.doi.org/10.1016/j.bjbas.2015.02.003
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2013a,b; Yeh and Hsieh, 2011; Kim et al., 2006; Wu et al., 2011;

Valian et al., 2013)
Maximize Rsðr;nÞ
s:t:

where

¼ R5ð1� Q1Q3Þð1� Q2Q4Þ þ Q5½1� ð1� R1R2Þð1� R3R4Þ�
g1ðr;nÞ; g2ðr;nÞ; g3ðr;nÞ ðas specified by ð1Þ; ð2Þ; ð3Þ respectivelyÞ
0:5 � ri � 1 ; ri2½0; 1�3ℝþ; 1 � ni � 5 ; ni2Zþ; i ¼ 1; 2;/;5
Qi ¼ 1� Ri ¼ ð1� riÞni
Problem 4. Overspeed protection system (Fig. 1(d)) (Yokota

et al., 1996; Dhingra, 1992; Chen, 2006; Coelho, 2009; Yeh and

Hsieh, 2011; Garg et al., 2013a,b; Kim et al., 2006; Wu et al.,

2011; Valian et al., 2013)

The fourth problem is considered for the reliability-

redundancy allocation problem of the overspeed protec-

tion system for a gas turbine. Overspeed detection is

continuously provided by the electrical and mechanical

systems. When an overspeed occurs, it is necessary to cut

off the fuel supply. For this purpose, 4 control valves

(V1eV4) must close. The control system is modeled as a 4-

stage series system. The objective is to determine an

optimal level of ri and ni at each stage i such that the system

reliability is maximized. This reliability problem is formu-

lated as follows:
Fig. 1 e Series, series e parallel, bridge a
Maximize Rsðr;nÞ ¼
Y4
i¼1

�
1� ð1� riÞni

�

s:t: g1ðr;nÞ ¼
X4

i¼1

vin
2
i � V � 0

g2ðr;nÞ ¼
X4

i¼1

aið � 1000=lnriÞbi ½ni þ expðni=4Þ� � C � 0

g3ðr;nÞ ¼
X4

i¼1

winiexpðni=4Þ �W � 0

0:5 � ri � 1 ; ri2½0;1�3ℝþ; 1 � ni � 10 ; ni2Zþ;

i ¼ 1; 2;/;4

where vi is the volume of the component at stage i, wi is the

weight of each component at the stage i. The factor exp (ni/4)

accounts for the interconnecting hardware. The parameters bi
and ai are the physical feature (shaping and scaling factor) of

the cost e reliability curve of each component in stage i. V is

the upper limit on the volume, C is the upper limit on the cost
nd overspeed gas turbine systems.

http://dx.doi.org/10.1016/j.bjbas.2015.02.003
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and W is the upper limit on the weight of the system. The

input parameters defining the specific instances of the first

four problems have the same values as Hikita et al. (1992);

Yokota et al. (1996); Hsieh et al. (1998); Chen (2006); Coelho

(2009); Yeh and Hsieh (2011); Garg et al. (2013a, b); Dhingra

(1992); Kuo et al. (1978); Kim et al. (2006); Wu et al. (2011);

Zou et al. (2010); Hsieh and You (2011), and are shown in

Tables 1e3.

Problem 5. 15-unit system reliability optimization problem

(Agarwal and Sharma, 2010; Valian et al., 2013) Considering a

15-unit structure, shown in Fig. 2, the optimization model is

defined as follows
Maximize RsðnÞ ¼ R1R2R3R4R5R6 þ R9R10R11R12R13R14R15 � ðQ1 þ R1Q2 þ R1R2Q3 þ R1R2R3Q4 þ R1R2R3R4Q5 þ R1R2R3R4R5Q6Þ
þR4R5R6R7R9R10ðQ11 þ R11Q12 þ R11R12Q13 þ R11R12R13Q14 þ R11R12R13R14Q15Þ � ðQ1 þ R1Q2Þ
þfðQ1 þ R1Q2ÞðQ3 þ R3Q4 þ R3R4Q7Þ þ R1R2Q7ðQ3 þ R3Q4Þg � ðQ13 þ R13Q14 þ R13R14Q15ÞR5R6R8R9R10R11R12

þR1R2R5R6R7R8R11R12 � ðR9R10 þ Q9 þ R9Q10ÞðQ3 þ R3Q4ÞðQ13 þ R13Q14 þ R13R14Q15Þ þ ðQ5 þ R5Q6Þ
�fðQ7 þ R7Q11 þ R7R11Q12ÞðQ9 þ R9Q10Þ þ R9R10ðQ11 þ R11Q12Þg � R1R2R3R4R8R13R14R15

þR1R2R7R11R12R13R14R15ðQ9 þ R9Q10Þ � ðQ3 þ R3Q4 þ R3R4Q5 þ R3R4R5Q6Þ þ R3R4R7R8R9R10R13R14R15ðQ1 þ R1Q2Þ
�ðQ11 þ R11Q12ÞðQ5 þ R5Q6Þ

subject to gyðnÞ ¼
X15
i¼1

cyini � by y ¼ 1; 2;…;M;

ni2Zþ; i ¼ 1; 2;…;15
where by ¼ d�P15
i¼1cyi with d ¼ rand(1.5,3.5). The parameters

RiðniÞ ¼ 1� ð1� riÞni and Qi ¼ 1 � Ri be the reliability and un-

reliability of subsystem i respectively. The coefficients cyi and

ri are generated from uniform distributions in [0,100] and [0.6,

0.85], respectively. The parameter m refers to the number of

constraints. Two sets of problem are considered by taking

M ¼ 1 and M ¼ 5. The random data used in two sets of prob-

lems is given in Table 4 (Valian et al., 2013).
4. Cuckoo search (CS)

CS is a meta-heuristic search algorithm which has been pro-

posed recently by Yang and Deb (2009) getting inspired from
the reproduction strategy of cuckoos. At the most basic level,

cuckoos lay their eggs in the nests of other host birds, which

may be of different species. The host bird may discover that

the eggs are not its own so it either destroys the eggs or

abandons the nest all together. This has resulted in the evo-

lution of cuckoo eggs whichmimic the eggs of local host birds.

CS is based on three idealized rules:

(i) Each cuckoo lays one egg at a time, and dumps it in a

randomly chosen nest.

(ii) The best nests with high quality of eggs (solutions) will

carry over to the next generations.

(iii) The number of available host nests is fixed, and a host
can discover an alien egg with a probability pa 2 [0,1]. In

this case, the host bird can either throw the egg away or

abandon the nest so as to build a completely newnest in

a new location.

To make the things even simpler, the last assumption can

be approximated by the fraction of pa of n nests that are

replaced by newnests with new random solutions. The fitness

function of the solution is defined in a similar way as in other

evolutionary techniques. In this technique, egg presented in

the nest will represent the solution while the cuckoo's egg

represents the new solution. The aim is to use the new and

potentially better solutions (cuckoos) to replace worse solu-

tions that are in the nests. Based on these three rules, the

basic steps of the cuckoo search are described in Algorithm 1.

http://dx.doi.org/10.1016/j.bjbas.2015.02.003
http://dx.doi.org/10.1016/j.bjbas.2015.02.003


Table 1 e Parameter used for Problem 1 and 3.

i 105ai bi vi wi C V W

1 2.330 1.5 1 7 175 110 200

2 1.450 1.5 2 8

3 0.541 1.5 3 8

4 8.050 1.5 4 6

5 1.950 1.5 2 9

Table 2 e Parameter used for Problem 2.

i 105ai bi vi wi C V W

1 2.500 1.5 2 3.5 175 180 100

2 1.450 1.5 4 4.0

3 0.541 1.5 5 4.0

4 0.541 1.5 8 3.5

5 2.100 1.5 4 3.5

Table 3 e Parameter used for Problem 4.

i 105ai bi vi wi C V W

1 1.0 1.5 1 6 400 250 500

2 2.3 1.5 2 6

3 0.3 1.5 3 8

4 2.3 1.5 2 7

Table 4 e Data used in the 15-unit system reliability
problem.

i r c1 c2 c3 c4 c5

1 0.6796 33.2468 35.6054 13.7848 44.1345 10.9891

2 0.7329 27.5668 44.9520 96.7365 25.9855 68.0713

3 0.6688 13.3800 28.6889 85.8783 19.2621 1.0164

4 0.6102 0.4710 0.4922 63.0815 12.1687 29.4809

5 0.7911 51.2555 39.6833 78.5364 23.9668 59.5441

6 0.8140 82.9415 59.2294 11.8123 28.9889 46.5904

7 0.8088 51.8804 78.4996 97.1872 47.8387 49.6226

8 0.7142 77.9446 86.6633 45.0850 25.0545 59.2594

9 0.8487 26.8835 7.8195 3.6722 76.9923 87.4070

10 0.7901 85.8722 27.7460 55.3950 53.3007 55.3175

11 0.6972 41.8733 90.4377 75.7999 95.0057 54.1269

12 0.6262 61.6181 58.0131 98.5166 97.9127 59.1341

13 0.6314 90.0418 77.8206 60.6308 37.2226 40.9427

14 0.6941 75.5947 36.4524 70.4654 96.9179 40.2141

15 0.6010 88.5974 61.0591 18.8802 42.1222 80.0045

d e 3.2150 3.4710 3.3247 2.6236 3.4288
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The new solution xðtþ1Þ
i of the cuckoo search is generated,

from its current location xti and probability of transition, with

the following equation

xðtþ1Þ
i ¼ xðtÞ

i þ a4L�evyðlÞ (4)

where a,(a > 0) represents a step size. This step size should be

related to the problem specification and t is the current iter-

ation number. The product 4 represents entry-wise multi-

plications as similar to other evolutionary algorithms like PSO

but random walk via L�evy flight is much more efficient in

exploring the search space as its step length is much longer in

the long run.

In Mantegna's algorithm, the step length can be calculated

by

L�evyðaÞ � u���v���1=a
(5)

where u and v are drawn from normal distribution, i.e.
Fig. 2 e Structure of th
u � N
�
0;s2

u

�
; y � N

�
0;s2

y

�
su ¼

8><
>:
Gð1þ aÞsin

	
pa
2




G

�
1þa
2

�
a2

a�1
2

9>=
>;

1=a

; sy ¼ 1

where the distribution parameter a 2 [0.3,1.99], G denotes the

gamma function.

4.1. Constraint handling technique

Due to presence of constraints in the optimization problems,

it is not an easy to find the feasible solution of the problem

which optimize the performance of the system. For this,

penalty function method has been used for handling the

constraints. The main function of the penalty functions is to

penalize the unfeasible solution. Despite the popularity of

penalty functions, they have several drawbacks out of which

the main one is that of having too many parameters to be

adjusted and finding the right combination of the same may

not be easy. Moreover, there is no guarantee that the optima

will be attained. For overcoming this drawback, Deb (2000)

modified these algorithms using concept of parameter-free

penalty functions by defining the modified objective func-

tion F in the search space S

FðxÞ ¼
8<
:

fðxÞ if x2S

fw þ
XM
j¼1

gjðxÞ if x;S (6)
e 15-unit system.
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where x are solutions obtained by approaches and fw is the

worst feasible solution in the population and set it to be zero if

there is no feasible solution.
5. Numerical results and discussions

The nests for each example use the variable vectors n and r.

During the evolution process, the integer variables ni are

treated as real variables, and in evaluating the objective

functions, the real values are transformed to the nearest

integer values. The presented algorithm is implemented in

Matlab (MathWorks) and the programhas been run on a T6400

@ 2 GHz Intel Core(TM) 2 Duo processor with 2 GB of Random

Access Memory (RAM). In order to eliminate stochastic

discrepancy, in each case study, 25 independent runs are

made which involves 25 different initial trial solutions for

each optimization method. To evaluate the performance of

proposed approach, the following maximum possible

improvement (MPI) index has been used to compute the

relative improvement

MPI ¼ RsðCSÞ � RsðotherÞ
1� RsðotherÞ (7)

where Rs(CS) is the best-known solution obtained from CS

approach and Rs(other) is the best solution by other typical

approaches. Numerical results are reported in Tables 5e9, in

which the best solutions for each problem are reported and

compared with solutions reported previously in the literature,

which show that proposed approach leads to improvement in

reliability. Clearly, greater MPI implies greater improvement.

For the series system (i.e. Problem 1), Table 5 shows that

the best solution by our approach is 0.931682106582 which is

superior to all those of the other typical approaches in the

literature (Kuo et al., 1978; Gopal et al., 1978; Hikita et al., 1978,

1992; Hsieh et al., 1998; Gen and Yun, 2006; Chen, 2006; Yeh

and Hsieh, 2011; Wu et al., 2011) with their improvement

indices are 2.75032%, 1.99840%, 0.33714%, 0.00747%,

0.464912%, 0.15215%,0.00893%, 0.00601% and 0.0030834%

respectively. It is worth notifying here that solution by ABC

algorithm, as given by Yeh and Hsieh (2011), is infeasible so-

lution as it violates the cost constraint. The results of the

experiment for the Problem 2, shown in Table 6, indicate that

the best solution of the CS algorithm (Rs ¼ 0.999976648818) is

much better than the solution given by (Hikita et al., 1992;

Hsieh et al., 1998; Chen, 2006; Kim et al., 2006; Wu et al.,

2011; Valian et al., 2013; Zou et al., 2010) by an improvement

factor 25.27621%, 9.56164%, 0.29384%, 1.43021%, 0.037748%,

0% and 0.037748% respectively. It should be noticed that even

very small improvements in reliability are critical and bene-

ficial to system security and system efficiency. It is worth

mentioning that the solution obtained by Yeh andHsieh (2011)

by using the ABC algorithm is not a feasible solution as it vi-

olates the cost constraint function. From Table 7 one can

observe that the solution to the Problem 3 as obtained by us is

relatively with most significant improvement over the solu-

tions presented by Hikita et al. (1992); Hsieh et al. (1998); Chen

(2006); Kim et al. (2006); Coelho (2009). It may again be pointed

out that the solution by ABC algorithm, obtained by Yeh and

http://dx.doi.org/10.1016/j.bjbas.2015.02.003
http://dx.doi.org/10.1016/j.bjbas.2015.02.003


Table 6 e Optimal solutions of the Problem 2.

Method Hikita et al.
(1992)

Hsieh et al.
(1998)

Chen
(2006)

Kim et al.
(2006)

Yeh and Hsieh
(2011)

Wu et al.
(2011)

Valian et al.
(2013)

Proposed
approach

n (3,3,1,2,3) (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4)

r 0.83819295 0.785452 0.812485 0.812161 0.8197457 0.81918526 0.819927087 0.819483232488

0.85506525 0.842998 0.843155 0.853346 0.8450080 0.84366421 0.845267657 0.844783084455

0.87885933 0.885333 0.897385 0.897597 0.8954581 0.89472992 0.895491554 0.895810553887

0.91140223 0.917958 0.894516 0.900710 0.9009032 0.89537628 0.895440692 0.895220216915

0.85035522 0.870318 0.870590 0.866316 0.8684069 0.86912724 0.868318775 0.868542486973

Rs 0.99996875 0.99997418 0.99997658 0.99997631 0.99997731 0.99997664 0.9999766488 0.999976648818

MPI 25.27621% 9.56164% 0.29384% 1.43021% a 0.037748% 0% e

Slacks of 53 40 40 40 40 40 40 40

g1 ~ g3 0.000011 1.194440 0.002627 0.007300 �1.469522b 0.000561 0.0000161 2.7216628 � 10�10

7.110849 1.609289 1.609289 1.609289 1.609289 1.609289 1.6092890 1.609288966

Mean e e e e 0.99997517 e e 0.999976290153280

Std e e e e 2.89 � 10�6 1.3362 � 10�5 4.45034 � 10�6 1.14187 � 10�6

a Infeasible.
b Violate constraint.
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Hsieh (2011) is also infeasible, since it again violates the cost

constraint function. Table 8 depicts that the solution of

Problem 4 as obtained by the proposed approach is better than

the previously known solutions by Yokota et al. (1996); Chen

(2006); Dhingra (1992); Kim et al. (2006); Zou et al. (2010); Wu

et al. (2011); Valian et al. (2013). The optimal component

redundancy by the proposed approach is (5,5,4,6) which is

completely different from those by the other approaches. Here

again we have observed through calculations that the solu-

tions given by Yeh andHsieh (2011) and Yokota et al. (1996) are

not feasible solutions as both of these violate the cost

constraint function. The improvement indices are 88.37809%,

21.85273%, 17.59015%, 3.55294%, 0.010114% and 0.001291%

respectively from Dhingra (1992); Chen (2006); Kim et al.

(2006); Coelho (2009); Zou et al. (2010); Wu et al. (2011);

Valian et al. (2013) respectively. Moreover, the solutions

found by the proposed approach can dominate any other

methods for the four example problems discussed in litera-

ture. In other words, we may say that CS algorithm is able to

find solutions of quality comparable to those published earlier

in the literature. Moreover, the standard deviations of system

reliabilities by proposed approach are pretty low, and it

further implies that the approach seems reliable to solve the

reliability-redundancy allocation problems. For example, the

standard deviations of system reliabilities for Problems 1e4

are 1.49487 � 10�5, 1.14187 � 10�6, 7.03799 � 10�7 and

6.97619 � 10�9 respectively. For the two sets of Problem 5, the

15-unit system reliability optimization, the results computed

by the proposed approach along with the results given by

other algorithms are listed in Table 9. From the table it has

been concluded that the results provided by proposed

approach is far better than the other algorithms. The simu-

lation results of 25 independent runs in terms of mean, me-

dian, worst and standard deviations provided that the

proposed approach performs better than the others.

In order to study the performance of the proposed algo-

rithm statistically with other meta-heuristic algorithm

namely PSO and ABC, the simulation experiments were

repeated for 25 observations. All 25 observations are
generated with 25 different initial solutions. For each experi-

ment reliability of the system is calculated. An unpaired

pooled tetest assuming equal variances has been appliedwith

significance level of 5 percent. The pooled t-test is applied for

the comparisons of CS results with PSO and ABC results for

each problem. The results of the t-test for the maximizing the

reliability of the system are shown in Tables 10e14 for the

problems P1eP5 respectively. It is indicated from the tables

that the values of t-stat are greater than the t-critical values.

Also the p-value obtained for both one-tail and two-tail test is

less than the significant level. Thus the means of system

reliability for CS is higher than the mean from PSO as well as

ABC and this difference is statistically significant.
6. Conclusion

This paper presents penalty guided cuckoo search (CS) for

solving various reliability design problem, which include se-

ries systems, series-parallel system, complex (bridge) system

and overspeed protection system. The objective of the prob-

lem is to maximize the system reliability subject to three

nonlinear resource constraints. In these optimization prob-

lems, both the redundancy and the corresponding reliability

of each component in each subsystem are decided simulta-

neously under cost, weight and volume constraints. To eval-

uate the performance of CS algorithm, numerical experiments

are conducted and compared with the previous studies for

mixed-integer reliability problems. As shown, the best solu-

tions found by penalty guided CS are all better than the well-

know best solutions by other heuristic methods for mixed-

integer reliability problems. Also by using the means of un-

paired pooled t-test, the proposed cuckoo search based pen-

alty guided reliability redundancy allocation problem is

shown to be statistically significant as compared to other

methods. Thus, the CS was demonstrated to be a promising

and viable tool to solve reliability e redundancy optimization

problems.
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Table 7 e Optimal solutions of the Problem 3.

Method Hikita et al.
(1992)

Hsieh et al.
(1998)

Chen (2006) Kim et al.
(2006)

Coelho (2009) Yeh and Hsieh
(2011)

Wu et al.
(2011)

Zou et al.
(2011)

Zou et al.
(2010)

Valian et al.
(2013)

Proposed approach

n (3,3,2,3,2) (3,3,3,3,1) (3,3,3,3,1) (3,3,3,3,1) (3,3,2,4,1) (3,3,2,4,1) (3,3,2,4,1) (3,3,2,4,1) (3,3,2,4,1) (3,3,2,4,1) (3,3,2,4,1)

r 0.814483 0.814090 0.812485 0.807263 0.826678 0.828087 0.82868361 0.82983999 0.82883148 0.828094038 0.827855652338

0.821383 0.864614 0.867661 0.868116 0.857172 0.857805 0.85802567 0.85798911 0.85836789 0.858004485 0.857626105413

0.896151 0.890291 0.861221 0.872862 0.914629 0.704163 0.91364616 0.91333926 0.91334996 0.914162924 0.914752916604

0.713091 0.701190 0.713852 0.712673 0.648918 0.648146 0.64803407 0.64674479 0.64779451 0.647907792 0.648217208595

0.814091 0.734731 0.756699 0.751034 0.715290 0.914240 0.70227595 0.70310972 0.70178737 0.704565982 0.702670374782

Rs 0.99978937 0.99987916 0.99988921 0.99988764 0.99988957 0.99948407a 0.99988963 0.99988960 0.99988962 0.99988963 0.999889631978

MPI 47.60099% 8.66598% 0.38088% 1.77285% 0.05612% b 0.00179% 0.02896% 0.01085% 0.00726% e

Slacks of 27 18 18 18 5 5 5 5 5 5 5

g1 ~ g3 0.000000 0.376347 0.001494 0.007300 0.000339 �25.433926c 0.00000359 0.00000594 0.00004063 0.00007929 1.06723518 � 10�10

10.572475 4.264770 4.264770 1.609289 1.560466 1.560466288 1.56046629 1.56046629 1.56046629 1.560466288 1.560466288

Mean e e e e 0.99988594 0.99988362 e 0.99988263 0.99988656 e 0.999889270567758

Std e e e e 0.00000069 1.026 � 10�5 4.0163 � 10�5 1.6 � 10�5 1.0699 � 10�5 1.40652 � 10�5 7.037994 � 10�7

a In Yeh and Hsieh (2011), it was reported 0.99988962.
b Infeasible.
c Violate constraint.

Table 8 e Optimal solutions of the Problem 4.

Method Dhingra
(1992)

Yokota et al.
(1996)

Chen
(2006)

Kim et al.
(2006)

Coelho
(2009)

Zou et al.
(2010)

Yeh and Hsieh
(2011)

Wu et al. (2011) Valian et al. (2013) Proposed approach

n (6,6,3,5) (3,6,3,5) (5,5,5,5) (5,5,5,5) (5,6,4,5) (5,6,4,5) (5,6,4,5) (5,6,4,5) (5,5,4,6) (5,5,4,6)

r 0.81604 0.965593 0.903800 0.895644 0.902231 0.90186194 0.901614 0.90163164 0.901614595 0.901598077027

0.80309 0.760592 0.874992 0.885878 0.856325 0.84968407 0.849920 0.84997020 0.888223369 0.888226184172

0.98364 0.972646 0.919898 0.912184 0.948145 0.94842696 0.948143 0.94821828 0.948141029 0.948101861662

0.80373 0.804660 0.890609 0.887785 0.883156 0.88800590 0.888223 0.88812885 0.849920899 0.849980778637

Rs 0.99961 0.999468 0.999942 0.999945 0.999953 0.99995467 0.999955 0.99995467 0.999954674 0.999954674585

MPI 88.37809% a 21.85273% 17.59015% 3.56294% 0.010114% a 0.010114% 0.001291% e

Slacks of 65 92 50 50 55 55 55 55 55 55

g1 ~ g3 0.064 �70.73357b 0.002152 0.9380 0.975465 0.00120356 �0.0003364b 0.000009 0.0000000096 8.82494077 � 10�10

4.348 127.583189 28.803701 28.8037 24.801882 24.8018827 24.80188272 24.081883 15.36346309 15.3634630874

Mean e e e e 0.999907 0.99992624 0.9999487 e e 0.999954670626769

Std e e e e 0.000011 2.8874 � 10�5 9.244 � 10�6 1.3895 � 10�5 4.45034 � 10�6 6.97619 � 10�9

a Infeasible solution.
b Violate constraint.
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Table 9 e Comparison results for the 15-unit system reliability problem.

Problem 5 Algorithm Worst Best Mean Median SD

15 � 1 GA 0.90702516 0.96357169 0.92726226 0.92688183 0.014598

PSO 0.96223410 0.97967292 0.97092969 0.97087057 0.004091

ABC 0.93679247 0.96805041 0.95263439 0.95228937 0.009003

CS 0.97108268 0.98421284 0.97440402 0.97311046 0.003477

15 � 5 GA 0.90005601 0.95716040 0.92911247 0.93188471 0.015449

PSO 0.95542482 0.97390351 0.96667014 0.96881115 0.005614

ABC 0.94427204 0.97011592 0.95496871 0.95394238 0.007653

CS 0.96649615 0.97503662 0.97073179 0.96857881 0.003785

Table 10 e T e test: Two samples assuming equal variances for system reliability of P1.

System reliability of P1

PSO ABC CS

Mean 0.92364034 0.92988735 0.93167192

Variance 3.556160 � 10�5 6.467485 � 10�6 2.234643 � 10�10

Std 5.963355 � 10�3 2.543125 � 10�3 1.494872 � 10�5

Observation 25 25 25

Pooled variance 1.778091 � 10�5 3.233854 � 10�6

Hypothesized mean difference 0 0

Degree of freedom 48 48

T stat 6.73408984 3.50854474

P (T � t) one tail 9.403838 � 10�9 4.948373 � 10�4

T critical one-tail 1.677224 1.677224

P (T � t) two tail 1.880767 � 10�8 9.896747 � 10�4

T critical two-tail 2.010634 2.01063475

Table 11 e T e test: Two samples assuming equal variances for system reliability of P2.

System reliability of P2

PSO ABC CS

Mean 0.99996191 0.99996472 0.99997629

Variance 1.235391 � 10�10 2.127280 � 10�10 1.303870 � 10�12

Std 1.111481 � 10�5 1.458519 � 10�5 1.141871 � 10�6

Observation 25 25 25

Pooled variance 6.242152 � 10�11 1.070159 � 10�10

Hypothesized mean difference 0 0

Degree of freedom 48 48

T stat 6.43417609 3.95406113

P (T � t) two tail 2.713218 � 10�8 1.260151 � 10�4

T critical one-tail 1.677224 1.677224

P (T � t) two tail 5.426437 � 10�5 2.520303 � 10�4

T critical two-tail 2.010634 2.010634

Table 12 e T e test: Two samples assuming equal variances for system reliability of P3.

System reliability of P3

PSO ABC CS

Mean 0.99987054 0.99988152 0.99988927

Variance 9.255383 � 10�10 1.408923 � 10�10 4.953337 � 10�13

Std 3.042266 � 10�5 1.186980 � 10�5 7.037994 � 10�7

Observation 25 25 25

Pooled Variance 4.630168 � 10�10 7.069383 � 10�11

Hypothesized mean difference 0 0

Degree of freedom 48 48

T stat 3.07699432 3.25678275

P (T � t) one tail 0.00172473 0.00103556

T critical one-tail 1.677224 1.677224

P (T � t) two tail 0.00344947 0.00207112

T critical two-tail 2.0106347 2.010634
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Table 13 e T e test: Two samples assuming equal variances for system reliability of P4.

System reliability of P4

PSO ABC CS

Mean 0.99994446 0.99995051 0.99995467

Variance 2.010464 � 10�10 3.072377 � 10�11 4.866728 � 10�17

Std 1.417908 � 10�5 5.542903 � 10�6 6.976194 � 10�9

Observation 25 25 25

Pooled variance 1.005232 � 10�10 1.536191 � 10�11

Hypothesized mean difference 0 0

Degree of freedom 48 48

T stat 3.59718004 3.74828069

P (T � t) one tail 3.79177554 � 10�4 2.391724 � 10�4

T critical one-tail 1.677224 1.677224

P (T � t) two tail 7.583551 � 10�4 4.783449 � 10�4

T critical two-tail 2.010634 2.010634

Table 14 e T e test: Two samples assuming equal variances for system reliability of Problem 5.

GA PSO ABC CS

System reliability of Problem 5 (15 £ 1 structure)

Mean 0.92726226 0.97092969 0.95263439 0.97440402

Variance 0.21310 � 10�3 0.01673 � 10�3 0.08105 � 10�3 0.01208 � 10�3

Std 0.014598 0.004091 0.009003 0.003477

Observation 25 25 25 25

Pooled variance 0.11259 � 10�3 0.01441 � 10�3 0.04657 � 10�3

Hypothesized mean difference 0 0 0

Degree of freedom 48 48 48

T stat 15.70724 3.23556 11.27832

P (T � t) one tail 0 0.00110 2.10942 � 10�15

T critical one-tail 1.67722 1.67722 1.67722

P (T � t) two tail 1.98729 � 10�14 0.00176 2.23153 � 10�11

T critical two-tail 2.01063 2.01063 2.01063

System reliability of Problem 5 (15 £ 5 structure)

Mean 0.92911247 0.96667014 0.95496871 0.97073179

Variance 0.23867 � 10�3 0.03151 � 10�3 0.05856 � 10�3 0.01432 � 10�3

Std 0.015449 0.005614 0.007653 0.003785

Observation 25 25 25 25

Pooled variance 0.12649 � 10�3 0.02292 � 10�3 0.03644 � 10�3

Hypothesized mean difference 0 0 0

Degree of freedom 48 48 48

T stat 13.08297 2.99940 9.23130

P (T � t) one tail 0 0.00213 1.62414 � 10�12

T critical one-tail 1.67722 1.67722 1.67722

P (T � t) two tail 1.02373 � 10�12 0.00311 1.14450 � 10�9

T critical two-tail 2.01063 2.01063 2.01063
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