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In this Letter we investigate a connection between Kaniadakis power-law statistics and networks.
By following the maximum entropy principle, we maximize the Kaniadakis entropy and derive the
optimal degree distribution of complex networks. We show that the degree distribution follows P (k) =
P0 expκ (−k/ηκ ) with expκ (x) = (

√
1 + κ2x2 + κx)1/κ , and |κ | < 1. In order to check our approach we

study a preferential attachment growth model introduced by Soares et al. [Europhys. Lett. 70 (2005) 70]
and a growing random network (GRN) model investigated by Krapivsky et al. [Phys. Rev. Lett. 85 (2000)
4629]. Our results are compared with the ones calculated through the Tsallis statistics.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the last years, a lot of effort has been dedicated to studies
of networks. In this concern, a network can be defined as a math-
ematical abstraction created to represent a relationship between
objects. Usually, the objects are called nodes and the relationships
are called edges. The number of edges owned by a node is referred
as the node’s degree and the networks are classified according to
a distribution of that degree (also called connectivity). Considering
its definition, the network can be used to model a great quantity
of natural and artificial systems [1].

Primordially, networks without an evident organization were
described with the random graph theory introduced by Erdös and
Rényi (ER) [2]. The associated model, ER model, gives rise to ran-
dom networks whose connectivity distributions P (k) are Poisson
distributions.

The technological advances allowed to study larger amounts of
data and new conclusions were found about the apparently dis-
ordered networks. In 1999, Albert et al. reported that the WWW
links connectivity distribution obeys a power law [3] which could
indicate a subjacent organization in that network. In order to try
to understand the mechanisms that could lead to a non-evident or-
der, Barabási and Albert (BA) [4] introduced a model that presents
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two ingredients: growth and preferential attachment. By consider-
ing this model, BA have shown that the P (k) decays as a power
law for large k, independently of the nature of the system [5].

On the other hand, as it is well known, some restrictions to the
applicability of the standard statistical mechanics have motivated
investigations of non-standard statistics, both from theoretical and
experimental viewpoints. In fact, the Tsallis nonextensive statistical
mechanics [6] and the generalized power-law statistics developed
by Kaniadakis [7] are the most investigated frameworks. Several
consequences (in different branches) of the former framework have
been investigated in the literature [8], which include the study
of Tsallis statistics in the context of complex networks [9–11]. In
this concern, the Thurner–Tsallis model [9] shows that growth is
not necessary for having scale-free degree distributions. The Ka-
niadakis statistics in turn is characterized by a κ-entropy that
emerges naturally in the framework of the so-called kinetic inter-
action principle [7]. Several physical features of a κ-distribution
have also been theoretically investigated [12].

In this Letter, by following the maximum q-entropy method
in the context of complex networks [10,11], we derive an opti-
mal degree distribution which maximizes the κ-entropy based on
the Kaniadakis statistics [7]. As an application, we analyze the κ-
and q-degree distributions in two scale-free network model, e.g.
the preferential attachment growth [11] and the growing random
network (GRN) model [13,14].

This Letter is organized as follows. A brief summary of Ka-
niadakis statistics is presented in Section 2. In Section 3, we
present the maximum entropy method for the calculation of op-
timal degree distribution in the context of Kaniadakis framework.
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In Section 4, by using the preferential attachment growth model
and growing random network (GRN) model, we investigate the κ-
and q-degree distributions. We summarize our main conclusions in
Section 5.

2. Kaniadakis framework

Recent studies on the kinetic foundations of the so-called
κ-statistics led to the power-law distribution function and the
κ-entropy which emerge naturally in the framework of the kinetic
interaction principle (see, e.g., Ref. [7]). Formally, the κ-framework
is based on the κ-exponential and the κ-logarithm functions de-
fined as [7]

expκ (x) = (√
1 + κ2x2 + κx

)1/κ
, (1)

lnκ (x) = xκ − x−κ

2κ
, (2)

with

lnκ

(
expκ (x)

) = expκ

(
lnκ (x)

) = x. (3)

The κ-parameter belongs to the mathematical interval |κ | < 1 and
in the case κ = 0 these expressions reduce to the usual exponen-
tial and logarithmic functions. The κ-entropy associated with the
κ-framework is given by

Sκ = −
∫

d3 pf lnκ f (4)

which fully recovers standard Boltzmann–Gibbs entropy, Sκ=0( f )
= −∫

f ln f d3 p. As a matter of fact, the Kaniadakis entropy also
can be a particular case of the Borges–Roditi entropy [15].

3. Maximum entropy method

3.1. Tsallis degree distributions

We recall the main aspects of the connection between the Tsal-
lis statistics and complex networks. Specifically, the main result is
the q-optimal degree distribution that maximizes the Tsallis en-
tropy given by [6]

Sq = − 1

1 − q

(
1 −

∑
i

pq
i

)
, (5)

where q represents the entropic index and pi the probability dis-
tribution of the state i. Such entropy reduces to the Boltzmann–
Gibbs–Shannon in the limit q → 1. Here, the q-degree distribution
reads [10,11]

P (k) = P0 expq

(
− k

ηq

)
, (6)

where ηq > 0 defines the characteristics number of links, k is the
connectivity and the q-exponential function is defined as

expq(x) ≡ [
1 + (1 − q)x

] 1
1−q (7)

if 1 + (1 − q)x > 0 and zero otherwise.

3.2. New approach

Now, let us discuss the standard method of maximization of the
Kaniadakis entropy. Here and hereafter, the Boltzmann constant is
set equal to unity for the sake of simplicity. Thus, the functional
entropy to be maximized is
δS∗
κ = δ

(
Sκ + α

∑
k

P (k) + β
∑

k

kP (k)

)
(8)

where α and β are the Lagrange multipliers. The Kaniadakis en-
tropy is given by [7]

Sκ = − 1

2κ

∑
k

[
1

1 + κ
P (k)1+κ − 1

1 − κ
P (k)1−κ

]
, (9)

and the above constraints used are the normalization of the degree
distribution and the averaged coordination number∑

k

P (k) = 1 and
∑

k

kP (k) = 〈k〉. (10)

By considering the same arguments of Ref. [10], we derive, after
some algebra, the following expression for the κ-degree distribu-
tion

P (k) = P0 expκ

(
− k

ηκ

)
, (11)

with

expκ

(
− k

ηκ

)
=

[√
1 + κ2

(
k

ηκ

)2

− κ

(
k

ηκ

)] 1
κ

. (12)

Therefore, this new degree distribution, based on the Kaniadakis
framework, is the power law that generalizes the exponential dis-
tribution. In particular, κ ∼ 0 it behaves like the Tsallis degree
distribution. Indeed, by using the asymptotic analytical behaviors
of the q-exponential and κ-exponential functions, we obtain the
following relation between the entropic parameters

κ = 1 − q, (13)

where the Gaussian limits κ = 0 and q = 1 are satisfied simultane-
ously in (13).

4. Applications

4.1. The preferential attachment growth model

4.1.1. Numerical model
In order to test the viability of the new degree distribution

[Eq. (11)], let us consider the preferential attachment growth
model. In this regard, we use the same model proposed in Ref. [11]
that considered the following rules for the growing of lattice:

1. First, one site is fixed (i = 1) at some arbitrary origin of the
plane.

2. The second site (i = 2) is randomly and isotropically chosen at
a distance r distributed according to the probability law

P G(r) ∝ 1/r2+αG (14)

with αG � 0 (G stands for growth). This second site is then
linked to the first one.

3. To locate the next sites (i = 3,4,5, . . . , N), the origin is moved
to the barycenter of the existing sites and the distribution
P G(r) is applied again from this new origin. The new site is
now going to be linked to only one of the pre-existing sites in
the lattice. To do this, it was used an attachment probability

p A = ki/rαA
i∑N−1

j=1 k j/rαA
j

(15)

with αA � 0 (A stands for attachment), where ri is the distance
of the newly arrived site to the ith site of the pre-existing
cluster, and the connectivity ki is the number of links already
arriving to the same ith site.
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Fig. 1. This panel shows numerical curves for degree distribution for αA = 2 and
typical values of αG for networks of size N = 104 sites. This parameter has influence
in the growth of network.

Fig. 2. Curves for degree distribution for typical values of αA for networks of
size 2 × 106. Points are our computer simulation results, solid lines are the best
fit given by P (k) = P0 expκ (−k/ηκ ) and dashed lines are the best fit given by
P (k) = P0 expq(−k/ηq). This panel shows the log–log representation.

4. The earlier step (growth-attachment process) is sequentially
repeated until the size wished of the lattice.

4.1.2. Results
Now, let us discuss the numerical results by implementing the

Kaniadakis degree distribution, Eq. (11). In our simulations, we use
the size of networks characterized by: (i) N = 104 and 2 × 103

samples for different values of αG and αA = 2 and (ii) N = 2 ×
106 and 10 samples for different values of αA and αG = 2. The
rule of connection given by p A , generates a competition between
connectivity and distance between nodes. This competition breaks
the hubs, by favoring a degree distribution more uniform on the
lattice with increase of αA and favors the Barabasi–Albert model,
without metric, when the value of αA tends to zero, by recovering
completely this model when αA = 0.

Our numerical results are exhibited in Figs. 1 and 2. Here, we
confirm that the αG parameter controls the metrics of the emerg-
ing cluster and presents some influence on the κ- and q-degree
distribution. On the other hand, these distributions are greatly in-
fluenced by the αA parameter. Fig. 2 also shows that when αA

increases, the degree distribution P (k) does obey a distribution
like the Kaniadakis distributions given by Eq. (11); for complete-
ness, we also show the Tsallis degree distribution, given by Eq. (6).
The Kaniadakis degree distribution with κ = 0 provides an expo-
nential behavior whereas for other values of κ admit a wider class
of the power-law distributions.
Fig. 3. Expressions κ = κ(αA) and q = q(αA) were obtained in the best fit cal-
culated in Fig. 2. We can see an exponential decreasing behavior with different
curvatures expressed by solid curve κ = 0.410−0.134e0.200αA and the dashed curve
q = 0.675 + 0.671e0.105αA .

Fig. 4. η = η(αA) used in the best fit calculated in Fig. 2. We can see a linear be-
havior in the interval 0 < αA < 5, given by the solid curve ηκ = 0.637 + 0.151αA

and the dashed curve ηq = 0.263 + 0.187αA .

In Fig. 3, we compare the κ- and q-freedom distributions from
a parametric spaces viewpoint. As result from the numerical sim-
ulations, we show the entropic parameters as function of αA , as
well as the function η = η(αA). These simulations have shown
that the function κ(αA) and q(αA) decay exponentially (see Fig. 3)
whereas the function η(αA) increases linearly (Fig. 4). The best fit
for κ and q are given by κ = 0.410 − 0.134e0.200αA (ηκ = 0.637 +
0.151αA ) and q = 0.675 + 0.671e−0.105αA (ηq = 0.263 + 0.187αA ),
respectively. By eliminating αA of the above expressions, i.e. q =
0.671 ( 0.134

0.401−κ )0.525 + 0.675 and by using the asymptotic analytical
behavior given by Eq. (13), we obtain q = 1.048. Therefore, we see
that q and κ are correlated through the power law.1

Here, let us comment about the numerical constraint on the
above parameters discussed. As one may be easily checked, for
αA = 0, we have κmax = 0.346. On the other hand, in order to
be mathematically consistent with the Kaniadakis statistics, we
have that the entropic parameter must be constrained to inter-
val |κ | < 1. Thus, by combining these results, it is possible to
obtain the constraints: κ ∈ [−1;0.346], αA ∈ [0;12] and ηκ ∈
[0.637;2.451]. Therefore, the Albert–Barabasi model is given by

1 In contrast with the present investigation and considering other physical con-
text, we stress that the linear relation between q and κ was also obtained through
from the fit of radial velocity distributions for the data of 14 stellar open cluster
[16]. In addition, a linear relation between q and κ was also calculated for the stel-
lar polytropes [17].
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degree distribution with κ = 0.346 and characteristics number of
links ηκ = 0.637, i.e. P (k) = P0 exp0.346(−k/0.637).

It is worth emphasizing that a growth model by consider-
ing preferential attachment has been analytically and numerically
studied in Ref. [5]. In this work, the degree distribution calculated
analytically is precisely of the form q-exponential [11]. From the κ-
framework viewpoint, it is not different, the expression (11) is also
similar to Albert–Barabasi distribution [5] in the limit that the en-
tropic parameter κ � 1. In this asymptotic regime, the κ-entropic
index is given by κ = m/[m(2r − 3) − 1 + p + r], where (m, p, r)
are parameters of the Albert–Barabasi model.

4.2. Growing network model

4.2.1. Analytical model
In this section, let us introduce the main aspects of growing

network (GN) model investigated analytically in Refs. [13,14]. This
model is based on an investigation of the rate equations for the
densities of nodes of a given degree, i.e. nodes are added one at a
time, and a link is established with pre-existent node following a
attachment probability Ak relative of the degree of target node.2

The GN model presents the so-called the attachment kernel
Ak as the probability that the newly added node links to a pre-
existing node which already has k links. For the growing of the
network, a degree distribution Nk(t), i.e. the average number of
nodes with k links accumulated. Krapivsky et al. [13,14] have in-
troduced the general homogeneous model with Ak = kγ 3 and they
also suggested that the degree distribution Nk(t) crucially depends
on the value of γ (for details on the dependence of Nk(t) with γ ,
see Refs. [13,14]).

The time evolution of the degree distribution of the GN model
is governed by rate equations given by

dNk

dt
= 1

A
[Ak−1Nk−1 − Ak Nk] + δk1. (16)

In this equation, the first term on the right side means the pro-
cess in which a node k − 1 links is connected to a new node with
a probability Ak−1/A normalized by factor A(t) = ∑

j�1 A j N j(t).
The second term presents a corresponding role to first one. Finally,
the latter one represents the continuous introduction of new nodes
with no incoming links. By assuming that the degree distribution
and A(t) grow linearly with time, and substituting

Nk(t) = tnk, (17)

and

A(t) = μt, (18)

into Eq. (16), Krapivsky et al. [14] have calculated a recursing rela-
tion with a solution for nk given by

nk = μ

Ak

k∏
j=1

(
1 + μ

A j

)−1

. (19)

The complete solution is calculated using the definition of the am-
plitude, i.e. μ = ∑

j�1 A jn j . The amplitude always depends on the
entire attachment kernel.

2 This growing model can be exemplified as the distributions of scientific citations
and the structure of the worldwide web. From the citations viewpoint, is possible
to interpret these nodes as publications, and the directed link from one paper to
another as a citation to the earlier publication.

3 Considering the value of γ , we have: (i) Sublinear kernels corresponds to 0 <

γ < 1 and are asymptotically homogeneous, (ii) Asymptotically linear kernels γ = 1
and (iii) Superlinear homogeneous kernels with γ > 1.
Fig. 5. Analytical curves for the degree distribution in the interval 1/2 < γ < 1.
Points are obtained of the analytical expression Nk(t = 1) vs k. The solid lines are
the best fit given by Nk(1) = N0 expκ (−k/ηκ ) and dashed lines are the best fit given
by Nk(1) = N0 expq(−k/ηq). This panel shows the log–log representation.

Fig. 6. Expressions κ = κ(γ ) and q = q(γ ) were obtained in the best fit calculated
in Fig. 5. We can see an exponential behavior increasing smoothly unlike that one
shown in Fig. 5. The exponential behavior is given by the best fits expressed by solid
curve κ = −0.179 + 0.216e0.983γ and the dashed curve q = 0.868 + 0.127e1.382γ .

4.2.2. Results
Here, we investigate the cases γ < 1 and γ = 1, also called

sublinear and linear kernels, respectively. In the first one, we have
Ak ∼ kγ , with 0 < γ < 1. Furthermore, following the steps of
Refs. [13,14], is possible to show that

nk ∼ k−γ exp
[
−μ

(k1−γ − 21−γ

1 − γ

)]
(20)

for 1
2 < γ < 1. In order to compare with the κ- and q-degree dis-

tributions given by Eqs. (6) and (11), we consider only this case.
Looking at the expression (20), we plot nk against k to dif-

ferent values of γ in the interval 0.5 < γ < 1. We observe that
nk decreases exponentially with k irrespective t , therefore, we use
Nk(t) = nk , i.e. t = 1 in the expression (17). In Fig. 5, we show that
Kaniadakis and Tsallis expressions, Nk(1) = N0 expκ (−k/ηκ ) and
Nk(1) = N0 expq(−k/ηq) provide fits for the GNR model, however
we observe that some of the fittings are not very satisfactory. It is
important to stress that is the first time that the Tsallis framework
is investigated in the context of the Analytical Growing Network
Model [13,14].

In Fig. 6 we compare both the Kaniadakis and Tsallis parame-
ters as function of γ . These functions increase smoothly following
the best fit given by κ = −0.179 + 0.216e0.983γ and q = 0.868 +
0.127e1.382γ . Already the functions ηκ(γ ) and ηq(γ ) show two
regimes. As we can see in Fig. 7, there exist a plateau for interval
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Fig. 7. η = η(γ ) used in the best fit calculated in Fig. 5. In the interval 0.5 < γ <

0.70, we can see a plateau indicating that the characteristic number of link is a
characteristic number. For interval 0.70 � γ < 1.0, we have a decreasing linear
regime expressed by the solid curve ηκ = 1.689 − 1.511γ and the dashed curve
ηq = 1.260 − 1.134γ for Kaniadakis and Tsallis degree distribution, respectively.

0.5 < γ < 0.70, indicating that the number of links is given by
a characteristic number. In this regime, the network behaves like
a random classical network. For the interval 0.70 � γ < 1.0, we
have a decreasing linear regime expressed by ηκ = 1.689 − 1.511γ
and ηq = 1.260−1.134γ for Kaniadakis and Tsallis degree distribu-
tions, respectively. Finally, eliminating γ of the above expressions,
we have that q = 0.127( κ+0.179

0.216 )1.406 +0.868. Here, considering the
asymptotic analytical behavior expressed by κ = 1 − q, we obtain
q = 0.966.

5. Summary and conclusions

In this Letter, we have investigated the effects of the Kani-
adakis framework in the context of the complex networks. From
the analytical viewpoint, the new κ-degree distribution has been
calculated via the maximum-entropy method.

In order to check our proposal we have considered the via-
bility of Kaniadakis degree distribution within the context of the
preferential attachment growth model [11] and the growing net-
work model [13,14]. In this regard, we have compared our results
with ones calculated through the Tsallis framework, and we have
observed that likely the Tsallis degree distribution, the Kaniadakis
one was substantially influenced by αA and independent of value
of αG .

Additionally, we have shown that the Kaniadakis degree dis-
tribution is numerically consistent with the κ-exponential func-
tion that emerges naturally in the frame of Kaniadakis statistics
[7]. It was also shown that for αA = 0, the κ-degree distribu-
tions with κ = 0,346 also belongs to the same universal class that
the Barabasi–Albert model belongs. As discussed earlier, the com-
bination of statistical and numerical constraints, i.e., |κ | < 1 and
αA = 0 have provided the constraints κ ∈ [−1;0.346], αA ∈ [0;12]
and ηκ ∈ [0.637;2.451].

Considering the analytical growing network (GN) model, we
also discussed that the degree distribution Nk for the in the in-
terval 0.5 < γ < 1.0 is also consistent with both the κ and q-
exponential functions. However, when we have compared the be-
havior of entropic parameters κ and q, as function of αA and γ ,
the exponent γ has provided an inverse effect that one presented
by exponent αA .
Finally, it is worth mentioning that by comparing Tsallis and
Kaniadakis degree distributions (Eqs. (6) and (11)) in the context
of the preferential attachment growth model and growing network
model (Figs. 2 and 5), they have furnished a very similar behavior,
i.e., it decays as the power law. However, some of the fittings in
Figs. 2 and 5 were not very satisfactory, mainly for αA = 3.0 in
Fig. 2 and the fittings for γ = 0.55,0.65,0.75 and 0.85 in Fig. 5.
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