INFORMATION AND COMPUTATION 127, 164185 (1996)
ARTICLE NO. 0057

View metadata, citation and similar papers at core.ac.uk

brought to you b

provided by Elsevier - Publishe

ANDRE JOYAL

Département de mathématiques et d’informatique, Université du Québec a Montréal, Montréal, Quebec Canada H3C 3P8

AND

MOGENS NIELSEN AND GLYNN WINSKEL

Computer Science Department, Aarhus University, 8000 Aarhus C, Denmark

An abstract definition of bisimulation is presented. It makes possible
a uniform definition of bisimulation across a range of different models
for parallel computation presented as categories. As examples, trans-
ition systems, synchronisation trees, transition systems with inde-
pendence (an abstraction from Petri nets), and labelled event struc-
tures are considered. On transition systems the abstract definition
readily specialises to Milner’s strong bisimulation. On event structures
it explains and leads to a strengthening of the history-preserving
bisimulation of Rabinovitch and Traktenbrot and van Glabeek and
Goltz. A tie-up with open maps in a (pre)topos, as they appear in the
work of Joyal and Moerdijk, brings to light a new model, presheaves on
categories of pomsets, into which the usual category of labelled event
structures embeds fully and faithfully. As an indication of its promise,
this new presheaf model has “refinement” operators. The general
approach yields a logic, generalising Hennessy—Milner logic, which is
characteristic for the generalised notion of bisimulation.  © 1996

Academic Press, Inc.

INTRODUCTION

There are confusingly many models for concurrency and
all too many equivalences on them. To an extent their
presentation as categories of models has helped to explain
and unify the apparent differences (see [ 19]). But hitherto
this category-theoretic approach has lacked any uniform
way to adjoin abstract equivalences to these categories of
models. This paper reports on an approach: bisimulation
between processes is expressed through the presence of a
span of open maps between them.

Recall, as background, the content of the handbook
chapter [ 19]. There, a model for process calculi is presented
as a class of objects (such as transition systems or Petri nets)
equipped with a notion of morphism, so that it forms a
category. The morphisms represent a form of simulation
between processes, and arise naturally in relating the
behaviour of a construction on processes to that of its
components. Basic operations of process calculi may now
be understood as universal constructions (such as product
and coproduct) of the category, and so are characterised
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abstractly, up to isomorphism. Categorical notions also
come into play in relating different models; for instance, in
relating the model of transition systems to that of Petri
nets. Adjunctions, especially coreflections, provide a way to
translate between one model and another. The understand-
ing of the operations of process calculi as universal con-
structions guides definitions away from the ad hoc, while the
preservation properties of adjoints help relate semantics in
one model to a semantics in another.

But the very richness of the morphisms in the categories
of models, a richness which is essential in yielding the
universal constructions, means that many objects with strik-
ingly different behaviours are connected by morphisms; in
particular, morphisms of transition systems relate transition
systems which are far from strongly, or weakly, bisimilar.
The categories do not immediately yield useful abstract
equivalences between processes. However, a general con-
cept of bisimulation arises from the definition of open map.
The definition of open map, applicable to all the categories
of models, picks out those morphisms which, roughly
speaking, reflect as well as preserve behaviour. It is sensible
to take two processes to be bisimilar, in a generalised sense,
if they are connected by a span of open maps.

The open maps are defined abstractly as being those
morphisms which satisfy a path-lifting property. Intuitively
a path represents a computation or history of a process. For
the interleaving models of synchronisation trees and trans-
ition systems a computation path is naturally identified with
a sequence of consecutive transitions starting at the initial
state. For the noninterleaving (or independence) model of
event structures a computation path is reasonably taken to
be a slight generalisation of this to a partial order of events,
and as the events are labelled, this amounts to a pomset
[14]. The morphisms described, say f: X — Y, quite natu-
rally have the feature that they preserve behaviour in the
sense of sending computation paths of X to computation
paths of Y. Roughly, open maps are required to satisfy the
additional property that they preserve labels and, whenever
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a path of X can be extended via f'in Y, then that extension
can be matched by an extension of the path in X.

As a first measure of success, this approach yields a
uniform way to understand strong bisimulation on trans-
ition systems and history-preserving bisimulation on
labelled event structures. This is only part of the story. The
approach yields a notion of bisimulation on a relatively new
model of transition systems with independence. Also, the
concept of bisimulation induced on labelled event structures
is not quite that originally proposed in [15, 6] but, inter-
estingly, a slight strengthening of the original definition. A
logic of path assertions is exhibited—it can be viewed as a
generalisation of Hennessy—Milner logic. Again it is general
and applies to many different models, where it is a charac-
teristic logic for the associated notion of bisimulation.
Along the way, a number of desirable properties of process
equivalences are shown to hold automatically of the general
notion of bisimulation by virtue of its abstract definition; for
instance, that bisimilarity is preserved in both directions of
the coreflections relating models.

The concept of open map appears in work of Joyal and
Moerdijk (cf. [ 7]) where a concept of a subcategory of open
maps of a (pre)topos is defined. The link with these ideas is
made via embedding categories of synchronisation trees and
labelled event structures in toposes of presheaves over
categories of paths, chosen appropriately; in the case of syn-
chronisation trees paths are simply finite branches while for
labelled event structures they are finite pomsets. The embed-
dings are full and faithful and so give a way to generalize
the established models to particular presheaf models. One
advantage of the presheaf models is the automatic appear-
ance of useful operations as Kan extensions. Another is the
possibility of using the general axioms of Joyal and Moerdijk
for open maps (and thus bisimulation).

1. MODELS

1.1. Transition Systems

Transition systems are a frequently used model of parallel
processes. They consist of a set of states, with an initial state,
together with transitions between states which are labeled to
specify the kind of events they represent.

DEFINITION. A transition system is a structure

(S, i, L, tran),
where
e Sis a set of states with initial state i,

e L is a set of labels, and

e tran<= Sx L xS is the transition relation. As usual, a
transition (s, a, s') is drawn as s — '
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DEFINITION.  Let

TOZ(SOSiOsLOstranO) and Tl:(Slal.l’Llalranl)
be transition systems. A morphism f: T,— T, is a pair
f=(o, 1), where

e g:S,— S, such that o(i,) =1i,, and
e J: Ly — L,, a partial function, which together satisfy

(s,a,s")etran, & A(a) defined
= (a(s), Ma), a(s")) e tran,, and

(s,a,s")etran, & A(a) undefined = a(s) = o(s").

Morphisms on transition systems represent a form of par-
tial simulation; they preserve the initial state, and preserve
or collapse transitions. The intention behind the definition
of morphism is that the effect of a transition with label ¢ in
T, leads to inaction in 7', precisely when A(a) is undefined.

Transition systems with morphisms form a category T in
which the composition of two morphisms f'= (g, A): Ty, —
Tiand g=(o', V). T, > Tyisgof=(a"0a,AoA): Ty— T,
and the identity morphism for a transition system 7 has the
form (1, 1,) where 1 g is the identity function on states and
1, is the identity function on the labeling set of 7.

(Here composition on the left of a pair is that of total
functions while that on the right is of partial functions.)

1.2. Synchronisation Trees

In his early, foundational work on CCS [10], Milner
introduced synchronisation trees as a model of parallel pro-
cesses and explained the meaning of the language of CCS in
terms of operations on them.

DEFINITION. A synchronisation tree is a transition system
(S, i, L, tran) where

¢ every state is reachable,

o if s ... 5, for a string of labels a4, ..., a,, then
the string is empty (i.e. the transition system is acyclic), and

b
o s&s" > s=a=b&s =s".

Regarded in this way, we obtain a category S of synchro-
nisation trees as a full subcategory of transition systems.
The familiar operation of unfolding a transition system into
a synchronisation tree appears as a right adjoint to the
inclusion functor S = T.

Note that strings can be regarded as those special syn-
chronisation trees consisting of a single branch.

1.3. Transition Systems with Independence

Transition systems with independence are precisely what
their name suggests, viz. transition systems of the kind used
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to model languages like CCS and CSP but with an addi-
tional relation expressing when one transition is independ-
ent of another. They are closely related to Petri nets.

DEFINITION. A transition system with independence is
defined to be a structure

(S,i, L, tran, I)

where (S, 7, L, tran) is a transition system and the indepen-
dence relation I < tran® is an irreflexive, symmetric relation,
such that

(1) (S,a,SI)N(S,a,Sz)2>51252

(2) (s, a, s0) I(sy, b, u)y=13s,. (s, @, 1) I(s, b, 5,) &
(Sa ba SZ) I(Szaaa u)

(3) (1) (S’ a, Sl)<(s2’ a, H) I(Mja b’ M}l):(sa a, S])
I(w, b, w"), and

(i) (w, b, w') I(s, a, 5,)<(s5, a, u) = (w, b, ')
I(SZB a, u)

where the relation < between transitions is defined by

(S» a, Sl)<(S2a a, u)c»flb (Sa a, Sl)I(S: ba S2) &
(S7 a, Sl) ](S15 b9 U) &
(S7 ba SZ) I(S29 a, u)a

and ~ is the least equivalence relation including <.

Axiom (2) describes an intuitive property of indepen-
dence; if two actions can occur consecutively and they are
independent then they can occur in the opposite order. The
relation < expresses when two transitions represent
occurrences of the same event; the situation (s, a, s,) <
(55, a, u) means that there is a “square” of transitions

N
\;/

with
(S, a, Sl) I(Sr ba SZ) & (S’ a, Sl) I(sla b: u)
& (S> ba SZ) I(S27 a, l/l)

The relation < extends to an equivalence relation ~
between transitions; the equivalence classes {(s, a, s") _, of

~
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transitions (s, @, "), are the events of the transition system
with independence. (In fact, with this view of events, a trans-
ition system with independence determines a labelled
asynchronous transition system—see [ 19]). Property (3) is
then seen as asserting that the independence relation
respects events; for the “square” of independent transitions
above we must also have that

(Sla ba u) I(S29 a, u)'

The first property (1) simply says that the occurrence of an
event at a state yields a unique state. Note that property (1)
implies the uniqueness of the state s,, whose existence is
asserted by (2).

In reasoning about transition systems with independence
it is sometimes useful to have a notation for representing
independence squares like the one draw above. Sometimes
we simply mark the square, as in

&

Sometimes we are more explicit about which transitions are
independent of which others, and use an “angle” notation to
connect independent transitions, as in

<

—though it should always be borne in mind that this
graphical notation can be deceptive; some or all of the states
in an independence square of a transition system with inde-
pendence can be the same. A square of transitions

O

shows two consecutively independent transition between a
common pair of states—such a square of transitions in a
transition system with independence need not be an inde-
pendence square because the two first transitions need not
be independent of each other.

As morphisms on transition systems with independence
we take morphisms on the underlying transition systems
which preserve independence; i.e., a morphism (g, A): T —
T’ should satisfy

If (s, a, s') and (u, b, u') are independent transitions
of T'and A(a) and A(b) are both defined, then (a(s),
Ma), a(s")) and (a(u), A(b), o(u')) are independent
transitions of 7.

Composition is inherited from that in T. We write TI for the
category of transition systems with independence.
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1.4. Event Structures

Transition systems with independence unfold to event
structures, which capture the significant possible event occur-
rences of a process, the consistency of event occurrences
with each other, and how the occurrence of an event causally
depends on the previous occurrence of others.

DerFINITION.  Define a (labeled) event structure to be a
structure (E, <, Con,l) consisting of a set E, of events
which are partially ordered by <, the causal dependency
relation, a consistency relation Con consisting of finite sub-
sets of events, and a labeling function I: E — L, which satisfy

{e' | ¢’ <e} isfinite,

{e} € Con,

Yc XeCon= Ye Con,
XeCon&e<e' e X=Xu{e} e Con,

for all events e, ¢’ and their subsets X, Y.
We say two events e, ¢’ € E are concurrent, and write
ecoé, iff

(eke &e Le&{e e} eCon).

The finiteness assumption restricts attention to discrete
processes where an event occurrence depends only on fini-
tely many previous occurrences. The remaining axioms
express properties of the consistency relation to be thought
of as asserting which finite subsets of events can occur
together in a computation. For instance, the final condition
says a consistent set can be closed downwards with respect
to causal dependency and remain consistent.

To understand the “dynamics” of an event structure
(E, <, Con,l) we show how an event structure determines
a transition system with independence (S, i, L, tran, I):

Guided by our interpretation we can formulate a notion
of computation state of an event structure, traditionally
called a configuration. Taking a computation state of a pro-
cess to be represented by the set x of events which have
occurred in the computation, we expect that

dex&e<e =eex

—if an event has occurred then all events on which it
causally depends have occurred too—and also that

vXc<™x, Xe Con

—the computation is consistent. We take S to consist of
finite configurations of events, with (J being the initial state.
If the labeling function has the form /: £ — L, we take L as
the labeling set of the transition system with independence.
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Its typical transitions have the form (x, @, x"), where x, x’
are states such that

JeeE. lle)=a&e¢x & x' =xu{e}.

Independence on transitions is inherited from the concur-
rency relation on events: write (x, a, x") I(y, b, y') iff the
unique events e,, e,, such that e, e x'\x & e,e)'\y, are
concurrent, i.e. e, co e,.

Event structures inherit morphisms from their identifica-
tion with special kinds of transition systems with indepen-
dence. Alternatively, here is a direct definition:

A morphism of event structures consists of

(n, 2): E—> E',

where E=(E, <, Con,l), E'=(E', <', Con’, ") are event
structures, #: E— E’ is a partial function on events, and
A: L— L' is a partial function on labeling sets such that

(i) l'eop=24aol,
(i) If x is a configuration of E, then #x is a configura-

tion of E" and if for ¢, e, € x their images are both defined
with n(e;) =n(e,), then e, =e,.

Let E be the category of event structures with morphisms,
as above, composed componentwise.

Note that Pratt’s pomsets can be identified with special
kinds of event structures, those without any conflict,
precisely those event structures (E, <, Con, /) in which Con
consists of all finite subsets of events £. On pomsets, event-
structure morphisms amount to “partial-injective” func-
tions on events—condition (ii) above, with respect to
relabeling function—condition (i), and taking downwards-
closed sets to downwards-closed sets with respect to <.

1.5. Relating the Models

The four models are related by coreflections (i.e., adjunc-
tions in which the units are natural isomorphisms)—see

[19]:
S T
E

—— T
The left adjoints, drawn above, embed one model in
another; those in a left-to-right direction are essentially
inclusions with unfoldings as right adjoints. Synchronisa-
tion trees are simply special kinds of transition systems; the
right adjoint of the inclusion s¢: S < T is given on objects
as the familiar operation of unfolding a transition system to
a tree. When introducing event structures in Section 1.4 we
showed how they determined transition systems with inde-
pendence and inherited morphisms from the category TI.

st
—_—

o
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This gives the left adjoint eti from E to TL Its right adjoint
is described in detail in [ 19], and sketched at the end of this
section.! A transition system can be regarded as a transition
system with independence, one in which the independence
relation is empty, yielding the functor ##, while the functor
se specifies how a synchronisation tree determines an event
structure—one in which events are arcs of the tree and
causal dependency and consistency relations are gotten
from the tree’s branches.

Important constructions in giving semantics of process
languages such as Milner’s CCS, Hoare’s CSP, and OCCAM
appear as universal constructions, so the limit/colimit pre-
servation properties of adjoints can be exploited in showing
how semantics is respected in moving between models.

When specifying a functor of one of the coreflections
above we adopt a convention; for example, the left adjoint
from E to TI is named eti while its right adjoint is tie. It is
a consequence of the coreflection between E and TI that the
left adjoint tie is full and faithful, and that E is equivalent as
a category to that full subcategory of TI with objects those
transition systems with independence at which the counit

epietiotie(T)—> T

is an isomorphism. (We shall sometimes find it useful to
confuse event structures with the transition systems with
independence corresponding to them.)

Some contructions make use of the evident functors pro-
jecting objects down to their labeling sets and taking
morphisms to their effect as partial functions between label-
ing sets. For example a morphism (g, A): Ty — T, of trans-
ition systems projects to the partial function A: L, — L,
between their labeling sets. With respect to this functor p, a
fibre p~ (L), over a set L, is that subcategory with objects
those with common labeling set L and morphisms those
whose image under p is 1,, the identity on L. We will write
the fibre of transition systems over a labeling set L as T,
and follow a similar convention for the other categories.

The well-known operations of restriction and relabeling
appear as cartesian and cocartesian liftings. In fact, both
the projection functors from transition systems and syn-
chronisation trees to labeling sets form bifibrations. While
the projection function from event structures does have all
cocartesian liftings, the projections are not bifibrations in
the cases of event structures and transition systems with
independence. As will be seen (see Section 4 dealing with
presheaf models), it is possible to enlarge our understanding

! The handbook chapter [ 19] concentrates mainly on event structures
for which consistency is determined by a binary conflict relation, for which
the corrresponding transition systems with independence, asynchronous
languages and Mazurkiewicz trace languages satisfy an extra axiom. The
proofs for the slightly more general structures here proceed in essentially
the same way, with the minor variations indicated in [ 19].
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of event structure to recover a bifibration, associated with
operations of interest, as well as new refinement operations.
(See, e.g., [ 1] for the basic notions of cartesian and cocar-
tesian liftings, fibrations and cofibrations.)

The coreflections are fibrewise in the sense that they
restrict to adjunctions between fibres over a common label-
ing set—the components of the unit and counit lie in the
fibres.

The four models have a central position in the theory of
concurrency. They straddle an important divide in the treat-
ment of parallelism. Models like transition systems and syn-
chronisation trees are so-called “interleaving models”; they
simulate parallelism by nondeterministic interleaving of
atomic actions. In contrast event structures and transition
systems with independence portray parallelism explicitly
as a form of independence. The extra structure of inde-
pendence can be important in, for example, certain liveness
arguments. Petri nets are not dealt with explicitly here,
chiefly because they are not as abstract (do not abstract
away from the detailed representation) as the other models,
and our present concern is that of abstract equivalence
between models of processes. Two models here are however
strongly related to Petri nets (or, more precisely, to that
brand of Petri nets, including 1-safe Petri nets and B/E-nets,
in which at most one token can reside in a place). Event
structures are in coreflection with the category of labeled
nets (see [ 18]). By extending transition systems with inde-
pendence to labeled asynchronous transition systems, which
can have more than one transition with the same label
between the same pair of states, we can obtain an adjunc-
tion with Petri nets—it cuts down to a coreflection on a rich
subcategory of labeled asynchronous transition systems (see
[19]). As a consequence of these results, a semantics of CCS
(or a language like it) in terms of Petri nets and one in terms
of transition systems with independence “unfold” to the
same event structure semantics (see [ 19]), and consequently
to equivalent semantics with respect to the equivalences
investigated here.

The right adjoint to the function eti: E — TI is described in
[ 197; there it is shown how a transition system with indepen-
dence corresponds to a special kind of labeled asynchronous
transition system, how this determines a Mazurkiewicz
trace language, which in turn gives rise to an event struc-
ture. Here we sketch a more direct, equivalent construction.
It unfolds a transition system with independence T to a
transition system with independence % (T') corresponding
to an event structure; more precisely, % (T') lies in that sub-
category of TI equivalent to E under the coreflection. That
this unfolding corresponds to an event structure we will not
prove here—it follows by the results of [19]. To within
natural isomorphism, we are showing the result of applying
the functor eti - tie.

Assume that 7'is a transition system with independence in
TI, . We unfold this to another % (T') in TI,. We obtain the
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states of % (T) as equivalence classes of “runs” of 7, where
a run is a sequence of consecutive transitions starting at the
initial state, and is typically represented by

i B 8 " = S
Two runs should be equivalent (represent the same compu-
tation path) if they are the same but for following opposite

sides of an independence square, as in the upper and lower
contours of

Sm+1
Am+2
Aam + 3 dn

alw/
Smy2 > Sn
mx %I

m+l

. a ay u,,,
i— 5 — -

The equivalence is the least equivalence relation with this
property. The states of % (T') are its equivalence classes. We
define there to be a transition u —2> v in % (T) between
equivalence classes iff there is a run in v extending a run in
u by a b-transition of 7. Two transitions in % (T) are taken
to be independent if they arise in this way from independent
transitions of 7. The construction % (7T) is a transition
system with independence.

There is a “folding” morphism ¢: % (T) — T in TI, got by
taking any equivalence class to the final state of (any of) its
runs. To within isomorphism, ¢ is the component of the
counit of the coreflection between E and TI. The operation
9 extends to functor, naturally isomorphic to efio tie; for a
morphism f: T'— T’ the action of %( f') on states of %(T) is
induced by f’s action on runs.

2. PATH-LIFTING MORPHISMS

Informally, a computation path should represent a par-
ticular run or history of a process. For transition systems or
synchronisation trees, a computation path is reasonably
taken to be a sequence of transitions. Let us suppose the
sequence is finite. For a labeling set L, define the category of
branches Bran, to be the full subcategory of transition
systems, with labeling set L, with objects those finite syn-
chronisation trees with at most one maximal branch. A
computation path in a transition system 7, with labeling set
L, can then be represented by a morphism

p:P->T

in T, from an object P of Bran,. How should we represent
a computation path of a transition system with inde-
pendence or an event structure? To take into account the
explicit concurrency exhibited by an event structure, it is
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reasonable to represent a computation path as a morphism
from a partial order of labeled events, that is from a pomset.
Define the category of pomsets Pom,, with respect to a
labeling set L, to be the full subcategory of E; whose objects
consist exclusively of finite pomsets. A computation path in
an event structure E, with labeling set L, is a morphism

p.P—>E

in E; from an object P of Pom,. Because event structures
and so pomsets embed in transition systems with inde-
pendence TI, via the coreflection E — TI, the idea extends:
a computation path in a transition system with indepen-
dence T, with labeling set L, is represented by a morphism

pP->T

in TI, from the image P of an object of Pom, under the
coreflection. In future, when discussing transition systems
with independence, we will deliberately confuse pomsets
with their image in TI under the embedding.

More precisely, assume a category of models M (this can
be a fibre in any of the categories of models we are consider-
ing) and a choice of path category, a subcategory P =M
consisting of path objects (these could be branches, or pom-
sets) together with morphisms expressing how they can
be extended. Define a path in an object X of M to be a
morphism

p:P— X,

in M, where P is an object in P. A morphism f/: X - Yin M
takes such a path p in X to the path fop: P— Yin Y. The
morphism fexpresses the sense in which Y simulates X; any
computation path in X is matched by the computation path
fopinY.

We might demand a stronger condition of a morphism
f: X > Y expressed succinctly in the following path-lifting
condition:

Whenever, for m: P — Q a morphism in P, a “square”

X

Q—q>Y

}

in M commutes, i.e., gom = fop, meaning the path fop in
Y can be extended via m to a path ¢g in Y, then there is a
morphism p’ such that in the diagram

f

Y

NI
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the two “triangles” commute, i.e., p'om=p and fop' =g,
meaning the path p can be extended via m to a path p’ in X
which matches ¢. When the morphism f'satisfies this condi-
tion we shall say it is P-open.

It is easily checked that P-open morphisms include all the
identity morphisms (in fact, all isomorphisms) of M and are
closed under composition there; in other words, they form
a subcategory of M.

For the well-known model of transition systems open
morphisms are already familiar:

ProrosiTiON 1. With respect to a labeling set L, the
Bran, -open morphisms of T, are the “zig-zag morphisms” of
[17], the “p-morphism™ of [ 16], the “abstraction homomor-
phisms” of [ 4], and the “pure morphisms” of [ 3], i.e., those
label-preserving morphisms (o,1,): T— T' on transition
systems over labeling set L with the property that for all
reachable states s of T

!

ifo(s)—— s in T thens— uin T and o(u) =,

for some state u of T.

Proof. Suppose f=(o,1,): R—>T' is a Bran,-open
morphism of T, . Let s be a reachable state of 7" such that
o(s)— s"in T'. As s is reachable, there is a chain of transi-
tions

. al a an
i=Sg— 8§ — -+ — §5,=S (1)

in 7 starting from its initial state i.
Let P be the branch

aj a ay

o— > e—>...— > o

and p: P — T be the obvious path mapping P to the chain of
transitions in (1).
Let Q be the branch

al ay ay a
e—> 06— .. ——> 06— @

and g: Q — T’ the path mapping it to

a

0(50)1’0'(51)_’"' s

—>o(s)—> s

in T'. Letting m: P—> Q be the obvious (and unique)
morphism in Bran,, we observe that the diagram

2, T

Jf

— 5 T
q

m

Q——~
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commutes. Because f'is open there is a path r: Q — T, so the
two “triangles” commute in

) N
I
0 —— T

q

As the final state of Q, we obtain s’ —— u and a(u) =s'.
Conversely, suppose f satisfies the “zig-zag” condition
stated in Proposition 1. Suppose

}

T

- T
q

commutes for P, Q in Bran,. Observe that, to within

isomorphism, Q is simply an extension of P by extra trans-

itions. Repeated use of the “zig-zag” conditions yields a

morphism r: Q — T such that rom=p and for=¢q. ||

Let us return to the general set-up, assuming a path
category P in a category of models M. Say two objects
X, X, of M are P-bisimilar iff there is a span of P-open
morphisms £, f5:

For the interleaving models of transition systems and syn-
chronisation trees with path category P taken to be
branches, P-bisimulation coincides with Milner’s strong
bisimulation:

THEOREM 2. Two transition systems (and so synchronisa-
tion trees) over the same labeling set L are Bran, -bisimilar iff
they are strongly bisimilar in the sense of [ 11].

Proof. “only if” If transition systems are connected by
a Bran, -open morphism then because its function on states
satisfies the “zig-zag” condition (Proposition 1) its graph is
a strong bisimulation. Strong bisimilarity is an equivalence
relation. Hence a span of Bran, -open morphisms between
two transition systems makes them strong bisimilar.

“if” Suppose R is a strong bisimulation relating 7', and
T,,1e., R= S, xS,, arelation between their states, contain-
ing the pair (i;,i,) of initial states, such that whenever
(s1,5,)€ER

(1) if s, — s} then 5, — 55 & (s, 55) € R, for some
s5€S,, and
(i)

shes,.

if s, — 5, then 5, — 5| & (s}, 55) € R, for some
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Construct a transition system in T, from R as follows:

o Its set of states is R itself with initial state (i,, i,).

e Its transition are triples ((s,, s,), a, (s}, s5)), where
(51, 5,), (s}, 55) € R, for which

(s, a, s7)1s a transition of T, and

(s,, a, s5) is a transition of T',.

There are clearly morphisms f;: R—>T,, f,: R>T,in T,
gotten by projecting to the left and right components of
states. Because R is a strong bisimulation, f; and f, satisfy
the “zig-zag” condition of Proposition 1 and therefore form
a span of Bran, -open morphisms. |

Clearly, in general, the relation of P-bisimilarity between
objects is reflexive (identities are P-open) and symmetric (in
the nature of spans). It is also transitive provided M has
pullbacks, and so an equivalence relation on objects, by
virtue of the following fact:

PrOPOSITION 3.
P-open.

Pullbacks of P-open morphisms are

Proof. Assume in the pullback diagram

XY —<£ ., x

, J J ,

Y¥——7
that fis open.? Suppose that m: P — Q is a morphism in P,
so that the following diagram commutes:

P—2 X

Q—— VY

Combining the two commuting squares, as f'is open, there
is an r: Q — X such that

(1)

rom=g'op
and

for=goq (2)

2 Recall that X, /', g’ forming a pullback means (i) that the square above
commutes, i.e., fog' =go f’, and (ii) that should any other X", ", g", with
f"X">Y and g": X" —> X, form a similar commuting square, i.e.,
fog"=gof", then there exists a unique morphism /: X” — X' such that
f"=f"chand g"=g'<h.
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i.e., the two “triangles” commute in

p—* sy ¢

m J / Jf
Q q Y g Y
Now, from the property of the pullback square, there is
s: Q@ — X' such that

and

Thus in the diagram

P—t ., x £ ,x
A
Q q Y g Y

the lower “triangle” commutes by (4). To show, in addition,
that the upper “triangle” commutes, ie., p=som (as
required for /” to be open), we note that from the pullback
that p is the unique morphism x which satisfies
gox=g"op,
and
f’ oxX = q om.
However

go(som)=(g'os)om=rom=g'op
by (3) and (1), and

Jro(som)=(f"os)om=qom

by (4). Thus p=som.
Hence f* satisfies the path-lifting property required for it
to be open. ||

Transitivity of P-bisimilarity is clear for M with
pullbacks; two spans of open morphisms combine to form a
span by pulling back from their vertices, as illustrated here:

VANVAN

All the models we consider have pullbacks:
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PROPOSITION 4. Fibres in the categories T, S, T1, E have
pullbacks.

Proof. There are coreflections from all categories S;,
T,, E, into TI, . Using the fact that right adjoints preserve
limits, and pullbacks in particular, we obtain pullbacks in
any of S;, T, E; as images under the right adjoints of the
pullback in TI, of diagrams transported into TI, by the left
adjoints. Of course, this depends on TI, itself having
pullbacks. But these we can construct explicitly in the
following way.

Suppose f1=(a,,1,): Ty - U and f,=(0,,1,): T, > U
are morphisms in TI, , where

Tl:(SlailsLa tranlall) and TZZ(S25i2>L5 tranZ’IZ)'

Define
T=(S,i, L, tran, I)

where

S={(s1,52) | a1(s1) = 0,(s2)}, with i = (i, i),
((Sla S2)’ a, (Srls 5,2)) € lran iff(SI» a, S,l) € tranl
and (s,, a, 55) € tran,,

and

((Sla SZ)» a, (S’I ’ S’Z) I((ula uZ)a b) (ur] ’ u’Z))

iff (51, a,80) L(uy, b, uy) & (32, a, 85) L(us, b, ).

There is an inclusion morphism from 7, defined above, to
the (fibre) product T, x, T, in TI,. Consequently T
satisfies Axioms (1) and (3) required of a transition system
with independence—they are inherited from the product.
Axiom (2) remains to be checked; but it follows simply from
the associated properties in the components. The projec-
tions #,: T— T, n,: T— T, determine a pullback, essen-
tially because it is based on pullback in the category of sets:

9]

T — T,

TlLU I

We conclude this section with some useful general facts
about how open morphisms and bisimilarity are preserved
and reflected by functors, especially as part of a coreflection.
For notational simplicity we shall assume the left adjoints
of the coreflections are inclusions. It follows that for the
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coreflections of Section 1.5, open morphisms and bisimila-
rity, with respect to a choice of path category, are preserved
in both directions of the adjunctions.

PROPOSITION 5. Let M be a full subcategory of N, and P
a subcategory of M. A morphism f of M is P-open in M iff f
is P-open in N.

Proof. Directly
morphism. |

from the definition of open

LEMMA 6. Let M be a coreflective subcategory of N with
R right adjoint to the inclusion functor M < N and P a
subcategory of M. Then:

(1) A4 morphism f of M is P-open in M iff f is P-open

in N.

(i1) The components of the counit of the adjunction
ex: R(X) — X are P-open in M.

(i1) A morphism fis P-open in N iff R( f) is P-open in M.

Proof. (i) By Proposition 5, this is a direct conse-
quence of the functor M < N being full and faithful, itself
a consequence of the coreflection.

(i1)) Lete: R(X) — X bea component of the counit of the
adjunction. Suppose the following diagram commutes

P —2 s R(X)
Q — X

where m is a morphism in P, ie., that gom=¢op. By the
cofreeness of R(X), € over X, there is a (unique) morphism
r: Q — R(X) such that in

P —2 R(X)
v

the lower “triangle” commutes, i.e., €or = ¢. In addition,
go(rom):(gor)om:qcm:gop’

whence by cofreeness (this time uniqueness) we can con-
clude rom =p, i.e., that the upper triangle also commutes. It
follows that ¢ is open.

(1ii) Suppose f: X— Y is a morphism in N. From the
adjunction we have the commuting diagram:

R(X) —25 X

AT

R(Y) —2Xs ¥
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“only if” Assume fis P-open. Let m be a morphism in
P for which

commutes. Combining the two commuting squares we
obtain a commuting diagram,

P L RX)—5 X
VI’IJ J/
Q —— RY)—— Y

where the composition fo¢, of open morphisms is open.
Hence there is a morphism r: Q — R(X) such that the two
halves of the following diagram commute:

P L2 RX)—5X
mJ / Jf
Q — R(Y)—— Y

In particular,

foeyor=eyoq.

Now, argue that
eyo(R(f)er)=(eyeR(f))or=[feeyer=eyoq.
But R(Y), ¢, are cofree over Y, ensuring that
R(f)er=q.

Hence the two “triangles” commute in

P —2 R(X)

1/

Q —— R(Y)

It follows that R(f') is P-open in M.
66if’,’

square

Assume R(f) is P-open. Given a commuting

P
0

2 , X

J_

— 5 Y
q

~
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with m in P, the morphisms p and ¢ factor through ¢, and

RX)—/5X

m R(f)J Jf
Y

/R(Y)T
Q/

1e, p=éeyop' and g =¢&,04'. By cofreeness of R(Y), ¢, over
Y, we obtain that

€y

P

R(f)ep' =4 >m.
Because R(f) is open there is r: Q — R(X) such that

rom=p'" and R(f)-r=¢q’.

Hence taking 1’ = ¢, or the two “triangles” commute in

P—Lox

mJ / Jf
Q——7
Thus f'is open. |

COROLLARY 7. Let M be a coreflective subcategory of N
with R right adjoint to the inclusion functor M < N and P a
subcategory of M. Then:

(i) M, M, are P-bisimilar in M iff M,, M, are
P-bisimilar in N.

(1) N,, N, are P-bisimilar in N iff R(N,), R(N,) are
P-bisimilar in M.

Proof. (i) Directly from (i) of Lemma 6.

(1)) “omly if” By Lemma 6(iii), a span of open
morphisms in N has, as image under R, a span of open
morphisms in M. Thus P-bisimilarity of N,, N, in N implies
P-bisimilarity of R(N,;), R(N,) in M.

“if” Suppose R(N,), R(N,) in M are P-bisimilar in
M via a span of open morphisms f,: M — R(N,), f>:
M — R(N,) in M. By Lemma 6(i), f,, f> form a span of
open morphisms in N. The components of the counits of the
coreflection ¢,: R(N,) — N, and &,: R(N,) - N, are open
by Lemma 6(ii). Hence the compositions &; © f7, &, o f, form
a span of open morphisms in N showing the P-bisimilarity
of N\, Nin N. |
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3. CHARACTERISATIONS

We have already seen (Lemma 1, Theorem 2) that for the
well-known model of transition systems, the general defini-
tion of P-open morphism and P-bisimilarity coincide with
familiar notions; in particular, we recover the equivalence
of strong bisimilarity central to Milner’s work. Here we
explore how the general definitions specialise to the models
of event structures and transition systems with independence.

We start by characterising Pom, -open morphisms on
transition systems with independence. As usual, we shall
identify pomsets with their image under the embedding
E—-TL

ProrosiTioN 8. The Pom, -open morphisms of TI, are
precisely those which satisfy the “zig-zag” condition of
Proposition 1 and which, in addition, reflect consecutive inde-
pendence (a morphism (o, 1,): T, — T, between transition
systems with independence T,=(S,,i,, L, tran,,I,) and
T,=(S,, iy, L, tran,, I,) reflects consecutive independence

i

whenever (s, a, s'), (s', b, s") € tran,, with s reachable, and
(O'(S), a, O-(S’)) IZ(O-(S,)a b’ O-(SN)) l”l TZ’
then (s, a,s')1,(s',b,s")inT,.)

Proof. Let f=(0,1,): T— T’ be an open morphism in
TI,. By considering linear pomsets, where causal depen-
dency is a total order, it is clear as in Proposition 1, that f
satisfies the “zig-zag” condition.

Suppose

a b
s— u and u—> v,

with s reachable, are two consecutive transitions in 7 for
which

and o(u) SN o(v)

o(s) — a(u)
are independent in 7.
Because s is reachable there is a chain of transitions

. al 7
i=§g—> 85— -~ —>S =

in T from its initial state i. Let P be the linear pomset
(regarded as a transition system with independence)

a

aj an a b
e— > e—He...o—> 06—> 00— @

Let p: P — T be that morphism in TI, which maps this
chain of transitions to

aj az an a b
So—> 8§ —> >SS ——> U—> D
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in T. Let Q be the pomset (regarded as a transition system

with independence)

Let ¢: Q— T’ be that morphism in TI, mapping these
transitions to

a(50) — 0(s) =25 = o(s)

LN
\/

in 7". Letting m: P — Q be the obvious morphism of pom-
sets, we observe the commuting diagram

But f'is open, so we obtain a morphism p’: Q — T such that
the two “triangles” commute in

Because p' preserves independence, we see that s —> u
and u —2> v are independent in T. So because f is open it
satisfies the “zig-zag” condition and reflects consecutive
independence.

It is sufficient to show the converse for a morphism be-
tween the transition systems with independence of event struc-
tures: The adjunction from E to TI yields the commuting
diagram

E—2 5T
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in TI,, where E=etiotie(T), E' =etiotie(T'), g=etio
tie( f), and ¢, ¢’ are components of the counit of the adjunc-
tion. Considering the functor etio tie—see Section 1.5—it
can be seen that g satisfies the “zig-zag” condition and
reflects consecutive independence if f does. Moreover, by
Lemma 6(iii), it is clear that if g is an open map then so
is f.

Thus it is sufficient to assume that gt E—E' is a
morphism between the transition systems with inde-
pendence of event structures in TI, which satisfies the “zig-
zag” condition and reflects consecutive independence, and
then show it follows that g is open. To this end let

be a commuting diagram in TI,, with P, Q (transition
systems with independence of) pomsets in P,. Forgetting
the independence structure, we obtain a commuting diagram
inT,

tit(P) —2— tit(E)

|

tit(Q) — tit(E")

Because g satisfies the “zig-zag” condition, there is a mor-
phism r of transition systems T, such that

tit(P) —2— tit(E)

|k

tit(Q) — tit(E")

where the two “triangles” commute. We show that r is, in
fact, also a morphism r: Q — Ein TI, . This will make essen-
tial use of E and E’ being transition systems with inde-
pendence of event structures.

For r: Q - E to be a morphism in TI, it is sufficient to
show that r preserves independence on transitions. From
the commuting diagram

tit(E)

ZZZ(Q) —q> l‘l.l‘(E’)
we can first deduce that r preserves consecutive inde-

pendence: two consecutive independent transitions ¢, t' of Q
have as image under r two consecutive transitions of E; the

175

two consecutive transitions of £ go under g to the two con-
secutive independent transitions gotten as the images under
q of t, '—recall that ¢ is a morphism in TI,, which must
therefore preserve independence; now, because g reflects
consecutive independence the two consecutive transitions of
E must be independent. This shows that r preserves con-
secutive independence.

A similar argument shows that r preserves independence
squares. We can represent the images under ¢, r, and g of an
original independence square in Q by

e
P
AQ_'J_’QB

Because ¢ is a morphism in TI, it sends the independence
square A4 in Q to an independence square B in E' . By the
commutativity g =g or, the independence square A4 is sent
by r to a square of transitions C in E, where we have the
consecutive independence indicated in C because r preserves
consecutive independence. Because E is gotten from an
event structure, the consecutive independence in C must
be due to two concurrent events, which forces C to be an
independence square.

Because Q is gotten from a pomset, it inherits the
property of event structures that two transitions are inde-
pendent if they are ~-related to independent transitions in
an independence square. As the relation ~ itself is obtained
from independence squares, and r preserves such squares,
this entails that r preserves independent transitions in
general. Hence r is a morphism in TI, and we have the
required path lifting property in TI,; the two “triangles”
commute in

P—2> FE

L

Q— — F
The morphism g is thus open. |

In the case of event structures taking the path category P
to be pomsets yields a reasonable strengthening of a pre-
viously studied equivalence, that of history-preserving
bisimulation. Its definition depends on the simple but impor-
tant remark that a configuration of an event structure can
be regarded as a pomset, with causal dependency relation
and labeling gotten by restricting that of the event structure.
In more detail, assume that

E=(E, <, Con,]I)
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is an event structure. If x is a configuration of E it deter-
mines a pomset, Viz.,

(x, < n(xxx), Fin(x), [ | x:x—> L),

which we will also call x; here Fin(x) consists of all finite
subsets of x, which coincides with the restriction of Con to
subsets of x because configurations are consistent.

DerFiNITION (Rabinovitch and Traktenbrot [15], van
Glabeek and Goltz [6]). A history-preserving bisimulation
between two event structures E,, E, consists of a set H of
triples (x,, f, x,) where x, is a configuration of E,, x, a
configuration of E,, and f an isomorphism between them
(regarded as pomsets), such that (¢, &J, &)e H and,
whenever (x,, f, x,) € H,

(1) if x,—> x| in E, then x,—> x, in E, and
(xy, f', x5) e Hwith f < f', for some x5 and f”;

(1) if x,— x5 in E, then x,—> x| in E, and
(x}, f', x5) e Hwith f < f7, for some x| and f".

We say a history-preserving bisimulation H is strong® when
it further satisfies

(I) (x,f,y)e Hand x’ = x, for a configuration x" of E,
implies that (x', /', ") € H, for some /' < fand )’ < y.

(IT) (x,f,y)e Hand )" <y, for a configuration )’ of E,,
implies that (x', /', y') € H, for some /" = fand x' = x.

ExampPLE. We give an example of two event structures
which are history-preserving bisimilar but not strong
history-preserving bisimilar. They are presented below as
transition systems with independence (cf. Section 1.4). Each
of the two event structures has six events, and we have
indicated below a few configurations. The reader can fill in
the rest, and provide a history-preserving bisimulation H
between the two structures. It is clear that A cannot be
strong since H must relate the configurations {e,} and {e'}
(because of the b-labeled events), and hence must relate
configurations {e,, e,} and {e}, e5}. But {e,} cannot be
related to {e5} (because of the c-labeled event, {e,} can
only be related to {e}}).

';T;’J'{ff.} {EE}J';T%J'M}
e - —— e} — o - {eh e}

{e2} {ea}
? The notion of strong history-preserving bisimulation appears in the work

of Bednarczyk [2], work which we were unaware of until recently. Bed-

narczyk calls the notion hereditary strong history-preserving bisimulation.
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PropPOSITION 9. Let f2 E— E' be an open morphism in
E,, for event structures E and E'. If x is a configuration of E
then the restriction - x — fx is an isomorphism of pomsets in
Pom, , where configurations x and fx are regarded as pomsets
(with pomset structure induced by E and E', respectively).

Proof. Assume that f: E— E’ is an open morphism in
E, between event structures E, E'. Let x be a configuration
of E. Regarding x as a pomset, there is a morphism in E,
induced by inclusion,

X< E.

A property of morphisms of event structures is that the set
image fx is a configuration of £’ and that f'is 1-1 when
restricted to x. (See the definition in Section 1.4). Again,
identifying the configuration fx of £’ with the pomset gotten
by restricting E’, we obtain the commuting square

oy

fx%E/

where £, is the morphism of pomsets gotten as the restric-
tion of f to x, and i, i’ are the inclusion morphisms
associated with the configurations. Now, using the fact that
fis open, there is a morphism fx — E such that in

1/

both “triangles” commute. Because f'is a morphism in E,,
we already know that f, is 1-1 and onto between the sets x
and fx. Commutativity of the upper “triangle” forces £, to be
an isomorphism of pomsets. ||

THEOREM 10. (1) Two event structures, with labeling
sets L, are Pom  -bisimilar iff they are strong history-preserv-
ing bisimilar.

(1) Two transition systems with independence, with label
sets L, are Pom  -bisimilar iff their unfoldings to event struc-
tures are strong history-preserving bisimilar.

Proof. (1) “only if” The relation of being strong
history-preserving bisimilar is an equivalence relation; for
example, to show transitivity, if E,, E, are strong history-
preserving bisimilar via H, and E,, E; are strong history-
preserving bisimilar via H,, then E,, E; are strong history-
preserving bisimilar via H, where

H={(x,0°0,2)|3y.(x,p,y)eH,and (y, 0, z) € H,}.
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It is thus sufficient to show that an open morphism between
event structures establishes a strong history-preserving
bisimulation between them.

Assume f: E— E' is an open morphism in E, between
event structures £ and E’. In the light of Proposition 9, we
tentatively take as the strong history-preserving-bisimula-
tion the relation H consisting of all triples

(X, fr JX)

for x a configuration of E. The relation H clearly contains
(I, &, &). The conditions (1) and (II) required of a strong
history-preserving bisimulation are fulfilled automatically
with this definition. We further require conditions (i) and (ii)
in the definition of history-preserving bisimulation. Condi-
tion (i) follows directly from f being a morphism. In showing
condition (i), suppose that (x, f,, fx) € H and that fx — y
in E’, for a configuration y of E’. Identifying the configura-
tions fx and y with the pomset structures induced on them by
E’, the inclusion fx < y gives a morphism of pomsets

fx =y
Letting m be the composition
Jx
xX—— xSy
we have the commuting square
y = E

where 7, j are the morphisms of event structures associated
with the obvious inclusions. As f is open, there is a
morphism of event structures r:y — E such that both
“triangles” commute in

1
y —=—FE
Take x' to be the configuration of E which is the image of

y under r. As fx'=y, by Proposition 9, we obtain the
isomorphism of pomsets

S X

12

y

extending /... This shows the remainder (ii) required for H
to be a strong history-preserving bisimulation.

Hence f: E — E’ being open in E, implies that E, E’ are
strong history-preserving bisimilar.
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“if” Suppose E,=(E,, <y, Cony, 1), E,=(E,, <,,
Con,, I,) are event structures related by a strong history-
preserving bisimulation H.

We first observe that H can itself be regarded as a trans-
ition system with independence, T=(S, i, L, tran, I). (In
fact, it is one arising, to within isomorphism, from an event
structure.) As states take

S={0]3x,,x,.(x,,0,x,)e H}
with initial state i = (. We take as transitions

(0,a,0)etran
iff Jey,e,. =00 {(e,er)} &l\(e;)=1(e;)=a.

(Here we are regarding the isomorphism 6 as the graph of
its function, and by v indicate the union is disjoint.)

It is clear that a transition (0, @, 8") determines a unique
pair of events e, € E, e, € E,, with the same label, for which
0=00 {(e, e,)}; we write ev(, a, 0') for (e, e,). We take
two transitions (6, a, #') and (¢, b, ¢') to be independent, set-
ting

(0, a,0) I(9, b, ¢'),

iff their associated pairs of events (e, e,) =ev(8, a, ') and
(e}, e5)=ev(e, b, p') are such that

eycoeyinE; and e,coesin E,.
By considering a typical independence square it is easily
seen that

(0,a,0')~(p,b,¢")=a=b
and

ev(B,a,0)=ev(p, b, p").

It follows that T satisfies Axioms (1) and (3) required of a
transition system with independence. Axiom (2) also holds,
its proof relying on the history-preserving bisimulation
being strong:

Assume (6, a, 0,)1(0,, b, ¢), for transitions of 7. Let
(e, e,)=ev(0,a,0,)and (e}, e5) =ev(0,, b, p). Let x be the
domain of  and u the domain of . We observe that u is a
configuration of E, with subconfiguration y, =x v {e|}—it
has this subconfiguration because e, co ¢} from the assump-
tion that the transitions are independent. H being strong
yields an isomorphism of pomsets 6, < ¢ with (y,, 8,, y,) €
H, where y, is the range of 0,. It follows that 0, =0 © {(e/,
eh)} and ¢ =0, v {(e, e,)} yielding two transitions for
which (8, b, 0,) 1(0,, a, ¢), as required by Axiom (2).

Let 7, and 7, be the projections which for e S give its
domain and range respectively. It is easily checked that
(my,1,): T—eti(E,) and (m,, 1,): T— eti(E,) are open
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morphisms in TI,, (for openness use Proposition §), mak-
ing the transition systems with independence of £, and E,
Pom, -bisimilar in TI, . Hence, by Corollary 7(i), E,, E, are
Pom, -bisimilar in E, .

(i1)) To conclude the proof, we need to show that two
transition systems with independence T,, T, are Pom, -
bisimilar iff their event-structure unfoldings are strong
history-preserving bisimilar. By Corollary 7(ii), T,, T, are
Pom, -bisimilar iff their unfoldings as event structures tie( 7', ),
tie(T,) are Pom, -bisimilar, which is equivalent to the unfold-
ings being strong history-preserving bisimilar, by part (i). |

From the proof of Proposition 8 we can see that the rela-
tion of strong history-preserving bisimulation is quite
robust. It might be thought that strong history-preserving
bisimulation, presented as Pom, -bisimilarity, is affected by
restricting the category Pom, to a smaller class of objects.
However, no matter how much the objects in the path
category Pom, are restricted, provided they include all
pomsets of the “stick” and “lollipop” forms in the proof of
Proposition 8, then the relation of bisimulation that results
will coincide with strong history-preserving bisimulation:
By the “only if” part of the proof, an open morphism with
respect to such a smaller class of pomsets will be “zig-zag”
and reflect consecutive independence; hence the notion of
open map, and so bisimulation, is unaffected by restricting
to a smaller class of pomsets.*

ExaMPLE. An observation central to [4, 3] that two
synchronisation trees or transition systems are strong
bisimilar iff they are related by a cospan of “zig-zag”
morphisms (defined in Proposition 1). Their development,
which is only for transition systems, is in a sense dual to that
here, and does not generalise to the other models. (Another
difference is that they begin with the notion of “zig-zag”
morphism, so they do not have universal characterisations
of the constructions of process calculi.) As an example, con-
sider the following two transition systems with inde-
pendence, where all squares but the lower squares (labeled
a, b, ¢, d) are independence squares:

SN SN
I N AN
AN A

T() 1

4 We are grateful to Allan Cheng for this remark.
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It follows that the unfoldings of 7\, and T, into event struc-
tures are isomorphic, and hence from Theorem 10 that T,
and 7', are Pom, -bisimilar. On the other hand, there can be
no cospan of Pom,-open maps TOL T T, (left for
the reader to verify). Hence, it follows that “being related by
a cospan of Pom, -open maps” is a different relation over
transition systems with independence—as a matter of fact a
non-transitive relation.

4. PRESHEAF MODELS

Joyal’s notion of open map was originally meant only to
apply to morphisms of a topos (or a quasitopos) [7]. A
path category gives rise simply to a topos of presheaves in
which the work and ideas of [ 7] can be understood directly.
As a biproduct we are led to a promising new kind of model
for concurrency.

Given a path category P we can build the category
[P°P, Set] of presheaves over P, defined as follows.” The
objects of [P°P, Set] consist of functors P°? — Set, to the
category of sets. The morphisms of [ P°P, Set] are natural
transformations between functors. Intuitively, a presheaf
F: P°? — Set can be thought of as specifying for each path
object P a set F(P) of paths from P. It acts on a morphism
m: P— Qin P to give a function F(P) < F(Q): F(m) saying
how paths from Q restrict to paths from P.

It is helpful to see how a model, such as a transition
system or a labeled event structure, gives rise to a presheaf.
Consider a category of models M and a choice of path
category forming a subcategory P < M. There is a canoni-
cal functor from the category of models M to the category
of presheaves [ P°P, Set]. The functor

M — [P°P, Set ]

takes an object X of M to the presheaf M(—, X)—more
intuitively, it takes the model X to the to the presheaf which
for each path object P yields the set of paths M(P, X) from
P into X. The canonical functor takes a morphism f/: X — Y
in M to the natural transformation

M(_yf): M(_’X)_)M(_> )/)

whose component at an object P of P is the function
M(P, X) > M(P, Y) taking p to fop—intuitively, a path
p: P— Xin X is taken to a path fop: P— Yin Y.6

In general, the canonical functor will not be full and faith-
ful, i.e., a full embedding of M into [ P°?, Set]. However, it

3 A good introduction to presheaves can be found in [9, Chap. 1]. More
details covering the work of this section should be available shortly in [5].
® The reader unfamiliar with presheaves will almost certainly find it help-
ful to consider the example of presheaves over Bran, and how the canoni-
cal functor from S to [ Bran{P, Set] works on a small synchronisation tree.
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is a full embedding iff the inclusion P = M is dense, i.e.
every object of M is the colimit of objects in P (see [8,
p. 2431]). This is the case for two major examples:

THEOREM 11. (i) With respect to a labeling set L, the
inclusion Bran, < S, of branches into the category of syn-
chronisation trees is dense. The canonical functor from S, to
[ Bran\®, Set] is a full embedding.

(1) With respect to a labeling set L, the inclusion
Pom, < E, of pomsets into the category event structures is
dense. The canonical functor from E; to [Pom$®, Set] is a
Sfull embedding.

Proof. As remarked, the canonical functors to
presheaves are full and faithful iff the inclusions of the sub-
categories of path category are dense. Here we only show
Pom, = E, is dense—that Bran, < S, is dense follows by
a similar, but easier, argument.

For the subcategory Pom, to be dense in E, , we require
that every event structure E in E; is the colimit of pomsets.
More precisely, we require that the cocone, given by the
following constructions, be colimiting:

Let D be the category consisting of objects p: P — E in
E,, where P is a pomset in Pom, and morphisms from
(p: P> E)to(q: Q— E)are morphisms m: P — Q such that

p L2 L FE

1

0

commutes in E; . The functor d: D - Pom, typically takes
such a morphism to m: P — Q. There is a cocone over d with
vertex £ and components p, for p: P— E in D. We require
that this cocone E, p is colimiting.

Suppose there is another cocone over d with vertex an
event structure £’ and components p’. Objects of D include
inclusion morphisms

XS E,

where x is a configuration of E, regarded as a pomset (as
earlier in Section 3, x inherits the causal dependency and
labeling of E). Write p., p’. for the components of the
cocones at x < FE in D. In particular, there are inclusion
morphisms,

[e]<'—E

where e is an event of E and [ =4 {e, | ¢, <e}. Define
n(e) to be the event in E" which is the image of e under pr,.
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Because the components p’ preserve labels so does #.
Because E’', p' is a cocone over D, the diagram

Dy ,
x — F

el

commutes for e € x, a configuration of E. This ensures that
nx is a configuration of £’ and moreover that # is 1-1 when
restricted to x. Thus # is a morphism E — E’. Because any
component p: P — E of the cocone E, p factors as

P—L2 L FE
x

where x is the configuration-image of P, it follows that # is

a mediating morphism of cocones from E, p to E’, p’. The

morphism # is unique such that

fe] "% E

p'm\‘ Jn

E(

commutes, a property required of the mediating morphism.
We conclude that the cocone E, p is colimiting, and hence
that Pom, < E, is dense. ||

There are more objects in the presheaf categories than in
the original models. In the case where path objects are
branches, objects of the presheaf category [Bran(P, Set]
consist of “synchronisation forests,” viz., collections of syn-
chronisation trees. Such a collection may be empty. The
embedding has as image all those collections which are
singletons. The collections carry a computational intuition
similar to that of synchronisation trees—there is no longer
simply one initial state.

The embeddings of Theorem 11, being full, faithful and
dense, preserve limits (see, e.g., [ 20, p.21]), so products
in the larger category of presheaves coincide with the
fibre product on synchronisation trees, though coproducts
will differ, amounting to disjoint union of forests in
[Bran®, Set].

The extra objects in [ Pom{”, Set], over those presheaves
corresponding to event structures, are more difficult to
explain, though some are representable via models such as
general Petri nets. For several categories of labeled Petri
nets N, , there is an embedding functor A4": E7 — N, from
a full subcategory of event structures, where consistency is
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determined by a binary conflict, which restricts to a functor
from pomsets Pom,. We obtain a functor

N, - [Pom{, Set] with N+— N, (A (—), N).

When 4" possesses a right adjoint %, unfolding a net to an
event structure (as is so for the nets considered in [ 18, 19]),
the presheaf N,(.4°(—), N), obtained from a net N, is
naturally isomorphic to E,(—, %(N))—the presheaf which
corresponds to the event-structure unfolding of N. But the
functor N, — [Pom¢$P, Set] also makes sense for general
Petri nets, providing an unfolding of them into presheaves,
even when ./ is not a left adjoint. For example, consider the
particular presheaf which assigns a singleton set to each
finite pomset over a single label @, and (J elsewhere; this
does not correspond to any event structure but can be
represented by a Petri net consisting of a single event, with
no pre or post conditions, labeled by a—this Petri-net event
can occur with arbitrary multiplicity. The presence of such
extra objects in presheaves makes an important contribu-
tion. It allows the definition of operations which would not
otherwise be defined on the smaller category of event struc-
tures, a point we shall return to.

The embeddings of Theorem 11 extend the Yoneda
embedding of P — [ P°P, Set], regarding a path object P as
the presheaf P(—, P)=M(—, P) because, in these cases,
the subcategory P=M is full. Now, if we regard
presheaves as the model M’ and the image of P under the
Yoneda embedding as its path category P’, we can apply the
general definition of Section 2, to obtain the class of P’-open
morphisms of the presheaf category. They form a category
of open maps of the topos [ P°P, Set], in the sense of Joyal
and Moerdijk.” The two notions of P-open and open map
agree for the models of synchronisation trees and event
structures, because generally

ProrosSITION 12.  Let P be a dense, full subcategory of M.
A morphism f: X— Y of M is P-open iff the morphism
M(—, f): M(—, X) > M(—, Y) is an open map (in the sense
of [7]).

Proof. From P being a full subcategory we have that the
canonical functor from M to presheaves coincides with the
Yoneda embedding on P. Denseness of P in M ensures the
canonical functor is full and faithful. Now we can apply
Proposition 5 to deduce that the two notions of open
morphism agree. ||

So, in particular, a morphism f of event structures is
Pom, -open iff the corresponding morphism E( —, f) in the
presheaf category [ Pom$P, Set] is an open map.

7See [7, p. 53, Example 1.1], though there the definition is expressed in
terms of the existence of certain quasi-pullbacks—a condition stated in the
proof of Lemma 17 below; its equivalence with P’-openness, expressed as
a path-lifting property, follows by the Yoneda Lemma.
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When it comes to relating notions of bisimilarity, care
must taken. It is not the case that two event structures are
Pom, -bisimilar iff their associated presheaves are related by
a span of open maps in [ Pom{?, Set]. This is because there
are many more objects in the presheaf category, and, in par-
ticular, there is always a span of open maps between any
two presheaves subtended from the initial (always empty)
presheaf. There are, however, two simple ways to get a
correspondence.

One is to restrict the objects in the presheaf category. In
the situation where the path category P of a model M has
an initial object I, a rooted presheaf is a presheaf F in which
F(I) is a singleton. As has been remarked, the full sub-
category of rooted presheaves of [ Bran(®, Set] is equivalent
to the category S. Note incidentally, that in the full sub-
categories of rooted presheaves of [Bran9®, Set] and
[Pom$?, Set], the coproduct glues presheaves together at a
common initial state; thus there the construction coincides
with that required to represent Milner’s sum of processes.

ProrosiTION 13. (i) Two synchronisation trees, over
labeling set L, are Bran, -bisimilar (i.e., strong bisimilar) iff
their corresponding presheaves, under the canonical embedd-
ing, are related by a span of open maps in the full subcategory
of rooted presheaves of [ BranP, Set ].

(i1) Two event structures, over labeling set L, are Pom, -
bisimilar (i.e., strong history-preserving bisimilar) iff their
corresponding presheaves, under the canonical embedding,
are related by a span of open maps in the full subcategory of
rooted presheaves of [ Pom$P, Set].

Proof. Because the canonical functors are full and faith-
ful, a span of open morphisms in the categories of syn-
chronisation trees or event structures is carried by the
canonical functors to a span of open morphisms in rooted
presheaves. The proof of the converse directions relies on
the definition of path bisimulations and lemmas from the
next section. There, Lemma 17 shows that the existence of
a span of open morphisms between two objects in the
category of rooted presheaves is equivalent to there being a
strong path bisimulation between the objects. For the par-
ticular models, synchronisation trees and event structures,
and their respective choices of path categories P, path
bisimulation coincides with P-bisimulation by Theorems 18
and 20. |

Another way to get a correspondence is to define bisimila-
rity in the entire presheaf category via spans of epimorphic
open maps. For the presheaf categories, where sheaves need
not be rooted and can consist of several or no components—a
situation more general than that previously considered in
concurrency, this seems to be the appropriate notion of
bisimilarity. Note that Bran,-open morphisms in S and
Pom, -open morphisms in E are automatically epimorphic,
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though this is not so in T and TI because some states can be
unreachable.

ProposITION 14. (i) Two synchronisation trees, over label-
ing set L, are Bran -bisimilar (equivalently, strong bisimilar)
iff their corresponding presheaves, under the canonical
embedding, are related by a span of epimorphic open maps in
[ Bran}®, Set].

(1) Two event structures, over labeling set L, are Pom, -
bisimilar (equivalently, strong history-preserving bisimilar)
iff their corresponding presheaves, under the canonical
embedding, are related by a span of epimorphic open maps in
[Pom{”, Set].

Proof. These follow from Proposition 13; in the “if”
directions, given a span of open morphisms from a presheaf,
taking a single component of it yields a span of open
morphisms from a rooted presheaf, whence the earlier
proposition applies. ||

Consider now operations relating the presheaf categories
[Pom{P, Set], for a labeling set L. Let L and M be labeling
sets. Assume a functor 6: Pom, — Pom,,. It induces the
evident functor

0*: [Pom$?, Set] — [ Pom{®, Set ]

on presheaves which takes a presheaf G: Pom$P — Set to the
presheaf G-0: Pom{® — Set. By standard results on Kan
extensions (see [ 8], Corollary 2, p. 235), the functor 6* has
both a left and right adjoint:

0,4 6% 0,

The functor 6 can be obtained in various ways yielding a
variety of useful, and potentially useful, operations.

One way to obtain a functor on pomset categories is from
a partial function on labels. A partial function

AL—M
between labeling sets induces a functor
J: Pom ; — Pom,,

which takes a pomset over L to its image under A—events
are relabeled except where this yields undefined when they
are removed. The functor A* gives the expected restriction
operation when A is an inclusion. The functor Z, is the
expected relabeling operation when 4 is total. The Grothen-
dieck fibration of the functor from sets with partial func-
tions, to categories, taking a partial function

AML—M
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to

A*: [PomS?, Set] — [ Pom¢”, Set],

“glues” all the fibres of presheaves together to a model into
which the entire category of event structures E embeds.
Unlike E, this category has all cartesian (and cocartesian)
liftings with respect to the projection to labeling sets—this
is because presheaves contain objects beyond those corre-
sponding to event structures.

Another way to induce functors on pomset categories is
to “refine” labels in L to finite pomsets over M—if L < M
this might leave some labels unchanged; this operation
extends to a functor ¢: Pom; — Pom,,. The functor 0, is a
good candidate for the extension of this refinement to
presheaves including those corresponding to event struc-
tures.® A similar method gives a possibly good notion of
refinement of labels by event structures (not just finite pom-
sets). An exactly analogous development goes through for
presheaves over Bran, .

What of presheaves as a model of parallel computation?
In some ways, from a computer-science viewpoint, they are
less concrete and harder to motivate than traditional models
like event structures. In another way they give a more direct,
positivistic, observation-based representation of processes
as coherent collections of possible computation paths.

5. A PATH LOGIC

Assume the path category P is a small subcategory of a
category M of models. Assume P and M have a common
initial object /. In the cases where P is Bran, the initial path
object is the empty branch consisting of a single initial state,
while for Pom, it is the empty pomset. A logic characteristic
for P-bisimulation is arrived at via the concept of a path
bisimulation.

DEFINITION. A path bisimulation, with respect to P,
between objects X, X, of M is a set R of pairs of paths
(p1» p») with common domain P, so p,: P — X, is a path in
X, and p,: P— X, is a path in X, such that

(1) Initial paths are related: letting p,, p, be the unique
paths p,;: - X, and p,: [— X, from the initial object,
(P1>P2) €ER.

(2) (a) For(p;,p,)eR ifpiom=p,, withmin P, in
P
Pl Jm P2
X, ——— P X,

Pl

8 This is confirmed in the Ph.D. work of Gian-Luca Cattani on presheaf
models; in particular he has shown that 6, acts like the refinement on event
structures proposed by van Glabeek and Goltz [ 6] and others.
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then there is p5 such that (p}, p5) € R and pbom=p, in

P
VN
X, —— P ——X,

(b)
We say a path bisimulation is strong if further it satisfies

(3) If(p;,p,)eR, withp,: P— X, and p,: P—> X, and
m: P' - P in P, then (p,om, p,om)€ R.

—the symmetric condition to 2(a).

We say two objects X, X, are (strong) path bisimilar iff
there is a (strong) path bisimulation between them.

Define path assertions by

Az={my A|{m)y A| 4|\ 4,

jeJ

where m is a morphism in P, and J is an indexing set,
possibly empty and not restricted to being finite. The
modality {m) is a “backwards” modality, while {m) is a
“forwards” modality, the meaning of which is explained
shortly.

For the semantics of path assertions, we specify when a
path, typically of the form p: P — X, for P an object of P and
X an object of M, satisfies an assertion; by structural induc-
tion on assertions, define:

e p = (m) A, form: P'— P, iff there is a path p": P' — X
for which p’ = 4 and p' =pom,

e pE (m)A, form: P— P, iff there isa path p": P’ > X
for which p' = A and p=p' om,

epkE TAiffp B~ A,

e pENesA;iflfp = A, forall jeJ.

(This includes the basis of the induction when the indexing
set J is empty, and the empty conjunction stands for true).

We call forwards assertions those built without back-
wards modalities, so with no subassertion of the form
{m) A.

THEOREM 15.

Let X,, X, be objects in M.
(1) X, X, are path bisimilar iff the two initial paths
11— X, and I - X, satisfy the same forwards path assertions.
(i1) X, X, are strong path bisimilar iff the initial paths
I—- X, and I - X, satisfy the same path assertions.

Proof. (i) “onlyif” Assume R is a path bisimulation
between objects X, X,. A routine structural induction on
forwards asssertions 4 shows that, for any such assertion 4,
whenever (p,, p,) € R,

PiEAsp, A
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“if” For paths p;: P—> X,, p,: P— X, define the rela-
tion R by

(P1,p2)€RIfT(p F A<=p, | A)

for all forwards path assertions 4.

By assumption, the initial paths /— X,, /- X, are in R.
A proof by contradiction shows R is a path bisimulation:

Suppose R were not a path bisimulation. This could only
be through 2(a) or 2(b) failing in the definition of path
bisimulation. By symmetry it is sufficient to consider one
case, 2(a). So assume (p,,p,)€ER, where p;: P— X,
P P> X,,and plom=p, forp\: P> X, and m: P> P'in
P. Assuming 2(a) fails means that for any ¢: P' — X, with
P>=¢qom we have (p}, q) € R. From the definition of R, for
any such path g with p, =g om there must be a forwards
path assertion B, such that

PiE B, and g B,

—because (p), q) ¢ R the paths p;, ¢ must be distinguished
by an assertion holding for one and not the other; using
negation, if necessary, we can always find such a B,. Now,
take

a=my (A B,)

qgel
where
I={q P > X, | p,=qomj.
Then

PiEA and p, | A,

contradicting (p,, p,) € R. Hence R is a path bisimulation.

(i1) The proof for all path assertions proceeds as in (1),
but taking care of (3) in the definition of stromg path
bisimulation and “backwards” modalities. ||

We obtain path bisimulations from P-bisimulations:

Lemma 16. If X,, X, are P-bisimilar, then X,, X, are
strong path bisimilar with respect to P.

Proof. Assume X, X, are P-bisimilar. Then there is a
span of open maps:
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Tentatively, define the strong path bisimulation R by
R={(f1°p, f>°p) | p: P> X with P an object of P}.

It is clear that R satisfies condition (1) and (3) required of
a strong path bisimulation. The remaining condition, (2),
follows because f;, f> are open. For instance, to show 2 (a),
assume (p,, p,) €R, so

Pi=ficp&py=frop&p: P> X

for P an object of P. Suppose for m: P— P’ in P that
piom=p, where p: P' > X,. Then because f; is open there
is a morphism p’: P’ —> X such that the two “triangles”
commute in

Defining p’, = f,op’ we obtain (p}, p5) € R and see
prom=frop'oem=freop=p,,

as required by 2(a). ||

Now, we ask when the existence of a strong path
bisimulation with respect to P implies P-bisimilarity. As we
will see it does so for all the models we have considered. But
first we state a general result. For presheaf models the two
notions of path bisimilarity with respect to P and P-
bisimilarity coincide. As the following proof shows this is
because a strong path bisimulation corresponds via the
Yoneda Lemma to a span of open morphisms in a presheaf
model.

LemMmA 17. Let M be the subcategory of rooted
presheaves in [P°P, Set]. Rooted presheaves X, X, are
strong path bisimilar iff they are P-bisimilar.

Proof.  “if”

“only if 7 Via the isomorphism of the Yoneda Lemma, a
strong path bisimulation corresponds to a relation

This follows by Lemma 16.

RS X, x X,

in [ P°P, Set] such that whenever P —- Q is a morphism of
P,if (py, p>) € R(P) then

(1) Vg, € X,(Q). (X1(m))(q,) = py = g, € X5(Q).
(X5(m))(q2) =p> & (g1, q>) € R(Q), and

(2) Vg, € X5(0). (X5(m))(q>) = p> =3¢, € X,(Q).
(X1(m))(q,)=p, & (g1, q>) € R(Q).
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We can express these conditions diagrammatically. For
instance, (1) is captured by saying that

R(Q) "5 R(P)
fJ Jf
X\(Q) 5 Xi(P)

is a quasi-pullback in Set (i.e., we have the existence condi-
tion, but not necessarily the uniqueness condition, of a
pullback)—here f;: R — X, is the projection to the first
coordinate restricted to R.

But this condition says £ is an open morphism—a conse-
quence of the Yoneda Lemma (in fact, this formulation of
open maps is that used in [7]). Similarly, f,: R - X,, got-
ten via projection, is open and we have a span of open

morphisms
X
7N
X, X5

establishing that X, X, are P-bisimilar. |

We conclude this section by showing that the two rela-
tions of P-bisimilarity and strong path bisimilarity with
respect to P coincide for the specific models of Section 1.
Because in the path category Bran, there is at most one
morphism between any two path objects, for transition
systems with this choice of path category, strong path
bisimilarity is equivalent to path bisimilarity.

THEOREM 18. For transition systems over a labeling set
L, with branches Bran, as path objects, Bran, -bisimilarity,
path bisimilarity, and strong path bisimilarity with respect to
Bran, all coincide with strong bisimilarity in Milner’s sense.

Proof. 1If two transition systems in T, are (strong) path
bisimilar with respect to Bran,, then they are strong
bisimilar in Milner’s sense: given a (strong) path bisimula-
tion between transition systems 7, and T,, define the rela-
tion R to consist of those pairs of states (s, s,) of 7, and T,
for which there is (p,, p,) in the path bisimulation and s the
final state in the branch which is their common domain such
that

pils)=s; and  py(s)=s,
—the relation R may be checked to be a strong bisimula-

tion. The remaining claims have already been proved
(Lemma 16, Theorem 2). ||

On event structures, path bisimulations and history-
preserving bisimulations are intimately related; any path
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bisimulation includes a history-preserving bisimulation precisely when they unfold to event structures which are

which generates it, as is shown in the following proof:

LemMA 19. Two event structures E,, E, in E, are

(strong) path bisimilar, with pomsets Pom, as paths, iff

E,, E, are (strong) history-preserving bisimilar.

Proof. “if” Assume E,, E, are related by a (strong)
path bisimulation R. Say (p,, p,) € R is extremal when any
epi-mono factorisation

P
/ | \
Pl lm P2
£ a1 Q % E;

with p,=¢,om and p,=¢g,om implies that m is an
isomorphism.

Because R is a path bisimulation, if (p,,p,)€ R are
extremal then p, and p, are isomorphisms when restricted
to their ranges regarded as pomsets. We can define

H= {(x17p20p1_15x2) | (p1, p2) € Ris extremal and

X1, X, are the ranges of p,, p,}.

From R being a (strong) path bisimulation it follows that H
is a (strong) history-preserving bisimulation.

“only if” Conversely, given a (strong) history preserv-
ing bisimulation H, we can define a (strong) path bisimula-
tion R.

First note that for (x,, 6, x,) € H, the isomorphism 6
carries a pomset structure induced by that of x, and x,; we
will identify 6 with its associated pomset.

Write p,(6), p,(0) for the compositions

pi(0): 0> x, > Ey,
Pa(0): 0> x; &> Ey,
where 0, x,, x, are identified with pomsets, the morphisms
60— x,, 8 > x, are gotten by projections, and x; = FE,
X, & E, are the inclusions of configurations. Now, define
R={(p,(0)om, ps(0)em|m:P—0&
Ixy, x,5.(xy, 0, x,) e H}.
The relation R inherits the properties required of a (strong)

path-relation from those of the (strong) history-preserving
bisimulation H. ||

THEOREM 20. For transition systems with independence
over a labeling set L, with pomsets Pom, as path objects,

(1) Pom,-bisimilarity and strong path bisimilarity coin-
cide, and hold of two transition systems with independence

strong history-preserving bisimilar,

(i) two transition systems with independence are path
bisimilar precisely when they unfold to event structures which
are history-preserving bisimilar.

Proof. By combining Lemmas 19 and 16 in the light of
Theorem 10. |

The logic of path assertions is, of course, characteristic for
P-bisimilarity when this coincides with strong path bisimi-
larity; in particular this holds of the models, with the choice
of path objects, in the theorems above.

6. CONCLUDING REMARKS

The operations of process algebra arise as universal con-
structions in the categories of models discussed here (see
[19]). Many of the process-algebra operations (product,
sums in rooted presheaves, cartesian liftings in bifibration
like that got from presheaves, ...) preserve open maps for
general reasons and so respect bisimulation by virtue of its
abstract definition. The demonstration of this is left to a
future paper and is quite likely best presented via presheaf
models.

We could wish for a more workable logic characteristic
for bisimulation on event structures and transition systems
with independence than that of Section 5. A step in this
direction and an alternative characterisation of Pom, -
bisimulation is presented in [ 12]. More generally we can
ask for tools and techniques for establishing bisimulations
and modal properties.

A possible criticism of our work is that transition systems
with independence are not a widely known model for con-
currency. They have been chosen here both for their sim-
plicity and because there are forgetful functors to them from
other independence models. The paper [13] presents an
analogous open-map treatment of Pom, -bisimulation for
labeled Petri nets and labeled asynchronous transition
systems as well coherent event structures (where consistency
is determined by a binary conflict relation). The notions of
bisimulation on these other models agree with those here;
for example, the notion of bisimulation obtained for Petri
nets makes two nets bisimilar iff the transition systems with
independence the nets induce are bisimilar in the sense
obtained here.

This article concentrates on generalisations of Milner’s
strong bisimulation. What of weak bisimulation? One way
is to imitate Milner who derives weak bisimulation from
strong bisimulation between modifications of the original
transition systems (based on his transition relations ==).
The idea is to define weak bisimulation between objects
X, Y as strong bisimulation between 7(X), 7(Y), the results
of a functorial analogue to Milner’s modification to transition



BISIMULATION FROM OPEN MAPS

systems. This approach provides guidelines for a definition
of weak bisimulation for independence models. We remark
that, in the context of weak bisimulation, the operation of
relabeling by 7 is a satisfactory interpretation of “hiding,”
the operation of making actions invisible.

The presheaf models seem very promising. A treatment of
the relation between the refinement operation arising from
Kan extensions and existing definitions of refinement on
event structures is left to a future paper. Winskel and Gian-
Luca Cattani in his Ph.D. work at Aarhus have made head-
way in the understanding of presheaf models and in relating
refinement operations on presheaves over pomsets to those
on event structures in particular. Winskel is extending the
development to higher order. The move to presheaf models
means that we can use the abstract axioms satisfied by open
maps [ 7] to establish bisimulations between presheaves.

The notion of bisimulation is parameterised by the choice
of model, presented as a category, and within that by a
choice of path objects. Clearly one could vary the choice of
path category and explore the subsequent notion of bisimu-
lation. Here we have restricted attention to finite paths.
Generalisations such as that to presheaves (or more likely
sheaves) over possibly infinite path objects may be a
suitable way to extend the treatment here to cope with
phenomena such as fairness.

We hope at this point to have presented a convincing case
for our abstract way to define and study bisimulation. As we
have indicated, the paper leads to questions and issues to do
with the specific notions of bisimulation obtained. But there
is also a more general, long-term goal: through a more
abstract, category-theoretic, understanding to place models
for concurrency in a broader semantic theory, combining
the virtues of traditional denotational semantics (say
higher-order and functional aspects) with concurrency.
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