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ABSTRACT

ne of the unique aspects of magnetic reso-

nance imaging (MRI) is the sensitivity of

the soft tissue image contrast to tissue
composition, which can be a reflection of physiology
and pathophysiology. The T1 relaxation time, a mea-
sure of how fast the nuclear spin magnetization
returns to its equilibrium state after a radiofrequency
(RF) pulse in the MRI scanner, is a key source of
soft tissue contrast in MRI. It was generally consid-
ered sufficient to have the T1 relaxation properties
“encoded” in the pixel intensity of images, referred
to as T1 weighting (e.g., after contrast administration)
to highlight “focal” pathology, such as acute myocar-
dial infarction (MI) and chronic scar tissue, or to
detect fatty infiltration in myocardial tissue.

The role of diffuse, reactive fibrosis, characterized
by a disproportionate accumulation of collagen in
the heart, has long been identified as an important
factor in the etiologies of diastolic dysfunction, heart
failure, and sudden cardiac death. The myocardial
interstitium therefore became the subject of intense
focus, but the diffuse nature of the structural changes
made it almost impossible to detect interstitial
fibrosis by using conventional T1-weighted imaging.
Advances in cardiac magnetic resonance (CMR)
imaging techniques over the last few years have
rendered it feasible to quantify T1 in the heart and to
generate color-encoded T1 maps, in which the pixel
values represent the T1 in each voxel (rather than a
signal intensity in arbitrary units). T1 maps can depict
even relatively small variations of T1 within the heart
muscle to highlight tissue pathology. Through the use
of extracellular paramagnetic contrast agents, struc-
tural changes in the myocardium can be “amplified.”
For example, it is possible with T1 mapping per-
formed before and after injection of a contrast agent

In cardiac magnetic resonance (CMR) imaging, the T1 relaxation time for the TH magnetization in myocardial tissue may
represent a valuable biomarker for a variety of pathological conditions. This possibility has driven the growing interest
in quantifying T1, rather than just relying on its effect on image contrast. The techniques have advanced to where pixel-
level myocardial T1 mapping has become a routine component of CMR examinations. Combined with the use of contrast
agents, T1 mapping has led an expansive investigation of interstitial remodeling in ischemic and nonischemic heart
disease. The purpose of this review was to introduce the reader to the physical principles of T1 mapping, the imaging
techniques developed for T1 mapping, the pathophysiological markers accessible by T1 mapping, and its clinical uses.
(J Am Coll Cardiol Img 2016;9:67-81) ©® 2016 by the American College of Cardiology Foundation.

to measure a parameter called the extracellular vol-
ume (ECV), which quantifies the relative expansion of
the extracellular matrix as a result of diffuse reactive
fibrosis in multiple cardiac pathologies; the result is
creation of a noninvasive alternative to myocardial
biopsies and histochemical analysis. Furthermore, T1
mapping without administration of a paramagnetic
contrast agent, referred to as “native” T1 mapping, is
sensitive to myocardial edema, iron overload, and the
presence of myocardial infarcts and scarring. For
these reasons, T1 mapping is becoming an essential
tool for the CMR imager trying to understand
myocardial tissue pathology and its prognostic im-
plications. In addition, by quantifying tissue charac-
teristics through T1 mapping, it becomes feasible to
follow longitudinal changes, an essential aspect for
using these novel markers in treatment trials.

With these rapid developments, the term T1 map-
ping encompasses a number of approaches to assess
tissue remodeling by CMR involving some form of T1
imaging, and either only the native T1 (i.e., without
giving contrast) or in combination with a contrast
agent. Similarly, the list of indices derived from these
measurements has grown longer with time, although
native T1 and the ECV fraction are arguably the most-
often derived measures. review,
although by no means exhaustive, presents an over-
view of the field, starting from the physical principles

The present

to the clinical applications of T1 mapping in the heart.

PHYSICAL CONCEPTS OF T1 RELAXATION

The measurement of the T1 relaxation time requires
measuring the spin magnetization component in the
direction of the magnetic field in the magnetic reso-
nance scanner (“longitudinal” component) after it
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was disturbed from its equilibrium state (e.g., by
applying an RF pulse to invert the magnetization).
The recovery of the longitudinal magnetization after
inversion is, despite the complex structure of tissues,
surprisingly well approximated in many instances
by an exponential function. T1 is the decay constant
for the exponential recovery of the longitudinal
magnetization toward its equilibrium state. The rate
at which the spin magnetization recovers to its
equilibrium state depends on mechanisms that
allow the spins to exchange energy with their sur-
roundings. For example, interactions between the
inverted magnetic spin moments and magnetic dipole
moments of neighboring molecules that undergo
tumbling motion can provide such a relaxation
mechanism, which is particularly effective if the
tumbling motion occurs near the resonance fre-
quency of the spin moments. Another relaxation
mechanism is provided by interactions with the
paramagnetic moments in contrast agent molecules,
which are particularly effective in shortening T1.

IMAGING TECHNIQUES FOR T1 MAPPING

GENERAL CONCEPTS. A variety of techniques have
been used to quantify myocardial T1 relaxation times,
each with specific advantages and limitations (1-7).
Several recent articles have reviewed Ti-mapping
pulse sequences and their potential clinical utility
(7-9). Understanding the basic concepts of T1-mapping
pulse sequences will help the imager choose the most
appropriate technique for a given situation.

The general principle for T1 mapping is to acquire
multiple images with different T1 weightings and to
fit the signal intensities of the images to the equation
for T1 relaxation (Figure 1). For T1 measurements, the
equilibrium magnetization is either inverted or nul-
led with RF pulses, and Ti-weighted images are
acquired at different times after the inversion (TI)
or time after saturation pulse. In both cases,
the data can be fit to an equation of the form
A-B-exp(-t/T1), where A and B are fitting parameters
related to the equilibrium magnetization and type of
preparation, t is the time after the preparation
(i.e., either TI or time after saturation pulse), and T1 is
the T1relaxation time. T1 times can be determined for
regions of interest, myocardial segments, or at each
pixel location to form a T1 map; in the latter case,
pixel intensities in the images correspond to the
fitted T1 values (Figure 2).

T1-MAPPING TECHNIQUES. A basic, but inefficient,
technique for quantifying T1 is to collect a series of
inversion recovery-prepared images, such as used
for late gadolinium enhancement (LGE) imaging but
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with different TIs. This approach enables T1
maps to be calculated at a specific phase of
the cardiac cycle, but it requires multiple
breath-holds and is subject to image misreg-
istration between breath-holds. This tech-
nique was used in previous studies (3,4) but
has been superseded by techniques that can
acquire all of the data for a T1 map in a single
breath-hold.

LOOK-LOCKER TECHNIQUE. One of the most
efficient methods for measuring T1 with MRI
is the Look-Locker technique. With this
technique, image data segments are acquired
repeatedly after an inversion pulse to create
multiple images along the recovery curve,
each with a well-defined TI. The image
acquisition process is repeated after a period
on the order of 5*T1 to allow for complete
magnetization recovery in between Look-
Locker “cycles.” The advantage of this type
of technique is that a large number of
segmented images are available for fitting T1;
it has a number of important disadvantages,
however. Because the heart is at a different
phase of the cardiac cycle on each image, T1
mapping is not possible as there may be sig-
nificant in-plane and through-plane motion
(10). Furthermore, the RF pulses used to ac-

ABBREVIATIONS
AND ACRONYMS

ECV = extracellular volume

HCM = hypertrophic
cardiomyopathy

HFpEF = heart failure with
preserved ejection fraction

LGE = late gadolinium
enhancement

LV = left ventricular
MI = myocardial infarction

MOLLI = modified Look-Locker
sequence

MRI = magnetic resonance
imaging

SASHA = saturation recovery
single-shot acquisition

RF = radiofrequency

ShMOLLI = short modified
Look-Locker sequence

SR = saturation recovery

SSFP = steady-state free
precession

T1 = time constant for recovery
of longitudinal magnetization

TI = time after magnetization
inversion

T2 = time constant for loss of
transverse magnetization

quire the data affect the T1 recovery curve, resulting
in an apparent T1 (termed T1*), which is not the same
as the T1 for an undisturbed inversion recovery. The
T1 relaxation time can be recovered by using the
following approximation: T1 = (B/A - 1) - T1* (the
fitting parameters are as described in the previous
section). Finally, if complete relaxation is not allowed
between Look-Locker cycles, there will be a heart
rate-dependent bias in T1 measurements; this bias
will be worse for longer T1 relaxation times and for
faster heart rates unless this variation is specifically
accounted for in the fitting routine. A number of
studies (1,11) have used this technique; however, it
has largely been replaced by newer techniques that
use single-shot image acquisition, where all of the
data for each Ti-weighted image is acquired in a
single heartbeat, as described in the following
sections.

THE MODIFIED LOOK-LOCKER PULSE SEQUENCE. The
most widely used clinical technique for T1 mapping to
date is the modified Look-Locker sequence (MOLLI)
and variants thereof. MOLLI was a significant advance
over earlier techniques and ushered in the era of clin-
ical cardiac T1 mapping (12). In MOLLI, single-shot
images are acquired intermittently in diastole during
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Magnetization

FIGURE 1 Magnetization Inversion Recovery for T1 Mapping

T1 Recovery Curves

T T T

T1-Weighted Source Images

The graph on the left shows 2 inversion recovery curves for a septal region of interest (blue) and the blood pool, generated from images, shown in the bottom row,
taken at different times after an inversion pulse at time t = 0. Similar inversion recovery curves can be generated for each pixel location if the images are all
acquired during a breath-hold and for the same cardiac phase. The T1 for each pixel location can be used to generate a T1 map, as shown in the top-right image. T1 maps
represent arguably the most succinct and informative summary of the spatial and temporal changes during an inversion recovery.

3to 5 heartbeats after the inversion pulse, resulting in
images spaced by the RR-interval along the T1recovery
curve (Figure 2). Multiple inversions with slightly
different TIs are used to more evenly sample the T1
recovery curve. In the original implementation, 3 im-
ages were acquired after the first and second in-
versions, and 5 images were acquired after the third
inversion, with 3 recovery beats to allow for more
complete T1 recovery between inversion pulses. This
acquisition is frequently denoted as 3(3)3(3)5; these
numbers represent the number of images acquired
after each inversion, and the numbers in parentheses
represent the number of heartbeats for rest periods
between inversion recovery pulses. The MOLLI tech-
nique has been shown to be highly reproducible and
yields source images with a high signal-to-noise ratio

(12,13). Given that the steady-state free precession
(SSFP) readout used in MOLLI perturbs the T1recovery
curve, the measured T1* is still corrected (as described
earlier).

A limitation of the standard MOLLI pulse sequence
is the need to acquire data over 17 heartbeats, which
may be too long of a breath-hold duration for some
patients. Also, similar to the Look-Locker technique,
if insufficient time is allowed for full recovery of
magnetization, the derived T1 values will be heart
rate dependent. Multiple modifications to the MOLLI
technique have been proposed to overcome this heart
rate dependence and to shorten the breath-hold
duration (8,9,14,15). One popular MOLLI variation is
the 5(3)3 variant (8). This acquisition has the advan-
tage in that it only requires 11 heartbeats, and by
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FIGURE 2 MOLLI T1 Mapping
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Acquisition strategy for the modified Look-Locker sequence (MOLLI). In this particular example, and after an 180° inversion pulse, images are acquired in diastole over
5 heartbeats, followed by a rest period of 3 heartbeats. After another inversion, another 3 image are acquired with slightly offset TIs to sample more points along
the inversion recovery curves. Based on the number of heartbeats for acquiring images after each inversion pulse, and a rest period of 3 heart beats between the 2 cycles,
this MOLLI acquisition scheme is termed 5(3)3. Images are sorted in order of increasing T, and the signal intensity in each pixel is fit to the T1 recovery curve. Performing
this technique for all pixels in the image yields a T1 map (bottom right).

moving the 5 beat acquisitions to the beginning, there
is more recovery of magnetization.

A further shortening of the acquisition time is
achieved with the “shortened” modified Look-Locker
technique (shMOLLI). shMOLLI has a 5(1)1(1)1 acqui-
sition strategy (3 Look-Locker cycles over 9 heart-
beats), in which the last, or the last 2, magnetization
inversions may not be complete depending on T1, and
T1 is therefore determined by a “conditional” fitting
routine (15). “Conditional” refers to the fact that the
data from the last 2 Look-Locker cycles are only used
if the T1 is short enough to allow for near-complete
relaxation recovery after the second and/or first

Look-Locker cycle. ShMOLLI has been shown to have
very little heart rate dependence and requires a short
breath-hold.

Because there is often residual heart motion even
during a breath-hold, nonrigid registration tech-
niques to correct this motion significantly improves
the robustness and clinical utility of this technique
(8). MOLLI and shMOLLI can still be subject to a slight
systematic bias to underestimate T1 because the
image readouts during the inversion recovery can
have an effect that depends on factors such as T2
(i.e., the time constant for loss of transverse magne-
tization) (16), how closely the RF excitations match
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FIGURE 3 SASHA T1 Mapping
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Acquisition strategy for saturation recovery single-shot acquisition (SASHA): an image without saturation and representative of the equilibrium magnetization is
acquired in the first heartbeat, followed by a 10 saturation recovery acquisitions with different time after saturation pulse (TS). Images are sorted in order of increasing
TS, and the signal intensity in each pixel is fit to the T1 recovery curve, yielding a T1 map. The image representing the equilibrium magnetization corresponds to a Tl >> T1
and is therefore last in this sequence.

the spin precession frequency (“off-resonance” ef- of its state before the saturation pulse. Thus, there is
fect), and magnetization transfer effects (17). Despite no need to wait for T1 recovery between saturation
these potential limitations, when the same MOLLI pulses, and there is no heart rate dependence for the
variant and pulse sequence parameters are used, the measured T1s (Figure 3) (18). The main drawback of
T1 values from MOLLI are highly reproducible. T1 SR-based techniques is that a saturation preparation
mapping using MOLLI-based techniques has been results in one-half of the dynamic range of an inver-
applied to a substantial number of patients with sion preparation, which reduces the potential
different cardiac pathologies. precision of the measurement. The first described
SATURATION RECOVERY-BASED T1-MAPPING technique, SAP-T1, was based on a single-shot
TECHNIQUES. Saturation recovery (SR) techniques gradient echo readout scheme, but it had a poor
are an alternative to inversion recovery techniques signal-to-noise ratio, particularly at 1.5-T. More
that may have potential for improved accuracy in recently, the saturation recovery single-shot acquisi-
T1 determination. A saturation RF pulse effectively tion (SASHA) technique was introduced, which uses
nulls the longitudinal magnetization independently an SSFP readout that results in higher signal-to-noise
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TABLE 1 Comparison of T1-lmaging Techniques
Signal-to-Noise Spatial T1 Maps (Images  *T1Prep Temporal or  Acquisition m T Additional
Ratio Resolution  in Same Phase) Type Tl Resolution Time Accuracy Precision Consideration
Multi-BH IR-FLASH ++ ++ Yes but on IR ++ 10 BH ++ ++ Negligible MT and T2 effects
different BHs due to GRE readout
Segmented Look-Locker + + No IR -+ ~20 HB ++ ++ Negligible MT and T2 effects
due to GRE readout
MOLLI ++ ++ Yes IR ++ 17 HB ++ ++ Potential bias from T2, and MT
effects due to SSFP readout
shMOLLI ++ ++ Yes IR ++ 9 HB ++ ++ Potential bias from T2, and MT
effects due to SSFP readout;
conditional fitting
MOLLI variants ++ ++ Yes IR ++ 9-12 HB ++ ++ Potential bias from T2, and MT
(e.g., 5[313) effects due to SSFP readout
SASHA ++ ++ Yes SR ++ 11 HB ++4+ + Relatively small MT effects;
limited systematic biases
BH = breath-hold; FLASH = fast low angle shot; GRE = gradient echo; IR = inversion recovery; MOLLI = modified Look-Locker sequence; MT = magnetization transfer; SASHA = saturation recovery single-
shot acquisition; shMOLLI = shortened modified Look-Locker technique; SR = saturation recovery; SSFP = steady-state with free precession imaging; T1 = time constant for recovery of longitudinal
magnetization; T2 = time constant for loss of transverse magnetization.

ratio. The SASHA technique consists of 1 image ac-
quired without any SR preparation in the first heart-
beat, followed by SR images with varying saturation
time in the next 10 heartbeats, resulting in a total of 11
images for fitting T1 (Figure 3) (19). This technique
overcomes a number of the systematic biases present
with MOLLI-based techniques but has a lower signal-
to-noise ratio than MOLLI because it is based on an SR
instead of an inversion recovery.

A number of other saturation-based Ti-mapping
techniques have been described (20,21). An addi-
tional technique, which combines a saturation pulse
followed by a delay and then an inversion pulse
called SAPPHIRE, has also been described; this tech-
nique produces T1 values similar to SASHA but has a
slightly higher precision (22).

GUIDANCE FOR THE IMAGER CONCERNING THE
CLINICAL USE OF T1-MAPPING TECHNIQUES. The
advantages and disadvantages of several T1 mapping
techniques are summarized in Table 1. It is note-
worthy that certain variants of MOLLI may have
considerable heart rate dependence, particularly in
patients with high heart rates and for pre-contrast
(i.e., native) T1 mapping. ShMOLLI, and certain
variants of MOLLI such as 5(4)3, have minimal heart
rate dependence and have been shown to produce
similar T1 estimates in vivo. These techniques tend
to have the highest precision (lowest uncertainty)
but have a tendency to result in measured T1 values
lower than the SR-based techniques. SR-based
techniques such as SASHA have more accurate
measurement of T1 but tend to have lower precision
(more uncertainty). These trends were verified in a
paper directly comparing MOLLI, ShMOLLI, SASHA,
and SAPPHIRE (22).

Some general issues should be considered when
applying Ti-mapping techniques clinically. First,
because the T1 maps rely on anatomy being aligned
between all images, it is important to inspect the raw
T1-weighted images to assess the position of the
heart. If there is significant cardiac or respiratory
motion, it is best to repeat the measurement. Simi-
larly when nonrigid registration is used to correct
respiratory motion, it is important to inspect the
registered Ti-weighted images to confirm that they
are properly aligned. Some of these issues can be
difficult to spot just by looking at the T1 maps, and for
this reason, some software programs provide maps of
“quality of fit” parameters (e.g., R? for the fit). Sec-
ond, it is important to standardize the T1 methodol-
ogy used at each institution and to determine the
range of normal T1 values according to the in-
stitution’s specific sequence parameters. There are a
number of ongoing efforts aimed at standardization
of T1 measurements between sites and vendors. Sig-
nificant changes to the specific parameters of the
SSFP readout module should be avoided because they
can introduce biases to the measured T1 values that
depend on T2, resonance frequency offsets, or
magnetization transfer effects. Thus, caution is war-
ranted when comparing T1 measurements acquired
by using different techniques and/or widely different
parameters.

ECV IMAGING: COMBINING NATIVE AND CONTRAST-
ENHANCED T1 MAPPING. Myocardium can be grossly
divided into 3 compartments: 1) an intracellular
compartment (consisting of myocytes, fibroblasts,
endothelial cells, and smooth muscle cells); 2) an
intravascular compartment (blood); and 3) an inter-
stitial space (the residual space within the myocardium
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once the intracellular and intravascular compartments
are removed). ECV comprises the interstitial and
intravascular spaces, and, in general, it is assumed that
changes in ECV are predominantly driven by changes
in the interstitial volume fraction. A number of disease
processes that affect the myocardium can be under-
stood on the basis of ECV changes.

T1 measurements or mapping has been used to
quantify ECV by combining native and contrast-
enhanced T1 maps of blood and myocardium (Central
Illustration). The change of the T1 relaxation rate (i.e.,
1/T1) in blood between pre- and post-contrast imaging
is converted with the blood hematocritinto a reference
for plasma T1, which serves as reference for the T1
changesin tissue (23). If the change of 1/T1in blood and
tissue is expressed as 4R;, and 4R;;, respectively, ECV
can then be estimated with the formula:

ECV = 1R,

- (1 - Het)

It is important to note that ECV as measured by
pre- and post-contrast T1 imaging is to be interpreted
as a volume fraction, not an absolute measure of the
total ECV. In healthy volunteers, the normal range of
ECV depends on age. In 1 study investigating the
association between age and ECV, it averaged
0.25 + 0.02 in volunteers <40 years of age versus
0.32 £ 0.20 in those >60 years of age (24).

Measuring ECV is particularly valuable in diseases
producing diffuse interstitial remodeling and expan-
sion, such as through diffuse fibrosis in hypertensive
disease, or ECV expansion in remote myocardium
after MI.

APPLICATIONS OF T1-MAPPING
AND ECV QUANTIFICATION

Previous histological studies in humans have
reported a consistent relationship between a variety
of Ti-based indices (native Ti, post-contrast Ti,
and ECV) and the extent of diffuse myocardial
fibrosis, with no significant difference between the
pooled correlation coefficients of the various in-
dices (3,4,25-29) (Table 2).

Due to the rapidly developing nature of the field of
T1 mapping, pathophysiological studies have used
not only a range of Ti-based indices but also a range
of T1-mapping sequences. One important distinction,
however, is that although both ECV and post-contrast
T1 are predominantly reflective of changes in the
extracellular space, the signal for noncontrast T1i
time depends on intracellular as well as extracellular/
interstitial factors. Although this factor is an impor-

tant consideration when comparing findings across
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studies, it also adds to the utility of T1 mapping in
evaluating cardiac pathology, with a number of non-
contrast T1-mapping studies highlighting the role of
myocardial edema in inflammatory conditions of the
myocardium.

ECV, by being defined as a coefficient of R1 changes
in tissue and blood, eliminates some potentially con-
founding effects on post-contrast T1 measurements,
such as variations in clearance of contrast from blood,
differences between contrast agent relaxivity, and
even magnetic field strength. For these reasons, it may
be possible to define a normal range for ECV in healthy
volunteers. Nevertheless, enough time must pass after
a contrast injection to allow the contrast to reach
equilibrium between blood and tissue (5).

AORTIC VALVE DISEASE AND HYPERTENSIVE
HEART DISEASE. One of the first applications of T1
mapping in the heart found that post-contrast T1 was
decreased in patients with chronic aortic regurgita-
tion (30). The shortened post-contrast myocardial T1
in patients was interpreted as a sign of increased up-
take of contrast due to a “diffuse myocardial fibrotic
process.” A later study validated ECV as a surrogate
marker of fibrosis in aortic stenosis by comparing
it with the collagen volume fraction in endomyo-
cardial biopsy samples (3). In patients with severe
aortic stenosis, aortic valve replacement resulted in
regression of left ventricular (LV) hypertrophy but
not ECV (31). Although this outcome would suggest
that the absolute intracellular volume (represented
by the product of [1 — ECV] and LV mass) decreased in
proportion with the regression of LV hypertrophy, it
is unlikely that the decrease of the absolute ECV,
given by ECV x LV mass, reflects a decrease of fibrosis
burden. However, in a separate study (32), blood
pressure reduction after renal denervation was asso-
ciated with a significant reduction in both LV mass
and the T1 partition coefficient, a reasonable surro-
gate of ECV if we assume that the blood hematocrit is
not affected by the treatment; this outcome suggests
that, under some circumstances, T1-based indices
may parallel reverse cardiac remodeling.

In patients suspected of having myocardial fibrosis
secondary to aortic stenosis (results validated by bi-
opsy findings), native T1 was elevated and correlated
with diffuse fibrosis (25) (Figure 4A). Whether the
change in native T1, and more specifically an increase
in native Ti, is a reflection of the myocardial fibrosis
burden, or instead a result of other pathological
features (e.g., edema) that occur in parallel remains
to be ascertained. In this context, it is also useful to
note that any signal from 1H nuclei in the collagen
fibers is beyond the detection limit of most currently



JACC: CARDIOVASCULAR IMAGING, VOL. 9, NO. 1, 2016
JANUARY 2016:67-81

Taylor et al.
T1 Mapping: Basic Techniques and Clinical Applications

75

2.0

I

Z

£

3

o

£

S 15—

<)

>

=

U

o .

E Native T1

— measurements
104 = A S

A(1/T1) [blood]

Longer native T1 -> edema and/or fibrosis

CENTRAL ILLUSTRATION Pre- and Post-Contrast Myocardial T1s

IS Cardiomyocyte
° Mobile water
" Collagen fiber

1) Normal

L | | |

1.0 1.5

Taylor, A.J. et al. J Am Coll Cardiol Img. 2016; 9(1):67-81.

| | I
2.0

1/T1 of Blood (1/s)

native T1 is therefore more widely used to detect edema.

Myocardial T1 mapping is sensitive to changes in tissue structure and composition. The native myocardial T1 (i.e., measured without giving contrast) becomes longer with
an increase of mobile water species, and/or interstitial deposition of collagen, or amyloid protein, as illustrated by the native T1 data points in the lower left corner
of the illustration. If T1 mapping is performed before and after contrast administration, one can relate the changes of 1/T1 in myocardium, to the corresponding

change of 1/T1 in blood to determine the so- called myocardial tissue partition coefficient for an extracellular gadolinium contrast agent. (1/T1 rather than T1 is pro-
portional to contrast concentration.) The partition coefficient corresponds to the slope of the line going through the measured values of 1/T1. The slope increases as a
result of the expansion of the extracellular volume, e.g., as a result of diffuse interstitial fibrosis. The slope generally changes much less as a result of edema, and the

used T1-mapping sequences because of its very short
T2 (<1 ms).

An expansion of the extracellular space in pressure
overload from systemic hypertension has also been
demonstrated in both animal models (33,34) and in
patients (35,36), with changes in ECV mirroring the
degree of LV hypertrophy.

MYOCARDIAL INFARCTION. Native T1 mapping has
been used in the assessment of acute MI on the basis
that interstitial edema (37) is increased at the site of
infarction (Figure 4B). Studies have shown that T1
mapping has the capability to accurately identify
territories of myocardial edema with higher diag-
nostic accuracy than T2-based methods. This

approach has also been used to explore opportunities
to define the at-risk area. Moreover, recent evidence
suggests that the hypointense core in T1 maps of
acute MI correlates with adverse outcomes (38),
similar to what has been observed for microvascular
obstruction detected by LGE imaging.

In chronic infarction, ECV expansion within
the infarct territory has been shown to be due to re-
placement fibrosis in regions once densely populated
with cells and blood vessels (23,39). The traditional
paradigm of ventricular remodeling occurring pre-
dominantly in response to chronic hemodynamic
forces after MI has also been challenged by studies
demonstrating abnormal native and post-contrast
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TABLE 2 Histological Validation of In Vivo Human T1-Mapping Indices of Diffuse Myocardial Fibrosis

Direction of Change Study Population n Histological Sampling IRI Pooled |R| (95% CI)
Native T1 (25) T Aortic stenosis 23 LV biopsy 0.65
Native T1 (80) T Aortic stenosis 20 LV biopsy 0.78 0.72 (0.39-1.00)
Post-contrast T1 (4) 1 Cardiac transplantation 9 RV biopsy 0.70
Post-contrast T1 (78) l HFpEF 9 LV biopsy 0.98
Post-contrast T1 (27) l Cardiomyopathy 47 RV biopsy 0.57
Post-contrast T1 (81) 1 Cardiomyopathy 12 Whole-heart and LV myectomy 0.78
Post-contrast T1 (79) 1 HCM 9 LV myectomy 0.70 0.70 (0.47-0.94)
ECV (3) I Aortic stenosis and HCM 26 LV biopsy and LV myectomy 0.89
ECV (29) 1 Aortic stenosis 18 LV biopsy 0.84
ECV (28) 1 Cardiomyopathy 6 Whole heart 0.95
ECV (82) 1 Aortic stenosis 18 LV biopsy 0.83
ECV (83) T Mixed valvular heart disease 31 LV biopsy 0.78
ECV (84) 1 Cardiomyopathy 28 LV or RV biopsy 0.85 0.85 (0.66-1.00)*

*p = NS for comparison across pooled correlation coefficient (absolute) |R| values.
Cl = confidence interval; ECV = extracellular volume; HCM = hypertrophic cardiomyopathy; HFpEF = heart failure with preserved ejection fraction; LV = left ventricular; RV = right ventricular; T1 = time
constant for recovery of longitudinal magnetization.

myocardial T1 in the myocardium remote from the
area of infarction occurring within days of the MI
(40,41). Importantly, these early remote zone chan-
ges were associated with both acute inflammatory
factors and adverse LV remodeling 6 months post-
MI, suggesting an early remodeling signal that may
be driven, in part, by local/paracrine factors in addi-
tion to longer term hemodynamic load. ECV expan-
sion in remote myocardium within months after MI,
likely from diffuse fibrosis related to remodeling,
has also been demonstrated (39). Moreover, native T1
mapping has been used to characterize chronic MI
(42,43). These studies, performed at 3-T to improve
the low sensitivity of the same approach previously
explored at 1.5-T (44), have shown very good agree-
ment with LGE CMR (Figure 4C).

CARDIOMYOPATHY. Early studies found shortened
post-contrast T1 times in nonischemic cardiomyopa-
thy as well as ischemic cardiomyopathy (4,27), even
when areas of LGE were excluded; these findings
are consistent with data from autopsy studies (45,46).
Subsequently, shortened post-contrast T1 times as
well as increased ECV have been consistently
demonstrated in patients with hypertrophic cardio-
myopathy (HCM) (47,48), which is again reflective of
the myocardial disarray and interstitial fibrosis noted
at autopsy (49). Additional studies have examined
the interaction between genotypic and phenotypic
expression in HCM, with expansion of ECV reported
in patients who are gene-positive but phenotype-
negative for HCM (48). This finding suggests that
subclinical myocardial changes may precede the
progression of HCM in gene-positive patients.
Furthermore, comparison of patients with HCM based
on the presence or absence of a recognized HCM gene

revealed differences between the 2 groups with
respect to the extent of interstitial fibrosis as well as
symptoms of breathlessness (26), underscoring the
heterogeneous nature of this disease.

Several other studies have shown that ECV is
increased in various nonischemic cardiomyopathies
(dilated [5], hypertrophic [3], and restrictive [50])
and diabetes (51) from diffuse fibrosis. One study
in dilated cardiomyopathy (5) showed a strong cor-
relation between resting myocardial perfusion,
normalized by the rate pressure product, and ECV.
Possible reasons for such an association could be
perivascular fibrosis and/or a reduced capillary den-
sity. Importantly, elevated ECV is independently
associated with a higher rate of short-term mortality
(51), with simultaneous adjustment for age, LV ejec-
tion fraction, and MI size. These findings support the
notion that ECV measurement may represent an
important marker for diseased myocardium in car-
diomyopathy and thus serve as a potential focus for
future interventional studies.

Given that abnormalities in T1-mapping indices
suggest subclinical myocardial disease across a range
of conditions, it has been proposed that T1 mapping
could be a useful discriminator between healthy and
diffusely diseased myocardium in more common
forms of cardiomyopathy. When non-contrast T1, post-
contrast T1, and ECV were compared between patients
with cardiomyopathy (HCM or nonischemic cardio-
myopathy) and healthy subjects (52), all Ti-based
indices proved highly accurate; however, the non-
contrast T1 time exhibited the greatest discriminatory
power, with a diagnostic accuracy of 98%.

CARDIAC AMYLOIDOSIS. Cardiac involvement with
both wild-type and mutant transthyretin amyloidosis
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FIGURE 4 Applications of Noncontrast T1 Mapping

A Normal
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(A) Diffuse fibrosis (25): T1 maps from a normal control and diffuse changes in myocardial T1 in a patient with moderate aortic stenosis (AS) and severe AS shown. The
observed global myocardial T1 measurements were: normal control, 944 ms; moderate AS, 951 ms; and severe AS, 1,020 ms. (B) Edema (37): A 46-year-old man
with inferior wall acute myocardial infarction (MI) confirmed by using late gadolinium enhancement (LGE) imaging with a noncontrast T1 map (showing edema in
territories of LGE leading to an increase in native T1 value by ~30% relative to the remote myocardium [1,539 + 132 ms vs. 1,172 & 30 ms]). (C) Replacement fibrosis
(43): LGE images and noncontrast T1 maps at 3-T from a patient with ST-segment elevation myocardial infarction are shown. Ml was identified on both LGE and T1 maps
(processed images using mean + 5 SD criterion). The corresponding bull's-eye plots depicting the size and transmurality of the MI are shown for both LGE and T1. Good
agreement between LGE and T1 maps (for location, spatial extent, and transmurality) was evident. (D) Myocardial inflammation (63): A 51-year-old patient with
myocarditis (on admission with elevated T1) and at 6-month follow-up (with T1 returned to normal values) are shown along with the hematoxylin and eosin (H&E) stain of
endomyocardial biopsy section (on right) with aggregated lymphocytes adherent to cardiomyocytes. (E) Myocardial iron overload (69): healthy (a); and mild, moderate, and
severe (b-d) cases of iron overloading are shown. The extent of iron overloading visualized as decrease in T1 (toward blue color for highest iron overload) is shown.

is associated with an expansion of the extracellular
space due to interstitial deposition of amyloid pro-
tein. T1 mapping and ECV quantification are well
suited to assess myocardial tissue remodeling in
these patients (53-55). Although LGE is a frequent
finding in cardiac amyloidosis, it is mostly diffuse in
appearance, and the CMR investigator is frequently
faced with difficulties in determining an optimal
setting for the T1 weighting to bring out LGE (56). ECV
expansion in cardiac amyloidosis reaches extremely
high values (on the order of 0.5 to 0.6) (53-55). The
myocardial amyloid load also has a relatively strong

effect on native T1 (54), which extends the utility of
T1 mapping to patients with contraindications to
contrast. The usefulness of T1 mapping for assess-
ment of the amyloid burden has prompted its use as a
biomarker in recent therapeutic trials.

Changes in T1 mapping indices are also useful in
the identification of subclinical myocardial involve-
ment in Fabry disease (57), systemic lupus erythe-
matosus (58), rheumatoid arthritis, and systemic
sclerosis (59), in which these indices are suggestive of
subclinical myocardial infiltration, inflammation,
and/or interstitial fibrosis in patients with no overt
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evidence of cardiac disease. Increased ECV has also
been reported in patients exposed to anthracycline-
based chemotherapy (60), implying that subtle
changes in myocardial structure may occur before the
development of systolic dysfunction.

MYOCARDITIS. As discussed earlier, T1 maps have
been shown to be sensitive to myocardial inflamma-
tion. The pattern of T1 enhancements has been used
to identify location and extent of inflammation in
patients with myocarditis (61,62). Results of biopsy
studies have shown that these regions are sites of
active inflammation, with aggregated lymphocytes
adhering to cardiomyocytes (63) (Figure 4D). None-
theless, the source of image contrast remains un-
clear but is likely from edema secondary to
inflammation. Other studies have found evidence of
an association between elevated blood markers of
acute inflammation with a mean native T1 elevation
of ~10 ms in the remote myocardium (41). These
changes were correlated with adverse LV remodel-
ing in the post-MI period; however, the mechanism
of T1 elevation in the remote myocardium has not
been established (64).

IRON STORAGE DISEASE. Although T2* mapping is
the gold standard for detecting chronic (65) or
regional (66) iron deposition, imaging artifacts
from field inhomogeneities remain a key obstacle.
This is especially problematic when T2* mapping
has to be performed with long echo times to increase
the sensitivity for detecting conditions of mild iron
overload. Because iron deposits can impart a para-
magnetic influence on the magnetic resonance
signal, the concentration of iron is typically inversely
related to T1 at sufficiently low concentrations (67).
Recent studies have shown that when the iron
overloading in the heart is mild, T1 mapping can be
used to improve the reproducibility for imaging
chronic iron deposition over T2*-based methods
(68,69), as illustrated in Figure 4E. However, T1-
based methods for imaging iron overloading remain
to be validated (70).

INTERSTITIAL FIBROSIS AND
CARDIAC DYSFUNCTION

A key feature of Ti-mapping research has been
demonstration of the association between abnor-
mal Ti-mapping indices and cardiac dysfunction.
Increased ECV in patients with nonischemic cardio-
myopathy has been correlated with reduced LV ejec-
tion fraction as well as reduced myocardial blood flow
(5). In addition, T1-based indices have been corre-
lated with reduced myocardial systolic strain in
(58),

systemic lupus erythematosus rheumatoid
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arthritis (71), cardiac amyloidosis (54,55,72), HCM
(35), and diabetes (73,74). Furthermore, in patients
with established cardiomyopathy, shortened post-
contrast T1 times (reflective of greater degrees of
interstitial fibrosis) are associated with more severe
grades of diastolic dysfunction (4,27).

Given that heart failure with preserved ejection
fraction (HFpEF) may account for up to 50% of all
cases of heart failure (75), and because limited treat-
ment is available for this condition (76), a greater
understanding of the pathophysiology of HFpEF
obtained through Ti-mapping research has the po-
tential to drive the development of more effective
therapies. Abnormal Ti-based indices have been
correlated with increased ventricular filling pressure
measured noninvasively with echocardiography in a
variety of conditions, including HCM (47,48), cardiac
amyloidosis (72), and in early diabetic cardiomyopa-
thy (74). These observations suggest that diffuse
fibrosis may play an important role in the patho-
physiology of diastolic dysfunction leading to HFpEF,
a notion that is supported by Ti-mapping studies
focusing on this patient group. Increased ECV has
previously been shown to correlate with impaired
diastolic function in patients with HFpEF but not
systolic heart failure (77), suggesting a more pre-
dominant role for interstitial fibrosis in diastolic
dysfunction. In addition, shortened post-contrast T1
times occur in patients with HFpEF (78); these
shortened times were also associated with elevated
pulmonary vascular resistance and reduced right
ventricular function. Importantly, utilizing invasive
pressure volume loop measurement in heart trans-
plant recipients, both post-contrast T1 time and ECV
significantly correlated with the myocardial stiffness
constant B (79), suggesting a mechanistic link be-
tween diffuse myocardial fibrosis and cardiac stiff-
ness, a putative mechanism for diastolic dysfunction
and HFpEF.

CONCLUSIONS

The advent of Ti-mapping techniques has enabled
the noninvasive characterization of the myocardium
to a level that was previously only possible with
invasive procedures such as cardiac biopsy. Myo-
cardial abnormalities, particularly those of the
interstitium, have been identified across a broad
range of cardiac disease and in selected disease
states (e.g., amyloidosis, Fabry disease) T1 mapping
is already proving useful in clinical diagnosis.
Although differences undoubtedly exist between
the various Ti-mapping indices and the CMR se-
quences from which they are derived, we can be
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reassured by the remarkably consistent findings
throughout the literature regardless of the T1 index

Or sequence used.
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