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Abstract

In this paper we are concerned with the fractional-order predator–prey model and the fractional-order
rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are
studied. Numerical solutions of these models are given. An example is given where the equilibrium point is
a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Biology is a rich source for mathematical ideas. We argue that fractional-order differential
equations [18] are, at least, as stable as their integer order counterpart. The relation between
memory and fractional mathematics is pointed out. Then in Sections 2–5 sufficient conditions
for the local asymptotic stability of some biologically inspired, fractional non-autonomous equa-
tions are derived. An example is given whose internal solution is a centre, in the case of integer
order, and numerical solutions indicate that it is stable in the case of fractional order.
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Definition 1. A complex adaptive system consists of inhomogeneous, interacting adaptive agents.

Definition 2. An emergent property of a CAS is a property of the system as a whole which does
not exist at the individual elements (agents) level. Typical examples are the brain, the immune
system, the economy, social systems, ecology, insects swarm, etc.

Therefore to understand a complex system one has to study the system as a whole and not
to decompose it into its constituents. This totalistic approach is against the standard reductionist
one, which tries to decompose any system to its constituents and hopes that by understanding the
elements one can understand the whole system.

Recently [19] it has became apparent that fractional equations solve some of the above men-
tioned problems for the PDE approach. To see this consider the following evolution equation:

df/dt = −λ2

t∫
0

k(t − t ′)f (t ′) dt ′.

If the system has no memory then k(t − t ′) = δ(t − t ′). If the system has an ideal memory
then

k(t − t ′) =
{

1 if t > t ′,
0 if t ′ > t.

Using Laplace transform, L[f ] = 1 if there is no memory and L[f ] = 1/s for perfect memory
hence the case of non-ideal memory is expected to be given by L[f ] = 1/sα , 0 < α < 1. In this
case the above system becomes

df/dt = −λ2

t∫
0

(t − t ′)α−1f (t ′) dt ′,

f (t) = f0Eα+1
(−λ2tα+1),

where Eα(z) = ∑∞
k=0 zk/Γ (αk + 1) is Mittag-Leffler function.

It is also argued that there is a relevance between fractals and fractional differentiation [19].
Moreover since it is known that systems with memory are typically more stable than their mem-
oryless counterpart we expect the following conclusion:

“Fractional order differential equations are, at least, as stable as their integer order counter-
part.”

In the following sections both analytical and numerical results will be given which supports
this conclusion.

Now we give the definition of fractional-order integration and fractional-order differentiation:

Definition 3. The fractional integral of order β ∈ R+ of the function f (t), t > 0, is defined by

Iβf (t) =
t∫
(t − s)β−1

Γ (β)
f (s) ds (1)
0
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and the fractional derivative of order α ∈ (n − 1, n) of f (t), t > 0, is defined by

Dα∗ f (t) = In−αDnf (t), D∗ = d

dt
. (2)

The following properties are some of the main ones of the fractional derivatives and integrals
(see [9–15,17]).

Let β,γ ∈ R+ and α ∈ (0,1). Then

(i) I
β
a :L1 → L1, and if f (x) ∈ L1, then I

γ
a I

β
a f (x) = I

γ+β
a f (x).

(ii) limβ→n I
β
a f (x) = In

a f (x) uniformly on [a, b], n = 1,2,3, . . . , where I 1
a f (x) = ∫ x

a
f (s) ds.

(iii) limβ→0 I
β
a f (x) = f (x) weakly.

(iv) If f (x) is absolutely continuous on [a, b], then limα→1 Dα∗ f (x) = df (x)
dx

.
(v) If f (x) = k �= 0, k is a constant, then Dα∗ k = 0.

The following lemma can be easily proved (see [14]).

Lemma 1. Let β ∈ (0,1) if f ∈ C[0, T ], then Iβf (t)|t=0 = 0.

2. Existence and uniqueness

Consider the fractional-order Lotka–Volterra predator–prey system

Dα∗ x1(t) = x1(t)
(
r − ax1(t) − bx2(t)

)
, t ∈ (0, T ], (3)

Dα∗ x2(t) = x2(t)
(−d + cx1(t)

)
, t ∈ (0, T ], (4)

with the initial values

x1(t)|t=0 = x1(0) and x2(t)|t=0 = x2(0), (5)

where 0 < α � 1, x1 � 0, x2 � 0 are prey and predator densities, respectively, and all constants
r, a, b, c and d are positive.

Lemma 2. The initial value problem (3)–(5) can be written in the form

Dα∗ X(t) = A1X(t) − x1(t)A2X(t), t ∈ (0, T ] and X(0) = X0, (6)

where

X(t) =
[

x1(t)

x2(t)

]
, A1 =

[
r 0

0 −d

]
, A2 =

[
a b

0 −c

]
, and X0 =

[
x1(0)

x2(0)

]
.

Definition 4. Let C∗[0, T ] be the class of continuous column vector X(t) whose compo-
nents x1, x2 ∈ C[0, T ], the class of continuous functions on the interval [0, T ]. The norm of
X ∈ C∗[0, T ] is given by

‖X‖ =
2∑

i=1

sup
t

∣∣xi(t)
∣∣.

Definition 5. By a solution of the initial value problem (6) we mean a column vector
X ∈ C∗[0, T ]. This vector satisfies the system (6).
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Now we have the following existence theorem.

Theorem 1. The initial value problem (6) has a unique solution.

Proof. The proof follows from Theorems 2.1 and 2.2 of [6]. �
3. Equilibrium points and their asymptotic stability

Let α ∈ (0,1] and consider the system

Dα∗ x1(t) = f1(x1, x2),

Dα∗ x2(t) = f2(x1, x2), (7)

with the initial values

x1(0) = x01 and x2(0) = x02. (8)

To evaluate the equilibrium points, let

Dα∗ xi(t) = 0 ⇒ fi

(
x

eq
1 , x

eq
2

) = 0, i = 1,2,

from which we can get the equilibrium points x
eq
1 , x

eq
2 .

To evaluate the asymptotic stability, let

xi(t) = x
eq
i + εi(t),

then

Dα∗
(
x

eq
i + εi

) = fi

(
x

eq
1 + ε1, x

eq
2 + ε2

)
which implies that

Dα∗ εi(t) = fi

(
x

eq
1 + ε1, x

eq
2 + ε2

)
but

fi

(
x

eq
1 + ε1, x

eq
2 + ε2

) 
 fi

(
x

eq
1 , x

eq
2

) + ∂fi

∂x1

∣∣∣∣
eq

ε1 + ∂fi

∂x2

∣∣∣∣
eq

ε2 + · · ·

⇒ fi

(
x

eq
1 + ε1, x

eq
2 + ε2

) 
 ∂fi

∂x1

∣∣∣∣
eq

ε1 + ∂fi

∂x2

∣∣∣∣
eq

ε2,

where fi(x
eq
1 , x

eq
2 ) = 0, then

Dα∗ εi(t) 
 ∂fi

∂x1

∣∣∣∣
eq

ε1 + ∂fi

∂x2

∣∣∣∣
eq

ε2

and we obtain the system

Dα∗ ε = Aε (9)

with the initial values

ε1(0) = x1(0) − x
eq
1 and ε2(0) = x2(0) − x

eq
2 , (10)

where

ε =
[

ε1
]

, A =
[

a11 a12
]

ε2 a21 a22
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and

aij = ∂fi

∂xj

∣∣∣∣
eq

, i, j = 1,2.

We have

B−1AB = C,

where C is a diagonal matrix of A given by

C =
[

λ1 0
0 λ2

]
,

where λ1 and λ2 are the eigenvalues of A and B is the eigenvectors of A, then

AB = BC, A = BCB−1,

which implies that

Dα∗ ε = (
BCB−1)ε, Dα∗

(
B−1ε

) = C
(
B−1ε

)
,

then

Dα∗ η = Cη, η = B−1ε, (11)

where

η =
[

η1

η2

]
,

i.e.

Dα∗ η1 = λ1η1, (12)

Dα∗ η2 = λ2η2, (13)

the solutions of Eqs. (12)–(13) are given by Mittag-Leffler functions (see [10])

η1(t) =
∞∑

n=0

(λ1)
ntnα

Γ (nα + 1)
η1(0) = Eα

(
λ1t

α
)
η1(0), (14)

η2(t) =
∞∑

n=0

(λ2)
ntnα

Γ (nα + 1)
η2(0) = Eα

(
λ2t

α
)
η2(0). (15)

Using the result of Matignon [16] then if∣∣arg(λ1)
∣∣ > απ/2 and

∣∣arg(λ2)
∣∣ > απ/2

then η1(t), η2(t) are decreasing and then ε1(t), ε2(t) are decreasing.
So the equilibrium point (x

eq
1 , x

eq
2 ) is locally asymptotically stable if both the eigenvalues of

the matrix A are negative (|arg(λ1)| > απ/2, |arg(λ2)| > απ/2). This confirms our statement in
Section 1 that fractional-order differential equations are, at least, as stable as their integer order
counterpart.
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4. Fractional-order Lotka–Volterra predator–prey model

Consider the fractional-order Lotka–Volterra predator–prey system

Dα∗ x1(t) = x1(t)
(
r − ax1(t) − bx2(t)

)
, (16)

Dα∗ x2(t) = x2(t)
(−d + cx1(t)

)
. (17)

To evaluate the equilibrium points, let

Dα∗ xi(t) = 0, i = 1,2,

then (x
eq
1 , x

eq
2 ) = (0,0), ( r

a
,0), ( d

c
, cr−ad

cb
), are the equilibrium points.

For (x
eq
1 , x

eq
2 ) = (0,0) we find that

A =
[

r 0
0 −d

]
,

its eigenvalues are

λ1 = r > 0, λ2 = −d < 0.

Hence the equilibrium point (x
eq
1 , x

eq
2 ) = (0,0) is unstable.

For (x
eq
1 , x

eq
2 ) = ( r

a
,0) we find that

A =
[−r − br

a

0 cr
a

− d

]
,

its eigenvalues are

λ1 = −r < 0, λ2 = cr

a
− d < 0 if cr < ad.

Hence the equilibrium point (x
eq
1 , x

eq
2 ) = ( r

a
,0) is locally asymptotically stable if cr < ad .

For (x
eq
1 , x

eq
2 ) = ( d

c
, cr−ad

cb
) we find that

A =
[ − ad

c
− bd

c
cr−ad

b
0

]
,

its eigenvalues are

λ1 = −ad + √
a2d2 − 4cd(cr − ad)

2c
,

λ2 = −ad − √
a2d2 − 4cd(cr − ad)

2c
.

A sufficient condition for the local asymptotic stability of the equilibrium point (x
eq
1 , x

eq
2 ) =

( d
c
, cr−ad

cb
) is |arg(λ1)| > απ/2, |arg(λ2)| > απ/2.

In the special case a = 0 it is known that the internal equilibrium point is a centre (arg(λ1) =
π/2, arg(λ1) = −π/2) for the integer order system (α = 1). In the fractional case 0 < α < 1 the
internal equilibrium point is locally asymptotically stable. The numerical simulations in the next
section will support this result.
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Fig. 1.

Fig. 2.

5. Fractional-order rabies model

In Eqs. (16) and (17) when we take r = 0, a = 0, c = b, we obtain the fractional-order rabies
model

Dα∗ x1(t) = −bx1x2, (18)

Dα∗ x2(t) = bx1x2 − dx2, (19)
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Fig. 3.

Fig. 4.

where 0 < α � 1, x1 � 0, x2 � 0 are healthy and infected foxes, respectively, and all constants
b, d are positive and (x

eq
1 , x

eq
2 ) = (0,0), ( d

b
,0) are the equilibrium points. For (x

eq
1 , x

eq
2 ) = (0,0)

we find that

A =
[

0 0

0 −d

]
,

its eigenvalues are

λ1 = 0, λ2 = −d.



550 E. Ahmed et al. / J. Math. Anal. Appl. 325 (2007) 542–553
Fig. 5.

Fig. 6.

For (x
eq
1 , x

eq
2 ) = ( d

b
,0) we find that

A =
[

0 −d

0 0

]
,

its eigenvalues are

λ1 = 0, λ2 = 0.

Hence the equilibrium is a centre.
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Fig. 7.

Fig. 8.

6. Numerical methods and results

An Adams-type predictor–corrector method has been introduced in [2,3] and investigated
further in [1,4–9,13]. In this paper we use an Adams-type predictor–corrector method for the
numerical solution of fractional integral equation.

The key to the derivation of the method is to replace the original problem (3)–(5) by an
equivalent fractional integral equation

X(t) = X0 + Iα
(
A1X(t) − x1(t)A2X(t)

)
(20)

and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.
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The approximate solutions displayed in Figs. 1–8 for the step size 0.05 and different
0 < α � 1. In Fig. 1 we take b = 1, c = 1, r = 2, d = 3, a = 1, x1(0) = 0.15 and x2(0) = 0.33.
In Fig. 2 we take r = 0, a = 0, b = 1, d = 1, x1(0) = 1 and x2(0) = 2.5. In Figs. 3–8 we take
a = 0, b = 1, c = 1, r = 2, d = 3, x1(0) = 1 and x2(0) = 2. In Figs. 3 and 6 we take α = 1. In
Figs. 4 and 7 we take α = 0.9. In Figs. 5 and 8 we take α = 0.8.

7. Conclusion

Existence and uniqueness of solutions of fractional order systems have been studied. We have
argued that fractional-order differential equations are, at least, as stable as their integer order
counterpart. We studied equilibrium points, existence, uniqueness, stability, numerical solution,
of Lotka–Volterra predator–prey system and used numerical solutions to show that although the
internal solution for integer order case is only a centre, it is stable for its fractional-order coun-
terpart.
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