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Apoptosis of leukocytes: Basic concepts and implications in
uremia. Circulating blood leukocytes have short life expectan-
cies and end their lives by committing programmed cell death
or apoptosis. Apoptosis is an active form of cell death that is
initiated by a number of stimuli and is intricately regulated.
Apoptosis in both excessive and reduced amounts has patho-
logical implications. Evidence suggests that apoptosis may play
arole in the pathophysiology of immune dysfunction in uremia.
Indeed, accelerated programmed cell death has been observed
in lymphocytes, monocytes, and polymorphonuclear leuko-
cytes among patients with chronic renal failure. This may be
due in part to the retention of uremic toxins. The aim of this
article is to review the evidence for accelerated leukocyte apo-
ptosis, key regulatory apoptotic pathways, and the possible
role of this highly organized process in the pathogenesis of
immune dysfunction in uremia.

In the past several decades, apoptosis or programmed
cell death has been the subject of intense investigation
in terms of mechanism, sequence of events, biochemistry,
and morphology {1-4]. In contrast to necrosis or acciden-
tal cell death, apoptosis is a programmed, active, and
highly selective mechanism of cell death, allowing for
the removal of cells that are redundant or excessively
damaged (Fig. 1) [1]. Apoptosis is initiated by a number
of different stimuli, including DNA damage, toxins, or
extracellular signals (Table 1). The typical morphological
changes of programmed cell death include shrinkage of
the cell and the nucleus, condensation and fragmentation
of the nuclear chromatin, loss of the nuclear membrane
integrity, maintenance of plasma membrane integrity de-
spite membrane blebbing (Fig. 2), and segmentation of
the cell into apoptotic bodies that are rapidly ingested
by neighboring phagocytic cells. One of the most specific
features of apoptosis is the regular fragmentation by an
endonuclease of the entire cellular DNA into an oligo-
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nucleosome-length unit of 180 base pairs [5]. Assays
allowing the quantitation of apoptosis include gel elec-
trophoresis of DNA, immunofluorescence microscopy,
and flow cytometry (Fig. 3) [6].

In multicellular organisms, apoptosis is an essential
component of development and cellular regulation. Ab-
normal regulation of apoptosis can lead to disorders such
as cancer, lymphocytes depletion in AIDS, and degener-
ative diseases. Apoptosis in both excessive and reduced
amounts has pathological implications. Consequently,
control of the apoptotic mechanism may have significant
therapeutic implications.

Uremia is associated with alterations in host defense
mechanisms, which increase the risk of infection and
malignancy. The most striking abnormalities occur in
cell-mediated immunity and involve primarily T-lympho-
cytes. These include lymphocytopenia, impaired delayed
skin reactivity, and decreased in vitro lymphocyte prolif-
eration. Alterations in humoral immunity affect B-lym-
phocytes and result in a decrease in immunoglobulin
levels and a depressed antibody response to antigens.
Dysregulated cytokine synthesis [7] and impaired macro-
phage Fc receptor function [8] further impair immune
function in uremic patients. Finally, polymorphonuclear
leukocytes (PMNLs) exhibit impaired chemotaxis, phago-
cytosis, and an abnormal respiratory burst [9].

This review summarizes the evidence published to
date supporting the hypothesis that the state of uremia
is associated with accelerated apoptosis of leukocytes,
which in turn, may contribute in part to cellular malfunc-
tion.

APOPTOTIC PATHWAYS

Regulation of the apoptotic process is complex and
involves several cellular pathways [3]. The Fas (APO-1;
CD95)/Fas ligand (FasL) system and members of the
bcl-2 gene family have emerged as key regulators of the
apoptotic process (Fig. 4). Fas is a widely expressed
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“Signaling events™
Induction DNA damage,
phase lack of survival signals,

death signals

45 kD type I membrane protein member of the tumor
necrosis factor (TNF)/nerve growth factor family of celi
surface molecules. The Fas molecule mediates apoptosis
in susceptible tissues following interaction with its natu-
ral ligand, FasL, a 37 kD type II protein. In contrast to
the tissue distribution of Fas, constitutive expression of
FasL is relatively limited. The biological importance of
the Fas/FasL system has been extensively studied in T
lymphocytes, where this pathway plays a critical role in
the clonal deletion of autoreactive T cells and activation-
induced suicide of T cells. Cytotoxic T cells can deploy
FasL as a death effector molecule in their strategies to
induce killing of Fas-bearing target cells. It has also been
demonstrated that PMNLs coexpress both Fas and FasL
and are more susceptible to Fas-mediated apoptosis
(10, 11}.

The bax and bcl-2 proteins are apoptosis-related mole-
cules that are of major importance as well. These intra-
cellular membrane-bound proteins have opposing ef-
fects, with bcl-2 extending cellular survival and bax
promoting cell death following apoptotic stimuli. The
bcl-2 gene is an oncogene, originally found to be overex-
pressed in human follicular B-cell lymphoma. The bcl-2
protein is a 25 kD integral membrane protein that lies
within the cell rather than on the cell surface. The protein
is associated with mitochondria, smooth endoplasmic re-
ticulum, and perinuclear membrane and plays a central
role in the inhibition of apoptosis. The bax gene encodes

“Pre-apoptosis”
Effector Irreversible
phase commitment
to death
i S
“Apoptosis”
Degradation nucleolysis,
phase chromatinolysis,
proteolysis, cytolysis
Fig. 1. Phases of programmed cell death.
e

a 21 kD protein that has extensive amino acid homology
with bcl-2. The bax protein has been found in the mito-
chondria and perinuclear membranes, suggesting a topo-
graphic resemblance with bcl-2. The balance between
pro-apoptotic and anti-apoptotic molecules, such as bax
and bcl-2, respectively, has been suggested to set the
cellular threshold for death following an apoptotic stimu-
lus [12].

Central elements to various apoptotic stimuli comprise
the caspase cascade. Caspases belong to a family of
cystein proteases (that cleave proteins after an aspartic
acid residue) that includes the interleukin-18—converting
enzyme (ICE). The caspases are probably the most im-
portant effector molecules that induce apoptosis. They
are synthesized as inactive proenzymes and are activated
by autocatalytic cleavage or by other proteases. Caspases
are essential components of a proteolytic cascade that
is triggered in response to a death stimulus and have
roles in both the regulation and execution stages of apo-
ptosis (Fig. 4). For example, in Fas-mediated apoptosis,
caspase-8 has been implicated in upstream signaling
events, while caspase-3 and closely related homologues
appear to be involved in the effector phase of apoptosis.
These molecules are believed to be responsible for cleav-
age of crucial homeostatic (involved in DNA repair)
as well as structural (involved in both cytoskeletal and
nuclear structure) proteins.
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Table 1. Inducers of apoptosis

Triggering factors Examples

Radiation
Reactive oxygen species
Enzymatic damage

DNA and protein damage

Growth factor/cytokine
deprivation Hematopoietic stem cells
Interleukin-3
Granulocyte macrophage colony

stimulating factor (GM-CSF)
Erythropoietin

T lymphocytes
Interleukin-2

Monocytes
Tumor necrosis factor-a
Interleukin-1

Polymorphonuclear leukocytes
Granulocyte colony stimulating

factor {G-CSF)

Eosinophils
Interleukin-5

Endothelial cells
Basic fibroblast growth factor
Integrins
Endothelin-1
Fas-membrane bound Fas ligand

(FasL) interaction
Fas-soluble Fas ligand (sFasL)
interaction

Specific ligand binding

APOPTOSIS OF MONONUCLEAR CELLS
IN UREMIA

Studies have shown that peripheral blood lymphocytes
and monocytes obtained from uremic patients undergo
accelerated apoptosis when cultured in vitro [13, 14].
Indeed, Matsumoto et al have observed increased apo-
ptosis of T lymphocytes from both dialyzed and undia-
lyzed patients with advanced chronic renal failure (CRF)
[13]. Furthermore, in vivo, these T lymphocytes ex-
pressed Fas with higher intensity than control T cells
[13], suggesting that apoptosis may be mediated by the
Fas system. The authors concluded that the lymphopenia
commonly observed in patients with CRF might partly
be due to accelerated apoptosis of T lymphocytes. More
recently, the same authors have shown that yd receptor-
bearing T lymphocytes are deleted from the peripheral
circulation of patients on maintenance hemodialysis
(HD) [15]. These cells are usually increased during the
course of infection with various intracellular pathogens,
such as Mycobacterium tuberculosis and Listeria mono-
cytogenes, and may play a pathogenic role in cellular
responses to such infections. These yd T cells also had
significantly higher levels of Fas expression compared
with cells from healthy individuals. The authors con-
cluded that peripheral deletion of this subset of T lym-
phocytes might be due in part to their increased suscepti-
bility to Fas-mediated apoptosis.

Other studies by Heidenreich et al have demonstrated
enhanced apoptosis of uremic monocytes cultured in
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vitro, and this was accompanied by decreased production
of TNF-a and reduced ability to phagocytose candida
albicans [14]. Furthermore, supplementation of mono-
cytic cultures with exogenous TNF-a decreased apopto-
sis rates, suggesting that inflammatory mediators may
modulate the survival of senescent monocytes [14]. More
recently, we have demonstrated that freshly harvested
peripheral blood mononuclear cells from patients on
maintenance HD exhibit higher apoptotic rates when
compared with healthy individuals (abstract; Balakrish-
nan et al, J Am Soc Nephrol 9:242 A, 1998). This observa-
tion suggests that in vivo, a proportion of circulating
mononuclear cells is apoptotic.

Dialysis membranes can modulate the in vitro fate of
mononuclear cells. Carracedo et al have demonstrated
that upon in vitro exposure to cuprophan (CU) mem-
branes, mononuclear cells undergo accelerated apopto-
sis, which is greatly reduced when cells are pre-exposed
to the Pertussis toxin, a guanyl nucleotide-binding pro-
tein (or G protein) inhibitor {16, 17]. The authors con-
cluded that apoptotic signal transduction might be cou-
pled to G proteins. Unfortunately, the authors failed to
investigate the role of complement activation. In fact,
complement activation and generation of component
C5a may have had a different impact on cell survival;
that is, this activation may counteract the pro-apopto-
genic effect of CU.

APOPTOSIS OF POLYMORPHONUCLEAR
LEUKOCYTES IN UREMIA

Constitutive and inducible apoptosis of PMNLSs

In vivo, PMNLs have the shortest half-life among leu-
kocytes [18], and when cultured in vitro, they rapidly die,
featuring morphological characteristics of programmed
cell death (Fig. 2). This results in the demise of greater
than 50% of a population within 48 hours [3, 10]. In
vivo, mature PMNLs spend approximately 12 hours in
the blood stream, after which time they migrate into
normal tissues or are drawn by chemotactic stimuli to
inflamed tissues. There is compelling evidence to suggest
that once in tissues, PMNLs undergo apoptosis and are
recognized and engulfed by tissue-derived macrophages
[19]. This highly organized process stands in contrast
with accidental cell death or necrosis, where there is a
loss of the cell membrane integrity and efflux of intracel-
lular toxic content into host tissues.

We have previously demonstrated that PMNLs har-
vested from uremic patients and incubated in autologous
plasma or fetal calf serum undergo accelerated apoptosis
when compared with cells harvested from age- and gen-
der-matched healthy volunteers [20]. Similar trends were
also observed among freshly harvested PMNLs from ure-
mic patients versus healthy volunteers (abstract; Bala-
krishnan et al, ibid), as well as among cells harvested
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Fig. 2. Transmission electron microscopy of viable (A) and apoptetic (B) polymorphonuclear leukocytes (PMNLs). The typical features of
apoptosis are seen on the right panel, consisting of chromatin condensation, loss of cytoplasmic processes, and round cell shape.
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Fig. 3. Flow cytometric analysis of programmed cell death using the
nuclear dye propidium iodide (PI). This DNA fluorescence histogram
depicts polymorphonuclear leukocytes undergoing apoptosis. The left
peak consists of hypodiploid apoptotic cells, which segregate from the
right peak that represents diploid surviving cells. x axis = DNA content
(or PI fluorescence); y axis = events (or number of nuclei).

from healthy volunteers and exposed to uremic versus
normal plasma [20]. These data suggest that both consti-
tutive as well as soluble factors are responsible for this
accelerated cell death. However, the triggering factor(s),
mechanisms, and consequences of PMNL. apoptosis in
uremia need to be further delineated.

PMNL apoptosis and cellular malfunction

Polymorphonuclear leukocytes undergoing apoptosis
are dysfunctional [21]. This dysfunctional pattern is simi-
lar to that of uremic PMNLSs, which demonstrate altered
oxidative responses and impaired chemotaxis, aggrega-
tion, and phagocytosis [21]. Therefore, it is possible to
speculate that “uremia-induced” apoptosis may be partly
responsible for the PMNL dysfunction commonly ob-
served in patients with CRF. We have observed that
PMNLs exposed to uremic plasma not only undergo
accelerated apoptosis, but also exhibit a lower ability to
phagocytose bacteria and to produce superoxide in re-
sponse to formyl methionyl-leucyl-phenylalanine (fMLP),
a bacterial wall oligopeptide (Fig. 5) [20]. These data

suggest that soluble factors present in uremic plasma
induce both apoptosis and dysfunction of PMNLs. It
remains to be determined, however, whether PMNL apo-
ptosis is indeed biologically relevant in uremia and
whether apoptosis accounts for the uremic dysfunction
of PMNLs and to what extent. Of note, Shah et al have
suggested that there is a lack of neutrophilia in response
to bacterial infections among patients on maintenance
HD, which may be due to accelerated apoptosis (ab-
stract; Shah et al, J Am Soc Nephrol 10:594A, 1999).

In recent years, a number of uremic toxins that affect
PMNL functions have been identified. These include
parathyroid hormone, p-cresol, polyamines, aminoguani-
dine products, and a series of granulocyte inhibitory pro-
teins, angiogenin, and complement factor D [22, 23].
Some of these molecules have been examined with re-
spect to their apoptosis-inducing potential.

Polyamines are uremic retention solutes that are
generated by intestinal bacteria and include spermine,
spermidine, putrescine, and cadevrine [24, 25]. These
compounds have been shown to inhibit in vitro hemato-
poiesis, possibly by apoptosis, and they may contribute
to the anemia of CRF [26, 27]. Interestingly, these toxins
have also been shown to attenuate PMNL apoptosis [28],
but have no impact on cellular functions [29, 30]. Urea
is generated during amino acid breakdown, but is a weak
uremic toxin. However, it participates in the generation
of cyanide and protein carbamylation. These toxic com-
pounds lead to PMNL dysfunction [31], which may be
due in part to loss of cell viability [32]. In addition, along
with arginine and creatinine, urea participates in the
generation of aminoguanidine compounds, such as hy-
droxyurea, which are toxic to different cell types and may
be apoptogenic. Impaired homocysteine metabolism in
CREF results in hyperhomocysteinemia. This compound
is a pro-oxidant [33] and has been shown to induce apo-
ptosis of leukocyte cell lines [34]. Finally, Cohen et al
have demonstrated that glucose-modified proteins that
were either generated in vitro or isolated from peritoneal
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dialysate effluents also enhance in vitro apoptosis of
PMNLs (abstract; Cohen et al, J Am Soc Nephrol
10:509A,1999). In summary, these data provide evidence
for the retention of apoptogenic molecules in the serum
of patients with CRF. Further studies are needed to
explore the triggering mechanisms and apoptotic signal-
ing pathways.

Modulation of PMNL apoptosis by dialysis
membranes and peritoneal dialysis fluids

The role of soluble factors in regulating PMNL apo-
ptosis is indicated by the observation that the life span
and functional activity of mature PMNLs can be ex-
tended in vitro by incubation with either cytokines [gran-
ulocyte colony-stimulating factor, interleukin-2 (IL-2),
interleukin-18 or TNF-a], glucocorticoids or comple-
ment component CS5a {35-37]. These factors appear to
inhibit apoptosis. In contrast, IL-10, an anti-inflamma-
tory cytokine, promotes PMNL apoptosis [38]. The gen-

eration of complement components and proinflamma-
tory cytokines during dialysis such as C5a, TNF-a, and
IL-1pB varies between different dialysis membranes and
may, therefore, have a different impact on the fate of
circulating PMNLs. We have demonstrated that during
dialysis, the apoptosis-inducing activity of uremic plasma
is modulated by the use of dialyzers with different de-
grees of biocompatibility [39]. Indeed, compared with
PMNLs harvested from healthy volunteers and exposed
to predialysis uremic plasma samples, a significantly
lower proportion of apoptosis was observed in PMNLs
exposed to 15-minute plasma samples obtained from pa-
tients dialyzed with CU, but not with cellulose triacetate
(CTA) or polysulfone (PS) dialyzers (Fig. 6). Further-
more, there was a significant correlation between PMNL
apoptosis and plasma levels of TNF-a and IL-10 [39].
Rosenkranz et al have recently reported on the direct
in vitro impact of CU and PS membranes on PMNL
survival, in the presence of serum (abstract; Rosenkranz
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Fig. 5. Inverse correlation between polymorphonuclear leukocyte
(PMNL) apoptosis and formyl-methionyl-leucyl-phenylalanine (fMLP)-

stimulated superoxide production (r = —0.60, P = 0.04). Data are from -

Cendoroglo et al {20].

et al, J Am Soc Nephrol 10:301A, 1999). Apoptosis was
most prominent in cells incubated with CU. These find-
ings are in agreement with those by Carracedo et al [17].
Although the authors used serum in their experiments,
they failed to investigate the role of complement. It re-
mains to be determined whether in vivo, direct contact
with the dialysis membrane is a stronger determinant of
the fate of PMNLSs than activated soluble factors, which
can result in the generation of pro-apoptogenic and anti-
apoptogenic molecules.

It can be proposed that the apoptosis-inducing activity
of uremic plasma depends on a balance between “death”
and “survival” factors. “Death” factors consist of anti-
inflammatory molecules such as IL.-10 and other yet to be
identified uremic toxin(s). On the other hand, “survival”
factors consist of proinflammatory molecules generated
during dialysis, including C5a, TNF-«, IL-18, and lipo-
polysaccharide, a potential dialysate contamination. The
fact that uremic plasma retains its apoptotic-inducing
potential at the end of dialysis suggests that the apopto-
sis-inducing molecules are not significantly cleared by
dialysis or that their removal may be counterbalanced
by the release of apoptosis-inducing factors as a conse-
quence of blood-membrane interactions [39]. Further-
more, heat inactivation of uremic plasma does not abro-
gate its apoptosis-inducing activity, suggesting that the
apoptosis-inducing factors are heat resistant [20]. Tumor
necrosis factor-a has been variably reported to either
induce, promote, or have no effect on PMNL apoptosis.
In fact, recent studies suggest that TNF-a may have a
pro-apoptotic effect that is concentration dependent, and
which is abolished by TNF-a neutralizing antibodies [40].
In addition, soluble TNF receptors appear to facilitate
TNF-a-induced cell death [40]. It is likely that the large
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Fig. 6. Effect of uremic plasma collected during HD on PMNL apopto-
sis. PMNLs harvested from healthy volunteers were incubated with
uremic plasma collected from patients at 15 minutes of dialysis with
cuprophan (CU; N = 8; (), cellulose triacetate (CTA; N = §; W),
or polysulfone (PS; N = 8; IR) dialyzers. *P < 0.001 compared with
plasma obtained prior to dialysis in the CU group. Data are from Jaber
et al [39].

number of mediators released during dialysis offset the
effects of each other, particularly since soluble TNF re-
ceptors are increased as well in dialysis patients [41]}.
Consequently, taken together, all of these findings pro-
vide more complexity for the interactive effect of these
soluble factors on the fate of PMNLs.

Studies have shown that conventional peritoneal dial-
ysis fluids adversely affect PMNL function. This dysfunc-
tion has been attributed in part to the nonphysiological
components of PD fluids, including lactate [42], osmo-
lality {43], and glucose degradation products (GDPs)
generated using heat sterilization of the dialysate solu-
tions [44]. In an effort to examine the impact of these
solutions on PMNL survival, we have demonstrated that
heat sterilization of high glucose-containing, pH-equili-
brated PD fluids were predominantly associated with
PMNL necrosis, whereas solutions enriched with effec-
tive osmolytes such as mannitol or amino acids resulted
in cell apoptosis [45]. Similar trends have been observed
with monocytes [46]. In summary, the mechanisms in-
volved in PMNL apoptosis induced by various osmolytes
merit further investigation.

Oxidative stress and susceptibility of PMNL
to apoptosis

Superoxide is a free radical that is derived from molec-
ular oxygen by the addition of a single electron [47].
Reactions that produce superoxide biologically occur un-
der a broad spectrum of physiological and pathological
circumstances, including all infectious and inflammatory
diseases, as well as in disease processes that involve ische-
mia and reperfusion. As a component of the bacterial arma-
mentarium, PMNLs possess a reduced nicotinamide ade-
nine dinucleotide phosphate (NAPDH) oxidase that
produces superoxide radical when the cell is activated.
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An electron transfer from NADPH to molecular oxygen
generates superoxide anion, which is rapidly dismutated
through superoxide dismutase (SOD) to form hydrogen
peroxide. Hydrogen peroxide, in turn, reacts with chlo-
ride to generate hypochloric acid. This reaction is pro-
moted by myeloperoxidase (MPO), an enzyme of the
PMNL azurophilic granules, but is of most importance in
the extracellular space, following cellular degranulation.
Hydrogen peroxide is usually detoxified by catalase or
glutathione peroxidase. The direct interaction between
superoxide and hydrogen peroxide can lead to the gener-
ation of highly reactive hydroxyl radicals. This reaction,
however, is very slow as compared with competing reac-
tions such as the spontaneous dismutation of superoxide.
Rather, a metal-ion—dependent pathway, known as the
Haber-Weiss reaction, is responsible for the generation
of hydroxyl radicals. This notorious free radical, in turn,
indiscriminately tears electrons from bystander mole-
cules to make up for this deficiency. Usually, an initial
event generates free radicals, and propagation steps re-
peated many times perpetuate them. This free radical
reaction tends to “snowball” unless held back by antioxi-
dant defenses. The targets of free radicals and ROS in-
clude membrane polyunsaturated fatty acids, lipopro-
teins, proteins, and DNA. Although the consequences
are often subtle, damage to membrane receptor proteins
may later affect cellular regulatory mechanisms such as
signal transduction and cell survival.

Several observations have provided evidence for the
presence of oxidative stress in patients with CRF, partic-
ularly those on HD [48]. It is multifactorial in origin and
is due in part to an increased production of pro-oxidants,
mainly ROS generated by activated PMNLs, and im-
proper antioxidant defense mechanisms. Oxidative stress
plays an important role in the pathogenesis of a variety
of biological processes, including apoptosis. Galli et al
have recently described how abnormal apoptosis of pe-
ripheral blood leukocytes harvested from uremic pa-
tients is associated with oxidative stress, as measured by
intracellular thiol depletion [49]. Studies by Kettritz et
al suggest that superoxide release is required for both
spontaneous and fMLP-mediated PMNL apoptosis [50].
This process is markedly inhibited by reduction of intra-
cellular levels of hydrogen peroxide or hydroxyl radicals,
using catalase or desferroxamine, respectively [51, 52].
It has been speculated that these endogenous oxidative
products may regulate caspase activity, the mechanism
of which remains speculative {53].

Since the mitochondria is the main cellular source of
superoxide and other ROS, it may play a crucial role in
regulating programmed cell death. Indeed, cytochrome
¢, a mitochondrial heme protein that is primarily in-
volved in electron chain transport, can leak out into
the cytosol, where it combines with a putative ICE-like
protease [54]. This complex activates caspase-9, which
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in turn activates caspase-3, the effector death molecule
(Fig. 4) [54]. It remains to be elucidated what factor(s)
results in the breakdown of the outer membrane of mito-
chondria, allowing the release of cytochrome c into the
cytosol. We speculate that superoxide metabolites, in
particular, hydroxyl radicals, result in lipid peroxidation
of the outer membrane of mitochondria, with consequent
increased membrane permeability and leakage of cyto-
chrome c into the cytosol. There is compelling evidence
to suggest that mitochondrial-associated bcl-2 may regu-
late apoptosis, at least in part, by attenuating oxidative
stress or by modulating the caspase cascade. This is sup-
ported by Hockenbery et al, who suggest that bcl-2
blocks lipid membrane peroxidation, and that cells over-
expressing bcl-2 still generate peroxides, but do not dam-
age their cellular constituents including membrane lipids
[55]. This implies that bcl-2 may exert an antioxidant
effect primarily as a free radical scavenger.

Unfortunately, bcl-2 is poorly expressed in mature
PMNLs. Since PMNLSs are a major source of free radi-
cals, the biochemical risk of excessive superoxide pro-
duction and its metabolites at the mitochondrial level
could result in accelerated apoptosis, when left unop-
posed by the antioxidant property of bcl-2. This may be
operating in PMNLs harvested from uremic patients,
where cells have been shown to be primed by the uremic
environment, which results in a basal increased produc-
tion of ROS {56, 57]. Of note, Buemi et al have recently
observed that the bcl-2 protein blood concentration is
reduced in patients undergoing HD [58]. All of these
data implicate oxidative stress as a significant mediator
of apoptosis, particularly in professional phagocytes such
as PMNLs where ROS play a crucial role in the antibac-
terial armamentarium.

CONCLUSION

In summary, dysregulation of apoptosis has clearly
been demonstrated in leukocytes harvested from pa-
tients with CRF. More importantly, this highly selective
form of cell death may play a significant role in the
pathogenesis of immune dysfunction in uremia. Conse-
quently, a better understanding of the mediation of these
events and a better knowledge of the regulatory path-
ways will further our understanding of the pathophysiol-
ogy of the acquired immune deficiency of uremia and
help tailor therapeutic strategies to some of the impor-
tant regulatory mechanisms of apoptosis.
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