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Objective: Macrophages are decisive in the chronic inflammatory processes that drive atherogenesis. The
purpose of this study was to explore the presence and spatial distribution of polarized macrophage
populations in human atherosclerosis.
Methods & results: We used transcriptomics and immunohistochemistry to analyze macrophage subset
dynamics in successive stages of atherogenesis. Developing lesions progressively accumulated both M1
and M2 cells, as was signified by the enhanced expression of associated markers at the transcriptional
and protein level. Histologically, these markers were confined to overlapping, but spatially distinct
CD68" areas of the intima. We subsequently quantified the presence of these markers in relation to
morphological determinants of plaque stability. In line with their pro-inflammatory characteristics, M1
macrophages dominated the rupture-prone shoulder regions of the plaque over M2 polarized cells, while
the fibrous caps of lesions showed no significant differences between subsets. In contrast, vascular
adventitial tissue displayed a pronounced M2 activation profile. As expected, areas of intraplaque
hemorrhage clearly associated with CD163 staining. Rather than being limited to complicated lesions,
this M2 marker was also readily detectable in stable plaques. Finally, foamy macrophages displayed an
ambiguous repertoire that incorporates individual M1 and M2 markers.
Conclusion: M1 and M2 macrophage populations are present throughout atherogenesis. These subsets
display disparity when it comes to their prevalence in morphological compartments of the vessel wall.
Our current findings warrant continued investigation into the functional implications of polarized
macrophage populations in human atherosclerosis.

© 2012 Elsevier Ireland Ltd. Open access under the Elsevier OA license.

1. Introduction

Macrophages are hallmarked by phenotypic heterogeneity and
express a spectrum of activational programs that exist as a function

Atherosclerosis is a chronic inflammatory disorder of the arterial
wall that can give rise to acute atherothrombotic events (e.g.
myocardial infarction, stroke) via plaque rupture or erosion [1].
Hereby, it represents the main cause of cardiovascular morbidity
and mortality [2]. A pivotal step in atherogenesis involves the
subendothelial accumulation of monocyte-derived macrophages at
predisposed sites of endothelial dysfunction and intimal lipopro-
tein retention. In nascent lesions, these cells orchestrate the scav-
enging of lipids and cellular debris, as well as the local
inflammatory equilibrium to ultimately define the likelihood of
plaque complications [3,4].

* Corresponding author. Tel.: +31 20 5666762; fax: +31 20 695119.
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of their immediate surroundings. Amongst a plethora of micro-
environmental signals, certain cytokines and microbial moieties
have been demonstrated in vitro to profoundly skew macrophage
expression patterns and functions [5]. The current paradigm
includes interferon-y (IFNy) and lipopolysaccharide (LPS)-driven
M1 polarization that supports the production of pro-inflammatory
stimuli (e.g. TNF, interleukin (IL)-1f, IL-6, IL-12 and reactive
nitrogen intermediates) and may cause tissue disruption when
sustained; conversely, (IL)-4, IL-13 and IL-10 elicit macrophages
under the M2 moniker that act to restrict these inflammatory
responses through IL-10 secretion and mediate tissue repair and
angiogenesis. Phenotypical distinction between these polarized
macrophages involves differential expression of cell surface
receptors. Among these, CD86, MHC-II and the macrophage
receptor with collagenous structure (MARCO) are typically
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associated with M1 activation, whereas the mannose receptor
(MR), dectin-1 (CLEC7A) and CD163 fit an M2 signature [5,6].

These dissimilarities have permitted the identification of
macrophage subsets in several in vivo settings [7,8]. Indeed, the
presence of M1- and M2-like populations was demonstrated in
experimental and human atherosclerotic disease [9—11], while
additional plaque-specific macrophage phenotypes were adopted
into the existing paradigm only recently [12—14]. Given the con-
trasting properties of pro-inflammatory M1 and anti-inflammatory
M2 macrophages in homeostasis and disease, the balance between
these populations has been deemed crucial in determining plaque
outcome (recently reviewed in Refs. [15,16]).

In the present study, we examined a panel of established
M1- and M2-associated macrophage markers for their presence in
stable and unstable human atherosclerosis and subsequently
assessed their distribution relative to plaque morphology.

2. Methods
2.1. Plaque transcriptomics

Gene expression data were taken from an existing database [17].
Briefly, microarray analysis was performed on RNA from ruptured
and paired stable control segments (n = 22, respectively) from
human endarterectomy specimens that were obtained from the
Maastricht Pathology Tissue Collection (MPTC). All use of tissue and
patient data was in agreement with the “Code for Proper Secondary
Use of Human Tissue in the Netherlands” (http://www.fmwv.nl).
[llumina Human Sentrix-8 V2.0 BeadChip technology was used to
detect differential mRNA expression (see Online Appendix for
details).

2.2. Immunohistochemistry

For the purpose of immunohistochemistry (IHC), additional
human atherosclerotic lesions were again collected from the
Maastricht Pathology Tissue Collection (MPTC). All proceedings
were in agreement with the Dutch Code of Conduct for Observa-
tional Research with Personal Data (2004) and Tissue (2001, www.
fmwv.nl). Plaques were classified according to Virmani by their
appearance on H&E staining [18]. We selected 6 early (intimal
xanthoma, IX), 6 advanced (fibrous cap atheroma, FCA) and 6
hemorrhaged (FCA with intraplaque hemorrhage, IPH) lesions from
18 individuals (mean age 78 years, IQR 70—83 years with no
statistically significant differences between groups; 12 males/6
females), who were referred for surgery or had died (n = 9,
respectively) at Maastricht University Medical Center. Hemor-
rhaged lesions were carotid specimens from surgery, advanced
plaques were post-mortem aortic tissues and early lesions were of
mixed origin.

Immediately after resection, atherosclerotic tissues were
divided into parallel segments of 4 mm. Alternate segments were
designated for histology, fixed overnight in 4% paraformaldehyde
and subsequently embedded in paraffin. For immunostaining,
paraffin sections were deparaffinized before endogenous peroxi-
dase quenching and heat-induced epitope retrieval (HIER, Chem-
Mate citrate buffer for Antigen Retrieval, Dako, Glostrup, DK) or
pepsin treatment. After blocking, slides were incubated with a-
CD68, a-HLA-DP/Q/R (Dako, Glostrup, DK), a-iNOS, a-CD86 (Abcam,
Cambridge, UK), a-MARCO (Hycult Biotechnology, Uden, NL), a-
MRC1 (Sigma—Aldrich, St. Louis, MO), a-CD163 (Novocastra, New-
castle on Tyne, UK) and a-Dectin-1 (R&D, Abingdon, UK). Antibody
binding preceded incubation with appropriate biotinylated
secondary antibodies and alkaline phosphatase for most anti-
bodies. Staining was visualized using the VectaStain® ABC-AP kit

(Vector Labs, Burlingame, CA). Notably, CD68 staining was devel-
oped using horseradish peroxidase and DAB. In all cases, hema-
toxylin was used as a counterstain. Replacement of the primary
antibodies by PBS served as a negative control. Full details
regarding all antibodies and reagents are presented in Table S1.

2.3. Analysis of immunohistochemistry

Immunostainings were assessed semi-quantitatively to reflect
the overall degree of positivity; + indicated slight positivity that
adhered to a disseminated staining pattern, ++ was given to
modest staining with additional focal accumulation, +-++ signified
widespread positivity throughout the intimal space. We scored
individual plaques in a manner proportionate to other slides
stained for that particular antibody, but irrespective of the degree
of staining from other primary antibodies.

Immunohistochemical quantification for CD68, iNOS, CD86,
HLA-DP/Q/R, MARCO, dectin-1, MR and CD163 in plaque shoulders,
fibrous cap and adventitial tissue was performed using Image]
image processing software (NIH, Bethesda, Maryland U.S.A, http://
imagej.nih.gov/ij/). Photomicrographs (100x magnification,
approximately 400 um?) of regions of interest (ROI) were assessed
for the presence of the various markers and reported as the
percentage positive counts out of CD68" cells. For shoulder and
fibrous cap tissue all available ROIs were quantified. If an area
spanned more than one image, values from those images were
averaged and presented as a single measurement. For adventitial
tissue, 3 separate areas encompassing advanced plaques (n = 6)
were counted and averaged to yield one value per lesion. We used
one-way analysis of variance (ANOVA) for statistical comparisons
between multiple groups.

2.4. Spectral imaging

For detection of colocalization, we sequentially combined
a double and a single IHC procedure [19]. Briefly, routine workup
(including HIER) and antibody binding for CD68 and MR were
followed by visualization of AP activity in blue with VectorBlue
(Vector Labs) and HRP activity in brown with enhanced DAB (DAB+,
Dako), respectively. A subsequent HIER step ensured removal of all
previous immunoreagents, but left staining intact. Double-stained
specimens were then incubated with an iNOS primary antibody,
which was enzymatically visualized in red through VectorRed
(Vector Labs). Sections were mounted in VectaMount medium
(Vector Labs) without counterstaining.

Following triple staining of the aforementioned plaque speci-
mens, we used a Nuance VIS-FL Multispectral Imaging System
(Cambridge Research Instrumentation; Woburn, MA) to acquire
spectral data (420—720 nm at 20-nm intervals). The unique spectral
signature of each chromogen determined with Nuance software
v3.0 allowed unmixing of spectral data cubes into fluorescent-like
images that use pseudo-colors to accentuate the distribution of
each staining. Once appropriately superimposed, these images
enabled quantification of pixels showing colocalization vs. singular
CD68™ pixels, rather than cell-based counts.

3. Results

3.1. Ruptured plaque specimens overexpress M1 and M2
macrophage marker genes

To investigate whether M1 and M2 macrophage subsets are
dynamically present in human atherosclerosis, we first assessed
gene expression levels for known polarization markers using an
existing plaque transcriptomics database [17]. We compared data
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taken from ruptured and adjacent stable control segments of 22
endarterectomy specimens, which had been categorized according
to the Virmani classification [18]. Many macrophage-related genes
were highly expressed in ruptured plaque segments, indicating
increased macrophage burden [20] and/or a greater level of cellular
activation in these areas relative to stable cross-sections. However,
decreased lesion stability in these specimens was not associated to
a preferential polarized state, as multiple markers representative of
either M1 or M2 skewing were significantly upregulated in
ruptured plaque sections (Table 1). For M1 activation specifically,
surface receptors such as CD86, HLA-DP/Q/R and MARCO showed
enhanced expression, whereas relevant M2 markers such as DC-
SIGN and PPARYy also displayed increased mRNA levels. Likewise,
CD163 and HO-1, M2 markers regulated by heme-induced oxida-
tive stress, showed remarkable upregulation upon plaque rupture.
Other polarization markers did not show differential expression
(e.g. MR) or were unavailable in this particular dataset (e.g. dectin-
1, iNOS). Thus, the transcriptional profile of M1- and M2-related
genes revealed that both populations exist and likely accumulate
in ruptured plaque segments.

3.2. M1 and M2 macrophages amass in human atherosclerosis with
advancing plaque severity

Next, we examined whether protein expression for M1 and M2
markers would mimic the overall transcriptional pattern. To this
end, we selected human atherosclerotic samples that were defined
as early (intimal xanthoma), advanced (fibrous cap atheroma) or
hemorrhaged (fibrous cap atheroma with intraplaque hemor-
rhage), n = 6 per group. Where both early and advanced stages
represent stable plaque phenotypes, intraplaque hemorrhage is
characteristic of lesional instability [21]. We performed IHC for
several established markers of macrophage polarization on these
plaque cross-sections. Subsequent semi-quantitative analysis
revealed that advancing lesion severity triggers incremental
expression of all investigated markers (Fig. 1, see Fig. S1 for sup-
porting photomicrographs). Thereby, overall protein expression of

Table 1
Differential gene expression for established macrophage polarization markers in
ruptured vs. stable human carotid plaque segments.

Protein Gene Log fold Fold Corrected
symbol change change p-value
ruptured/
stable
M1 Mg markers
TNF TNF Cytokine 0.383 1.30 3.47E-04
IL-1B IL1B Cytokine 0.929 1.90 5.59E-04
IL-6 IL6 Cytokine 0.670 1.59 1.63E-03
IL-12p40 IL12B Cytokine 0.019 1.01 3.12E-01
IL-23 123 Cytokine 0.056 1.04 1.28E-02
MARCO MARCO Surface receptor 1.406 2.65 7.50E-04
MHC-II HLA-DPB1 Surface receptor 0.488 1.40 1.33E-03
CD80 CD80 Surface receptor 0.354 1.28 1.59E-04
CD86 CD86 Surface receptor 0.597 1.51 3.11E-04
iNOS NOS2 Enzyme n/a n/a n/a
M2 Mg markers
IL-1RA ILIRN Cytokine 0.065 1.05 1.58E-01
IL-10 IL10 Cytokine 0.096 1.07 8.57E-05
TGFR TGFB1 Cytokine -0.050 0.97 7.02E-03
MR MRC1 Surface receptor 0.034 1.02 2.31E-01
CD163 cD163 Surface receptor 1.712 3.28 2.46E-05
DC-SIGN  CD209 Surface receptor 0.970 1.96 1.31E-04
Dectin-1 CLEC7A Surface receptor n/a n/a n/a
Arg-1 ARG1 Enzyme n/a n/a n/a
HO-1 HMOX1 Enzyme 3.061 8.35 5.09E-07
PPARY PPARG Transcription factor 1.098 2.14 4.13E-05

polarization markers was in line with the transcriptional signature
outlined above.

Immunostaining for designated macrophage markers was
confined to larger CD68™ (a pan-macrophage marker) parts of the
intima. Areas of tissue expression typically overlapped between
markers, but were ultimately non-identical in appearance (Fig. S1).
Specifically, iNOS, HLA-DP/Q/R and CD86 presented with consider-
able positivity in advanced and hemorrhaged plaques, while LPS-
inducible MARCO expression was less pronounced. Dectin-1
embodied the most widespread M2 marker in these settings.
Although positivity for MR was abundant in unstable lesions,
staining adhered to a disseminated pattern in early and advanced
plaques. Moreover, CD163 staining displayed steady increments
with plaque progression and was typically expressed in hemor-
rhaged plaques (Fig. 1, Fig. S1). Yet even in earlier stages without
indication of lesional bleeding we detected convincing positivity for
this marker (Fig. S2a). Together, our findings provide clear evidence
for the presence of M1 and M2 macrophage subsets in human
atherosclerotic lesions. Importantly, the incremental accumulation
of both these populations corresponded with plaque progression.

3.3. Differential distribution of polarized macrophages within
atherosclerotic lesions links M1 activation to rupture-prone plaque
areas

We subsequently considered the spatial distribution of M1 and
M2 markers in plaques by assessing their affiliation to key
morphological aspects of the atherosclerotic intima known to
influence lesion stability (e.g. plaque shoulders, fibrous cap,
hemorrhage) [4,22]. In appropriate areas, positive cell counts per
marker were expressed as a percentage of CD68™ cells.

Plaque shoulders were defined as area between adjacent normal
intima and the outer edges of the necrotic core. Here, the amount of
iNOS, HLA-DP/Q/R and CD86 positively offset the presence of
dectin-1, MR and CD163™ cells in a statistically significant manner,
whereas the selective induction pattern of MARCO was reflected in
its limited expression (Fig. 2A,B and Fig. S3). Of note, while
macrophages within shoulder regions expressed independent iNOS
or MR positivity, we found negligible colocalization of iNOS and MR
in CD68" macrophages (Fig. 2C and Fig. S4). This upheld the
standing of these macrophages as a genuine M1 population that
exists as the principal subset in the inflammatory plaque shoulder.

Similar analyses for cellular staining in the fibrous cap regions
(i.e. a thin tissue layer covering the necrotic core) failed to show
clear differences in M1 and M2 macrophage numbers. Only iNOS
and HLA-DP/Q/R staining showed an upward trend in comparison
to the other markers (Fig. 2D,E). As expected, the presence of
intraplaque iron deposits (microscopically identifiable as brown
pigmented granules dispersed in the tissue) within hemorrhaged
atherosclerotic plaques coincided with pronounced CD163" stain-
ing (Fig. S2b). Although IPH was not a requirement for the occur-
rence of this marker in plaques, CD163 was the only marker to
consistently display this particular association in our dataset.

Hereby, we demonstrated disparity in the distribution of
polarized macrophage subsets in human atherosclerotic lesions,
notably within its shoulder regions. Since the plaque shoulders are
important predilection sites for plaque rupture, this finding
supports the hypothesis that M1 macrophages mediate deleterious
effects on plaque stability.

3.4. Macrophages situated in the perivascular adventitial tissue
exhibit pronounced M2 activation

The adventitia is home to resident populations of immune cells,
including macrophages [23]. Upon investigation, we observed that
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Fig. 1. M1 and M2 macrophages accumulate incrementally with plaque progression. Semi-quantitative analysis of immunostainings for M1 and M2 markers in early, advanced
(adv.) and hemorrhaged (heme.) human plaques. Scores of 0 to 3+ reflect the degree of intimal positivity. One-way ANOVA was used to test statistical significance. Error bars

indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

adventitial macrophages presented as a loosely disseminated
population that characteristically expressed high levels of MR and
CD163 and to a lesser extent, dectin-1 (Fig. 3A, Fig. S5). These
adventitial M2 macrophages outnumbered their M1 counterparts
by 2—3 fold (Fig. 3B). Thus, adventitial macrophages are selectively
skewed towards an M2 polarized phenotype.

3.5. Foam cells ambiguously express macrophage polarization
markers

Recent studies reported that plaque-associated macrophages
expressing certain M2 markers display altered foam cell formation
[12,24]. We questioned whether the expression of other M1 and M2
macrophage markers would be dissimilar between foamy and non-
foamy plaque-associated macrophages. Indeed, we too observed
that CD68" macrophages with a foamy appearance typically
expressed low levels of MR (Fig. 4) and CD163 (not shown), whereas
non-foamy macrophages often stained positive for these receptors.
By contrast, dectin-1, like MR induced by IL-4, was widely expressed
by lesional foam cells. Additionally, the M1 markers examined here
were characterized by comparable ambiguity (Fig. 4). HLA-DP/Q/R
and iNOS were readily found on foamy macrophages, whereas
staining for MARCO showed little positivity. Overall, these findings
verify and add nuance to earlier reports by demonstrating an
inconsistent M1/M2 expression profile of lesional foam cells.

4. Discussion

In this study, we investigated the presence and spatial distri-
bution of polarized M1 and M2 macrophages in human athero-
sclerotic plaques. We found that gene expression signatures for
both activational states were enhanced in ruptured vs. stable pla-
que segments. Subsequent histopathological analysis revealed that
M1 and M2 macrophages persistently accumulate in plaques with
progressing lesion severity. Pro-atherogenic M1 macrophages sur-
passed their M2 counterparts in a key rupture-prone area of the
intima (i.e. plaque shoulder), but did not display such predomi-
nance in fibrous cap regions. Remarkably, the macrophage content

in the vascular adventitia conformed strongly to an alternative M2
phenotype. Thus, M1 and M2 macrophages both characterize
diverse stages of human plaque development but localize to
distinct morphological features of the lesions.

Monocyte-derived macrophages are instrumental to the athero-
genic process and contribute to its initiation, progression and symp-
tomatology. As plaque development may originate not only from
persistent inflammation, but also from inadequate anti-inflammatory
responses, the macrophage polarization balance holds clear implica-
tions for lesion formation [15,25]. The atherosclerotic plaque provides
a unique environment for intimal macrophages to adopt divergent
activational states. Consequently, their phenotypic heterogeneity in
atherosclerosis was recognized early on [26].

Bouhlel et al. first documented the presence of CD68TMR™
macrophages in human carotid plaques [10]. Notably, this M2
subset was typically situated far from the lipid core and distinct
from CCL2"T M1 macrophages in the lesion. Further reports by the
same group expanded on these observations by identifying MR*
macrophages as resistant to cholesterol loading [24]. Our findings
corroborate that foam cells express low levels of MR, whereas
overall positivity for this marker was increasingly detected with
plaque progression. Complementary to earlier reports that external
differentiation factors can profoundly affect macrophage lipid
handling [11], a recent publication by Finn et al. provided additional
insight into this phenotype by revealing that hemoglobin elicits
CD163*"MR* macrophages that exhibit enhanced reversed choles-
terol transport capabilities [12]. In turn, we observed that lesional
foam cells express an ambivalent repertoire that incorporates some
M1 and M2 markers, while excluding others. This marker promis-
cuity likely originates from the fact that multiple additional triggers
(e.g. heme, oxLDL) interact with plaque macrophages in vivo,
beyond the traditional array of cytokine stimuli. Identifying which
factors can specifically impede foam cell formation could prove
clinically beneficial, provided they are free from harmful properties.

Preceding the findings by Finn et al., Boyle and co-workers re-
ported that CD163 defines a subset of atheroprotective macro-
phages exclusive to hemorrhaged lesions [21]. Here, we indeed find
CD163 is strongly expressed in case of IPH, but can also detect



J.L. Stoger et al. / Atherosclerosis 225 (2012) 461—468 465

m2 | B 100;
C MM
+¢J * * *
g 60' .
(=]
O 40 .
[e]
2 20 éé
o= - - -
& H & 0 N & &
O PO L N 0
T ovf&\ \“vg.&é ©
‘?‘V
c 20,
iNOS - HLA M1 s ”
- E o
b T
o 10
)
s #
2 9 * *
CD86 MARCO B 0 A
' ' > & &
& ¥ &
¢ ®
D M2 | E .
2 8o
3 *
o 60
a
Dectin-1 CD163 :._) 401
P b i T i = o
L P & O M & &
M1 &L E TS
. \3‘9 LR
: D
CD86 MARCO

Fig. 2. M1 macrophages dominate plaque shoulders, but not fibrous caps of human atherosclerotic plaques. Representative photomicrographs showing occurrence (red) of a panel
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Fig. 3. Adventitial macrophage content is profoundly skewed to an M2 phenotype. Representative microscopic images showing M1 (bottom) and M2 (top) macrophages in per-
ivascular tissue (red). CD68 denotes macrophages (brown). Magnification 100x. (A) Quantitative analysis of adventitial tissue revealed an abundance of M2 macrophages over M1

cells. (B) #p < 0.05, *p < 0.001 vs. all investigated M1 markers using one-way ANOVA.

a modest presence in earlier stages of atherosclerosis (i.e. in
absence of hemoglobin). Although in our view this does not negate
CD163’s ability to signify an unstable plaque phenotype [20], these
results contribute to the ongoing debate concerning the function of
CD163" macrophages in in vivo disease models [27].

To our knowledge, we are the first to report a robust M2 pop-
ulation in the adventitia underlying advanced plaques. In mice, the
normal aortic wall houses macrophages as part of a local immune
compartment that considerably expands upon hyperlipidemia [23].
Intriguingly, the inflammatory nature of this influx [28] challenges
the dogma that M2 macrophages are atheroprotective. One could
argue that perivascular M2 macrophages support leukocyte
recruitment by enhancing adventitial and plaque neo-
vascularization [29]. Thus opposing the anti-inflammatory and
profibrotic functions commonly attributed to M2 subsets, this
would advocate a deleterious role for adventitial M2 cells in
atherogenesis. While we lacked appropriate specimens to settle
these matters at present, continued investigation could potentially
draw from other fields of study. Notably, adipose tissue macro-
phages assist healthy metabolism under lean conditions through
their anti-inflammatory M2 properties [30]. Ensuing obesity
however triggers CCL2-dependent recruitment of M1 macrophages
that aggravates metabolic disturbance [7,31]. An analogous
phenotypic switch may occur in the adventitia with changing

plaque morphology; alternatively, a local shift in adventitial
macrophage polarization balance could even precede, rather than
just reflect, disease progression. Thus, our studies set the stage for
more detailed investigation of these fascinating issues.

In this context, the macrophage polarization balance in adipose
tissues creates a platform for cardiovascular and metabolic research
alike. Interesting in this respect is a yet to be explained phenom-
enon termed the ‘obesity paradox’. Whereas obesity augments
mortality risk in the general population, certain subpopulations of
patients with established cardiovascular disease (e.g. coronary
artery disease, heart failure) and disproportionate bodyweight
show improved survival vs. normal weight individuals, irrespective
of health status or gender [32—34]. Although the interdependence
of macrophage and adipocyte function is of major importance to
adipose tissue pathology, ongoing studies have yet to consider the
relation of leukocyte biology with all-cause mortality in overweight
and obese subjects. Doing so will require a multidisciplinary
approach, but may yield considerable insight.

Here, we demonstrated a strong and continued presence of both
M1 and M2 macrophages during human atherosclerotic plaque
development. Markers belonging to either subset were observed in
overlaying, but spatially distinct areas of early and more advanced
atherosclerotic lesions. These findings are unlike macrophage
subset dynamics recently described in a study of murine
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Fig. 4. Lesional foam cells ambiguously express macrophage polarization markers. Representative photomicrographs show ambivalent expression of MARCO, HLA-DP/Q/R (M1) and
MR, dectin-1 (M2) on foamy intimal macrophages (red). CD68 indicates macrophages (brown). Arrows indicate small non-foamy MR* macrophages. Magnification 400x.

atherosclerosis, revealing an initial M2 predominance was ulti-
mately overturned by M1 macrophages with ensuing plaque
growth [9]. In man, we lacked evidence in support of such
a phenotypical switch. Whereas this discrepancy could simply
point out interspecies differences, others have made observations
of M1/M2 co-localization in an elegant murine model of hyperlip-
idemia reversal that closer resemble our data, where changes in the
M1/M2 balance were related to plaque stability [35].

The current paradigm regarding plaque complication incorpo-
rates inflammation as the driving force behind fibrous cap rupture
[4,36]. Cap disruption most often occurs at the plaque shoulders,
where its integrity is degraded by cellular infiltrates consisting of
activated macrophages and other leukocytes [22]. This grants
considerable significance to the distribution of polarized macro-
phage populations within the atherosclerotic lesion, as presented in
this study. Fibrous cap macrophage composition was balanced, with
no distinct differences in M1 and M2 numbers. This observation
could imply that M1-derived deleterious effects are actively coun-
tered by the reparative, pro-fibrotic efforts of a sustained M2 pres-
ence in the fibrous cap. Macrophages residing in the inflammatory
shoulder of the plaque displayed strong and clear-cut M1 polariza-
tion, with only limited amounts of M2 macrophages present. In our
view, this excessive M1 activation fosters sustained inflammation
and disruption of fibrous tissue in an intrinsic weak spot of the

plaque by boosting production of pro-inflammatory cytokines and
tissue-degrading enzymes such as MMPs [37]. Consequently, even
a locally enhanced M1 profile could diminish lesion integrity as
a whole and increase the likelihood of adverse clinical events.
Reinforcing this notion are two recent reports indicating a positive
relation between M1-derived pro-inflammatory cytokines and the
manifestation of cardiovascular symptoms [38,39]. Collectively,
these data therefore strengthen the premise that M1 macrophages
are preferentially linked to plaque progression and subsequent
thromboembolic complications.

4.1. Limitations

From this study it is apparent that each macrophage marker
carries its own distribution pattern. Although this study was per-
formed using several indices for each archetype, we therefore
cannot rule out that other markers might behave dissimilarly to the
ones presented here. Additionally, the relatively small sample size
used in this study may limit the general applicability of our findings.

5. Conclusions

To conclude, we disclose prominent signatures for M1 and M2
polarized macrophages in human atherosclerosis development. As
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M1 macrophages likely increase plaque susceptibility to athero-
thrombosis by virtue of their preferential allocation to plaque
shoulders, our work supports the hypothesis that macrophage
polarization balance is of critical importance to plaque stability.
Novel agents that can either visualize macrophage subsets, or skew
the M1/M2 balance towards a more preferable phenotype promise
to help reduce (residual) cardiovascular risk. Our study may assist
in guiding new avenues for development of such applications in
human atherosclerosis.
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