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Abstract

The n-iterated line graph of a graph G is Ln(G) = L(Ln−1(G)), where L1(G) denotes the
line graph L(G) of G, and Ln−1(G) is assumed to be nonempty. Harary and Nash-Williams
characterized those graphs G for which L(G) is hamiltonian. In this paper, we will give a
characterization of those graphs G for which Ln(G) is hamiltonian, for each n¿ 2: This is not
a simple consequence of Harary and Nash-Williams’ result. As an application, we show two
methods for determining the hamiltonian index of a graph and enhance various results on the
hamiltonian index known earlier.
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1. Introduction

The graphs considered in this paper are @nite undirected graphs and are allowed to
have multiple edges but no loops. We follow the notation of Bondy and Murty [3],
unless otherwise stated.
All results in this paper are related to the well-studied concept of the line graph

operation on graphs. The line graph L(G) of a graph G has E(G) as its vertex set and
two vertices are adjacent in L(G) if and only if they are adjacent as edges in G.
Harary and Nash-Williams characterized those graphs G for which L(G) is

hamiltonian.
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Theorem 1 (Harary and Nash-Williams [11]). Let G be a connected graph with at
least three edges. Then L(G) is hamiltonian if and only if G has a closed trail T
such that each edge of G is incident with at least one vertex of T .

It follows from Theorem 1 that the line graph of a hamiltonian graph is hamiltonian,
while the converse is not true in general. The following corollary is also immediate.

Corollary 2. Let G be a graph with at least 3 edges. If G has a spanning closed
trail, then L(G) is hamiltonian.

Theorem 1 has been used by many authors to investigate the cyclic properties of
line graphs. In fact, the paper [11] in which they presented Theorem 1, has been
cited from the year 1995 to 1998 in at least 12 published papers that are covered by
the CompuMath Citation Index. If one thinks about Theorem 1, Corollary 2, and the
line graph operation more carefully, it becomes natural to believe that for most graphs,
after applying the line graph operation iteratively a @nite number of times, the resulting
graph will become hamiltonian. Two natural questions then can be raised.

(1) For which graphs is this indeed the case?
(2) If this is the case for a graph G; what is the smallest number of iterations that

will yield a hamiltonian graph?

In order to investigate this kind of questions, Chartrand [8] considered the n-iterated
line graph Ln(G) of G and introduced the hamiltonian index of a graph, denoted by
h(G), i.e., the minimum number n such that Ln(G) is hamiltonian. Here the n-iterated
line graph Ln(G) of a graph is de@ned to be L(Ln−1(G)), where L1(G) denotes the
line graph L(G) of G, and Ln−1(G) is assumed to have a nonempty edge set. In fact,
he also gave another proof of Theorem 1. He showed that for any graph G other than
a path, the hamiltonian index of G exists. With the aid of Theorem 1, Chartrand and
Wall [9] determined the hamiltonian index of a tree other than a path, and showed that
if G is connected and has a cycle of length l, then h(G)6|V (G)|−l: They also showed
that h(G)62 for any connected graph G with minimum degree �(G)¿3: Kapoor and
Stewart [12] determined h(G) for a graph G that is homeomorphic to K2; n; for n¿3:
Catlin [6] developed a reduction method to investigate supereulerian graphs, i.e.,

graphs that have a spanning closed trail. For a connected subgraph H of G; let G=H
denote the graph obtained from G by contracting H to a single vertex and deleting any
resulting loops. A graph H is called collapsible if for every even subset S ⊆V (H);
there is a subgraph T of H such that H −E(T ) is connected and the set of odd degree
vertices of T is S:

Theorem 3 (Catlin [6]). Let H be a collapsible subgraph of G: Then G is supereule-
rian if and only if G=H is supereulerian.

After Catlin introduced this reduction method, many results about hamiltonian line
graphs have been derived; for surveys see [5,10]. Zhan [19] used Catlin’s method and
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Theorem 1 to prove that every 7-connected line graph is hamiltonian. An interesting
conjecture related to this result, that was posed by Thomassen [16], is still open and
reads as follows: Every 4-connected line graph is hamiltonian.
Catlin’s reduction method was also used to investigate the hamiltonian index of a

graph. Lai [13] and Catlin et al. [7] used Catlin’s method to give some upper bounds on
h(G) that are related to so-called branches; we will come back to this later. SaraKzin [15]
used Catlin’s method to show that the hamiltonian index of a simple graph G other
than a path, is at most |V (G)|−�(G); where �(G) denotes the maximum degree of G.
Theorem 1 is a good tool for investigating cyclic properties of line graphs. However,

when one uses it to investigate the (hamiltonian) cycles in the n-iterated line graph
of a graph, closed trails in its (n− 1)-iterated line graph should be considered. Since
it is not convenient to examine (n − 1)-iterated line graphs when n¿2; this leads to
a natural question: for any integer n¿2; does there exist a characterization of those
graphs G for which Ln(G) is hamiltonian? This was also mentioned in [4]. The answer
is aLrmative. We will give such a characterization in Section 3. As its application, in
Section 4 we will examine the hamiltonian index of a graph and give two methods
for determining it. One of them resembles Catlin’s reduction method. We also present
some new upper bounds on the hamiltonian index in Section 5. Our results enhance
various results on the hamiltonian index known earlier.

2. More terminology and notation

Throughout the paper we will use the following notation and terminology. The multi-
graph of order 2 with two edges will be called 2-cycle and denoted by C2. Let H be
a subgraph of a graph G=(V; E). Then V (H) and E(H) denote the sets of vertices
and edges of H; respectively, and NE(H) denotes the set of all edges of G that are
incident with vertices of H . If u∈V (H); then EH (u) denotes the set of all edges of
H that are incident with u, and dH (u)= |EH (u)| is the degree of u in H . A graph
H is called a circuit if it is connected and every vertex has an even degree. Note
that by this de@nition (the trivial subgraph induced by) a single vertex is also a
circuit.
De@ne Vi(H)= {v∈V (H): dH (v)= i} and W (H)=V (H)\V2(H). A branch in G is

a nontrivial path with ends in W (G) and with internal vertices, if any, that have degree
2 (and thus are not in W (G)). We denote by B(G) the set of branches of G. De@ne
B1(G)= {b∈B(G): V (b)∩V1(G) 	= ∅}.
The distance dH (G1; G2) between two subgraphs G1 and G2 of H is de@ned to be

min{dH (v1; v2): v1∈V (G1) and v2∈V (G2)}, where dH (v1; v2) denotes the number of
edges of a shortest path between v1 and v2 in H .
Finally, EUk(G) denotes the set of those subgraphs H of a graph G that satisfy the

following conditions:

(I) dH (x)≡ 0 (mod 2) for every x∈V (H);
(II) V0(H)⊆

⋃�(G)
i=3 Vi(G)⊆V (H);

(III) dG(H1; H − H1)6k − 1 for every subgraph H1 of H ;
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(IV) |E(b)|6k + 1 for every branch b∈B(G) with E(b)∩E(H)= ∅;
(V) |E(b)|6k for every branch b∈B1(G).

EUn(G) will play an important role in our main result, which is Theorem 6.

3. Characterization of graphs with iterated line graphs that are hamiltonian

Our aim in this section is to give a characterization of graphs with iterated line
graphs that are hamiltonian. Our main result, Theorem 6, is a direct consequence of
Theorems 4 and 5.
We start with a close relationship between EUk(L(G)) and EUk+1(G); the proof of

which will be postponed.

Theorem 4. Let G be a connected graph and k¿1 be an integer. Then EUk(L(G)) 	= ∅
if and only if EUk+1(G) 	= ∅:

We will use Theorem 1 to characterize graphs with 2-iterated line graphs that are
hamiltonian. The proof of this will also be postponed.

Theorem 5. Let G be a connected graph with at least three edges. Then L2(G) is
hamiltonian if and only if EU2(G) 	= ∅.

Using Theorems 4 and 5, one easily derives the following main result by induction.

Theorem 6. Let G be a connected graph with at least three edges and n¿2: Then
Ln(G) is hamiltonian if and only if EUn(G) 	= ∅:

Comparing Theorem 1 with Theorem 6, one might think that L(G) is hamiltonian if
and only if EU1(G) is nonempty. Unfortunately, this is not true because every subgraph
in EU1(G) should satisfy (II). For example, Fig. 1 shows that w is a vertex of degree 4
but does not belong to the unique circuit C =G0 − w such that NE(C)=E(G0): Hence
EU1(G0) is empty, but L(G0) is hamiltonian, by Theorem 1. The following theorem

is a consequence of Theorem 6.

Theorem 7. For n¿2; Ln(G) is hamiltonian if and only if there exists exactly one
component G1 of G such that EUn(G1) 	= ∅, and any other component of G is a path
of length at most n− 1.

In order to prove Theorems 4 and 5, we @rst present some auxiliary results. We
omit the proof of the following lemma since it is a slight modi@cation of the proof of
Theorem 1 [11]. We @rst introduce a notation related to Lemma 8. For any subgraph C
of L(G), by S(G;C) we denote the collection of circuits H of G, such that L(G[ NE(H)])
contains C, and C contains all elements of E(H). Here and throughout, G[S] denotes
the subgraph of G induced by S; where S ⊆V (G) or S ⊆E(G).
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Fig. 1. A graph G0 with wu; wv; wx; wy∈E(G0):

Lemma 8. A. If C is a cycle of L(G) with |E(C)|¿3, then S(G;C) is nonempty.
B. If G has a circuit H such that NE(H) has at least three edges, then L(G) has a

cycle C with V (C)= NE(H).

The following lemma is known.

Lemma 9 (Beineke [1]). K1:3 is not an induced subgraph of the line graph of any
graph.

Lemma 10. Let b= u1u2 · · · us (s¿3) be a path of G and ei= uiui+1. Then b∈B(G)
if and only if b′= e1e2 · · · es−1∈B(L(G)).

Proof. b= u1u2 · · · us=G[{e1; e2; : : : ; es−1}]∈B(G)⇔ u1; us∈W (G) and dG(ui)= 2 for
i∈{2; 3; : : : ; s − 1}⇔ e1; es−1∈W (L(G)) and dL(G)(ei)= 2 for i∈{2; 3; : : : ; s − 2}
⇔ b′= e1e2 · · · es−1∈B(L(G)):

Lemma 11. Let H be a subgraph of G in EUk(G) with a minimum number of compo-
nents. Then there exist no multiple edges in NE(H1)∩ NE(H2) for any two components
H1 and H2 of H .

Proof. Otherwise there would exist two components H1; H2 of H and edges e1; e2
in NE(H1)∩ NE(H2) with the same set of endvertices. One can easily check that
H ′=H + {e1; e2}∈EUk(G); which is a contradiction because H ′ contains fewer
components than H .

A eulerian subgraph of G is a circuit which contains at least one cycle of length at
least 3.
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Lemma 12. Let G be a connected graph and C be a eulerian subgraph of the line
graph L(G). Then there exists a subgraph H of G with

(1) dH (x)≡ 0 (mod 2) for every x∈V (H);
(2) dG(x)¿3 for every vertex x∈V (G) with dH (x)= 0;
(3) for any two components H 0; H 00 of H , there exists a sequence of components

H 0 =H1; H2; : : : ; Hs=H 00 of H such that dG(Hi; Hi+1)61 for i∈{1; 2; : : : ; s−1};
(4) L(G[ NE(H)]) contains C, and C contains all elements of E(H).

Proof. Since C is a eulerian subgraph of L(G) and L(G) is a simple graph, we can
let C1; C2; : : : ; Cm be the edge-disjoint cycles with C =

⋃m
i=1 Ci.

By Lemma 8A, we can @nd m subgraphs F1; F2; : : : ; Fm of G such that Fi∈S(G;Ci)
for i∈{1; 2; : : : ; m}. Hence, there exist mi edge-disjoint cycles Di;1; Di;2; : : : ; Di;mi (pos-
sibly, for mi=1; Di;1 might be a single vertex) such that Fi=

⋃mi
j=1Di; j. De@ne

H ′=
m⋃
i=1

mi⋃
j=1

Di; j:

For any e∈E(H ′), let

rH ′(e) =

∣∣∣∣∣∣

C′: e∈E(C′) and C′∈

m⋃
i=1

mi⋃
j=1

{Di; j}


∣∣∣∣∣∣ :

We construct a subgraph H of G from H ′ as follows:

V (H)=V (H ′) and E(H)=E(H ′)\{e∈E(H ′): rH ′(e)≡ 0 (mod 2)}:
Next we will prove that H satis@es (1) to (4).
For an x∈V (Di; j); the cycle Di; j is counted exactly twice in

∑
e∈EH′ (x) rH ′(e) which

is therefore an even number. If we denote Ei(x)= {e∈EH ′(x): rH ′(e)≡ i (mod 2)}
(i=0; 1), then∑

e∈EH′ (x)

rH ′(e) =
∑

e∈E0(x)
rH ′(e) +

∑
e∈E1(x)

rH ′(e)

and so
∑

e∈E1(x) rH ′(e) is even, which implies that dH (x)= |E1(x)| is even. Thus (1)
holds.
Obviously dG(w)¿2 for all w∈V (H). If there were a w∈V (H) with dG(w)= 2

and dH (w)= 0, then we would have two cycles D′; D′′ in the set {Di; j} such that
e1; e2∈E(D′)∩E(D′′); where e1; e2 are the two edges incident to w. But then there
would exist two cycles Cp; Cq having the edge e1e2 in common in the line graph
L(G), contrary to the choice of the cycles Ci. This proves (2).
Since H ′=

⋃m
i=1 Fi and Fi∈S(G;Ci); L(G[ NE(H ′)]) contains C =

⋃m
i=1 Ci which con-

tains all elements of E(H ′). However, V (H)=V (H ′) implies that NE(H)= NE(H ′),
hence E(H)⊆V (C)⊆ NE(H) and (4) holds.
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Suppose that H has a subgraph H∗ with dG(H∗; H − H∗)¿2. Then NE(H∗)∩
NE(H − H∗) would be empty and C disconnected. This contradiction shows that (3)
is true for H , too, which completes the proof of Lemma 12.

Now we can present the proofs of Theorems 4 and 5.

Proof of Theorem 4. Supposing that EUk+1(G) 	= ∅, we choose an H ∈EUk+1(G) with
a minimum number of components which we denote by C1; : : : ; Ct .
By Lemma 8B, we can @nd a cycle C′

i of L(G) with V (C
′
i )= NE(Ci)(i=1; : : : ; t).

Hence C′
i is a cycle of L(G) with length at least 3 since H ∈EUk+1(G). Let

H ′=
⋃t
i=1 C

′
i . We will prove that H ′∈EUk(L(G)).

Since
⋃�(G)
i=3 Vi(G)⊆V (H) and V (H ′)=

⋃t
i=1

NE(Ci),

�(L(G))⋃
i=3

Vi(L(G))⊆V (H ′):

Since dG(Ci; Cj)¿1; by Lemma 11, E(C′
i )∩E(C′

j)= ∅ for {i; j}⊆{1; 2; : : : ; t} with
i 	= j; which implies that H ′ satis@es (I).
Obviously H ′ contains no isolated vertex by de@nition of H , hence H ′ satis@es (II).
Take an arbitrary T ⊆ {1; : : : ; t}. By the choice of H , it follows that dG(

⋃
i∈T Ci;

H −⋃i∈T Ci)6k. Let P= xu1 · · · usy be a shortest path from
⋃
i∈T Ci to H −⋃i∈T Ci,

where x∈V (⋃i∈T Ci), y∈V (H − ⋃i∈T Ci) and s6k − 1. Evidently, L(P) is a path
from

⋃
i∈T C

′
i to H

′−⋃i∈T C
′
i with length s, thus dL(G)(

⋃
i∈T C

′
i ; H

′−⋃i∈T C
′
i )6k−1;

which implies that (III) holds for H ′.
Since H satis@es (IV) and (V), using Lemma 10 one can easily check that H ′

satis@es (IV) and (V).
Conversely, suppose EUk(L(G)) 	= ∅. Let H be a subgraph of L(G) in EUk(L(G))

with a minimum number of isolated vertices. Then H contains no isolated vertices.
For, suppose C1 = {e0} is an isolated vertex of H , then by (II), dL(G)(e0)¿3 and by
Lemma 9, there exist e1; e2∈NL(G)(e0) such that e1e2∈E(L(G)). Now we construct a
subgraph H0 of L(G) as follows.

H0 =
{
H + {e0e1; e1e2; e2e0} if e1e2 =∈E(H);
H + {e0e1; e0e2} − {e1e2} if e1e2∈E(H):

Obviously H0∈EUk(L(G)) has fewer isolated vertices than H has, a contradiction.
Let H1; H2; : : : ; Hm be the components of H . Since H ∈EUk(L(G)) and H contains

no isolated vertices, Hi is a eulerian subgraph of L(G) for i∈{1; 2; : : : ; m}. Hence for
any Hi(i∈{1; 2; : : : ; m}), by Lemma 12, there exists a subgraph Ci of G satisfying (1)
to (4). Set

C =

(�(G)⋃
i=3

Vi(G)

)
∪
(

m⋃
i=1

Ci

)
:

We will prove that C∈EUk+1(G).
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Since V (Hi)∩V (Hj)= ∅ for {i; j}⊆{1; 2; : : : ; m} with i 	= j, E(Ci)∩E(Cj)= ∅. It
follows that dC(x)≡ 0 (mod 2) for every x∈V (C); which implies that C satis@es (I).
Since Ci satis@es (2), dG(x)¿3 for every x∈V (C) with dC(x)= 0: Thus (II)
holds.
Since

⋃�(L(G))
i=3 Vi(L(G))⊆V (H), dG(x; G[V (C)\{x}])6k for every vertex x in C

with dC(x)= 0. Take an arbitrary T ⊆ {1; 2; : : : ; m}: By the choice of H , it fol-
lows that dL(G)(

⋃
i∈T Hi; H − ⋃i∈T Hi)6k − 1: Let P= e1e2 · · · es be a shortest path

from
⋃
i∈T Hi to H − ⋃i∈T Hi, where e1∈V (

⋃
i∈T Hi)⊆ NE(

⋃
i∈T Ci) and es∈V (H −⋃

i∈T Hi)⊆ NE(C −⋃i∈T Ci), and s6k. Since et and et+1 are two adjacent edges in G
for each t∈{1; 2; : : : ; s− 1}, it follows that G[{e1; e2; : : : ; es}] is connected. Hence

dG

(⋃
i∈T
Ci; C −

⋃
i∈T
Ci

)
6|E(G[{e1; e2; : : : ; es}])|6s6k;

which implies that C satis@es (III) by Lemma 12.
Since H satis@es (III) to (V), using Lemma 10 one can easily check that C satis@es

(IV) and (V). It follows that C∈EUk+1(G).

Proof of Theorem 5. Supposing that EU2(G) 	= ∅, we choose an H ∈EU2(G) with a
minimum number of components that are denoted by H1; H2; : : : ; Ht .
Since H ∈EU2(G); | NE(Hi)|¿3 for i∈{1; 2; : : : ; t}: Hence, by Lemma 8B, we can @nd

a cycle Ci of L(G) with length at least 3 such that V (Ci)= NE(Hi), for i∈{1; 2; : : : ; t}.
Let

C =
t⋃
i=1

Ci:

By Lemma 11, C1; C2; : : : ; Ct are t edge-disjoint cycles in L(G). Hence C is a subgraph
of L(G) satisfying (I). Since dG(H1; H − H1)61 for any subgraph H1 of H , C is
a connected subgraph of L(G). By Lemma 10 and since H ∈EU2(G), any branch
b∈B(L(G)) with E(b)∩E(C)= ∅ has length at most 2 and any branch in B1(L(G))
has length at most 1. Since H satis@es (II),

�(L(G))⋃
i=3

Vi(L(G))⊆V (C):

Hence NE(C)=E(L(G)) which implies that L2(G) is hamiltonian by Theorem 1.

Conversely, suppose that L2(G) is hamiltonian. By Theorem 1, there exists a circuit
C of L(G) such that E(L(G))= NE(C): Select a C with a maximum number of vertices
of degree at least 3. Then

Claim 1.
⋃�(L(G))
i=3 Vi(L(G))⊆V (C).

Proof. Otherwise let e0∈(
⋃�(L(G))
i=3 Vi(L(G)))\V (C). By Lemma 9, there exist two ver-

tices e1; e2∈NL(G)(e0) such that e1e2∈E(L(G)). Since NE(C)=E(L(G)) and e0 =∈V (C),
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{e1; e2}⊆V (C). Now we construct a subgraph C0 of L(G) as follows,

C0 =
{
C + {e0e1; e0e2} − {e1e2} if e1e2∈E(C);
C + {e0e1; e0e2; e1e2} if e1e2 =∈E(C):

Obviously C0 is a circuit such that E(L(G))= NE(C0), but C0 contradicts the maximality
of C. This completes the proof of Claim 1.

Hence C is a eulerian subgraph of L(G) since L(G) is a simple graph. By Lemma 12,
G has a subgraph H satisfying (1) to (4).

Claim 2. dG(x; H)61 for any x∈ ⋃�(G)
i=3 Vi(G).

Proof. If G is either a star or a cycle, then the conclusion holds. If G is neither a star
nor a cycle, then EG(x)∩ (

⋃�(L(G))
i=3 Vi(L(G))) 	= ∅ for every vertex x in

⋃�(G)
i=3 Vi(G).

Hence by Claim 1 and (4), there exists an edge ex such that

ex∈EG(x)∩
(�(L(G))⋃

i=3

Vi(L(G))

)
⊆V (C)⊆ NE(H):

This implies that ex has an endvertex in H . This completes the proof Claim 2.

We will prove that H ′=H ∪ (⋃�(G)
i=3 Vi(G))∈EU2(G). Claim 2 and property (3) of

H imply that dG(H ′
1 ; H

′ − H ′
1)61 for every subgraph H ′

1 of H ′; thus H ′ satis@es
(III). It follows from Lemma 10 and NE(C)=E(L(G)) that |E(b)|63 for b∈B(G)
with E(b)∩E(H)= ∅ and |E(b)|62 for b∈B1(G). Hence H ′∈EU2(G).

4. Methods for determining the hamiltonian index of a graph

In this section, we will give two methods for determining the hamiltonian index of
a graph.
De@ne

CB(G)= {b∈B(G): any edge of b is a cut edge of G} and

CB1(G)=B1(G):

One can easily see that CB(G)\CB1(G) is the set of bridge-paths of G and CB1(G) is
the set of its end-paths (see [14]).
As in [8], if L0(G) stands for G, then we de@ne the hamiltonian index h(G) of a

graph G to be

h(G)= min{n: Ln(G) is hamiltonian}:
Since the hamiltonian index does not exist for paths and 2-cycles, we will exclude
them in the rest of this section. Thus, G will always stand for a connected graph other
than a path or a 2-cycle in this section.
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4.1. Split blocks of a graph

De@ne k(G)=0 if G is 2-connected; k(G)=1 if G is not 2-connected and CB(G)=∅;
k(G)= max{max{|E(b)| + 1: b∈CB(G)\CB1(G)}; max{|E(b)|: b∈CB1(G)}};
otherwise.
Chartrand and Wall obtained the hamiltonian index of a tree.

Theorem 13 (Chartrand and Wall [9]). Let T be a tree. Then

h(T )= k(T ):

A block of a graph G is a maximal connected subgraph which contains no cut vertex
of itself. A block of G is called an acyclic block if it is a single edge of G and a
cyclic block otherwise. Recently, SaraKzin generalized the above result as follows:

Theorem 14 (SaraKzin [14]). If every cyclic block of G is hamiltonian, then

h(G)= k(G):

In this section, we will characterize those graphs G for which h(G)= k(G). To do
this, for each cyclic block B of G, we construct a split block SB from B as follows:

(a) split each vertex x∈V2(B)∩ (
⋃�(G)
i=3 Vi(G)) into a triangle x1x2x3 in SB;

(b) replace the two edges ux and vx (say) in E(B) by ux1 and vx2 in E(SB):

This construction is illustrated in Fig. 2.
Let G′ denote the resulting graph obtained by performing (a) and (b). De@ne

S(G′)= {F ′⊆G′: F ′ has no vertices of odd degree, and if a triangle created by per-
forming (a) has a vertex in F ′; then all vertices of the triangle are in F ′ and have
degree two in F ′}: Then there exists a one-to-one correspondence / between any sub-
graph F ′ in S(G′) and the subgraph with even degrees, F =/(F ′); of G; which is
obtained by contracting all triangles in F ′ created in step (a).
Let SB1; SB2; : : : ; SBt be all split blocks of G: For two branches b1∈B(G) and

b2∈
⋃t
i=1 B(SBi); we say b1 = b2 if the internal vertices of b1 and b2 coincide, and

if the endvertices either coincide, or the endvertices of b2 belong to triangles obtained
from endvertices of b1 via construction of split blocks.
The following lemma is immediate.

Lemma 15. Let SB1; SB2; : : : ; SBt be all split blocks of G. Then

B(G)\CB(G)=
t⋃
i=1

(B(SBi)\B2(SBi));

where B2(SBi) is the set of branches of SBi of length 2 that are contained in triangles
resulting from the construction of split blocks.

The following lemma is necessary for our proof.
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Fig. 2. Splitting a graph.

Lemma 16. Let G be a graph with h(G)¿2 and let H be a subgraph in EUh(G)(G).
For F⊆H , if p is a path from F to H − F such that |E(p)|¿2 and the internal
vertices of p are not in V (H), then p∈B(G).

Proof. This follows from H satisfying (I), (II) and |E(p)|¿2.

Lemma 17. Let G be a connected graph and let SB1; SB2; : : : ; SBt be all split blocks
of G. Then

h(G)¿max{h(SB1); h(SB2); : : : ; h(SBt); k(G)}:

Proof. Clearly h(G)¿k(G). It remains to prove that h(G)¿h(SBi) for any
i∈{1; 2; : : : ; t}. If h(G)= 0, then G itself is a single block and the lemma follows. If
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h(G)= 1, then k(G)61. Hence the lemma follows from Theorem 1. Next we assume
that h(G)¿2; which implies that there exists a subgraph H in EUh(G)(G) by Theo-
rem 6. Obviously H is a union of subgraphs in diQerent blocks, i.e., H =

⋃t
i=1Hi;

where Hi∈Bi. Let
H ′
i =/

−1(Hi):

We will prove that H ′
i ∈EUh(G)(SBi). Clearly H ′

i satis@es (I) and (II). By
Lemma 15, H ′

i satis@es (IV) and (V). It remains to show that H ′
i satis@es (III), i.e.,

dG(F ′; H ′
i − F ′)6h(G) − 1 for each subgraph F ′⊆H ′

i : If this were not true, there
would exist an H ′

i with a subgraph F
′ such that dG(F ′; H ′

i −F ′)¿h(G)¿2. It follows
from (II) and the de@nition of H ′

i that any shortest path from F ′ to H ′
i − F ′ is in

B(SBi)\B2(SBi). By Lemma 15, p is in B(G)\CB(G). Let F =/(F ′). Since any path
from F ′ to H ′

i − F ′ is also a path from F to Hi − F , p is a shortest such path. Hence
|E(p)|¿h(G). On the other hand, since H ∈EUh(G)(G), |E(p)|6h(G) − 1; which is
a contradiction. This implies that H ′

i satis@es (III) for each i∈{1; 2; : : : ; t}: Therefore
H ′
i ∈EUh(G)(SBi), and it follows that h(SBi)6h(G) by Theorem 6.

Now we can state our main results of this section.

Theorem 18. Let G be a connected graph and let SB1; SB2; : : : ; SBt be all split blocks
of G. Then

h(G)= max{h(SB1); h(SB2); : : : ; h(SBt); k(G)}:

Proof. Let

m(G)= max{h(SB1); h(SB2); : : : ; h(SBt); k(G)}:
By Lemma 17, we only need to prove that h(G)6m(G). If m(G)= 0, which implies
that k(G)= 0, then G has only one split block of itself. Thus the theorem follows. If
m(G)= 1, which implies that k(G)61, then the theorem follows by Theorem 1 and
Lemma 17. So we only need to consider the case that m(G)¿2.
By Theorem 6, for any i∈{1; 2; : : : ; t}, there exists a subgraph H ′

i such that H ′
i ∈

EUm(G)(SBi) and H ′
i contains all vertices in triangles created by performing (a). Since

H ′
i satis@es (I), H

′
i ∈S(G′). Let

H =
t⋃
i=1

/(H ′
i ):

We will prove that H ∈EUm(G)(G): Since E(H ′
i )∩E(H ′

j )= ∅ for {i; j}⊆{1; 2; : : : ; t}
with i 	= j; H satis@es (I). Obviously H satis@es (II). Using Lemma 15, we obtain that
H satis@es (IV) and (V).
It remains to prove that dG(F;H−F)6m(G)−1 for any subgraph F ⊆H . If this were

not the case, then there would exist a subgraph F of H with dG(F;H−F)¿m(G)¿2. It
follows from Lemma 16 and the de@nition of k(G) that any shortest path p of G from
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F to H − F is in B(G)\CB(G). By Lemma 15, p is in
⋃t
i=1 (B(SBi)\B2(SBi)): With-

out loss of generality, we may assume that p is in B(SB1)\B2(SB1). Let H1 =/(H ′
1)

and F ′=/−1(F ∩H1). Since every path from F ′ to H ′
1 − F ′ is also a path from F

to H1 − F , p is a shortest such path. Hence |E(p)|¿m(G). On the other hand, by
H ′
1 ∈EUm(G)(SB1), |E(p)|6m(G) − 1; which is a contradiction. This implies that H

satis@es (III). So H ∈EUm(G)(G); implying that h(G)6m(G) by Theorem 6.

We conclude this section with a characterization of graphs G for which
h(G)= k(G).

Corollary 19. Let G be a connected graph and let SB1; SB2; : : : ; SBt be all the split
blocks of G. Then h(G)= k(G) if and only if h(SBi)6k(G) for i∈{1; 2; : : : ; t}.

Remark. It is not diLcult to determine k(G) of a graph G. By Theorem 18, we can
determine the hamiltonian index of a graph by @rst determining the hamiltonian indices
of its split blocks. Since each split block of a connected graph is 2-connected, we only
need to consider graphs of connectivity at least two.

4.2. The contraction of a graph

Catlin [6] developed a reduction method for determining whether a graph G has a
spanning circuit. Using this reduction method and Theorem 1, several authors obtained
good bounds for h(G) (see [7,10,13,15]). Here we give a similar reduction method for
determining h(G) of graphs G with h(G)¿4.
For {b1; b2; : : : ; bm}⊆B(G) with |E(bi)|¿2 for each i∈{1; 2; : : : ; m}, the contraction

of G is de@ned to be a graph, denoted by G=={b1; b2; : : : ; bm}, which is obtained from
G by contracting an edge of bi, i.e., replacing bi by a new branch of length |E(bi)|−1,
for each i∈{1; 2; : : : ; m}.

Theorem 20. Let G be a connected graph and let b1; b2; : : : ; bm be all branches of
length at least 2 in G. If h(G)¿4, then

(∗) h(G)= h(G=={b1; b2; : : : ; bm}) + 1:

Proof. Let G′=G=={b1; b2; : : : ; bm}. Clearly h(G′)6h(G), by Theorem 6. If h(G′)61,
then there exists a connected subgraph H ′ in which every vertex has even degree such
that E(G′)= NE(H ′), by Theorem 1. Let b′1; b

′
2; : : : ; b

′
m be the branches of G

′ correspond-
ing to the branches b1; b2; : : : ; bm, respectively. Let H ′′ be the subgraph of G obtained
from H ′ by replacing b′1; b

′
2; : : : ; b

′
m by b1; b2; : : : ; bm, respectively. By H we denote the

subgraph with

V (H)=V (H ′′)∪
(�(G)⋃

i=3

Vi(G)

)
and E(H)=E(H ′′):

One can easily check that H ∈EU3(G). Hence h(G)63 by Theorem 6, a contradic-
tion implying that h(G′)¿2. It follows from Theorem 6 and h(G)¿h(G′)¿2 that
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EUh(G)(G) 	= ∅ and EUh(G′)(G′) 	= ∅. Take any subgraph H ∈EUh(G)(G) and let H ′ be
the subgraph of G′ corresponding to H . It follows from Lemma 16 and the de@ni-
tion of G′ that H ′∈EUh(G)−1(G′): Hence h(G′)6h(G) − 1 by Theorem 6. Similarly,
take any subgraph H ′∈EUh(G′)(G′) and let H be the subgraph of G corresponding to
H ′: It follows from Lemma 16 and the de@nition of G′ that H ∈EUh(G′)+1(G). Hence
h(G)6h(G′) + 1 by Theorem 6. Thus (∗) is true.

Remark. The condition in Theorem 20 is best possible in the following sense: there
exists a family of graphs with hamiltonian index 3 for which (∗) does not hold. Let
C = u1u2 · · · u3s · · · ut be a cycle of length at least t; t¿3s+1¿13; and let w; v1; v2; v3 be
four vertices not belonging to C. Let G0 be the graph with V (G0)=V (C)∪{w; v1; v2; v3}
and E(G0)=E(C)∪{wv1; v1us; wv2; v2u2s; wv3; v3u3s}. One can easily check that
h(G0)= 3 but that its contraction has hamiltonian index 1, which implies that (∗)
does not necessarily hold for a graph with hamiltonian index 3.

The complexity of determining the hamiltonian index (not exceeding 1) of a graph is
NP-complete [2]. So far, we do not know how diLcult it is to determine the hamiltonian
index (exceeding 1) of a graph. However we conjecture that this is polynomial. By
Theorem 20, we only need to consider the complexity of determining whether the
hamiltonian index is 2 or 3.

5. Upper bounds for the hamiltonian index of a graph

In this section, we will give some upper bounds on the hamiltonian index of a graph.
For every connected graph G with �(G)¿3; de@ne

B0(G)= {b∈B(G): G[V (b)] is a cycle of G}

and

k = max{|E(b)|: b∈B(G)\B0(G)}:

Now for each b∈B0(G); denote by C(b) the cycle induced by V (b): We take a sub-
graph H of G with

V (H)=


 ⋃
b∈B0(G)

V (b)


 ∪

(�(G)⋃
i=3

Vi(G)

)

and

E(H)=
⋃

b∈B0(G)
(E(b)\{e: |{b: e∈C(b)}|≡ 0 (mod 2)}):

It is easily seen that H ∈EUk+1(G). Hence we obtain the next result.
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Theorem 21. Let G be a connected graph that is not a path. Then

h(G)6max{|E(b)|: b∈B(G)\B0(G)}+ 1:

In order to show that the upper bound in Theorem 21 is sharp, we construct a graph
G0 as follows: Let p be a path of length k; k¿1; and let C1; C2 be two cycles. G0

is obtained by identifying the two end-vertices of p with two vertices of C1 and C2;
respectively. By Theorem 6, Lk+1(G0) is hamiltonian but Lk(G0) is not.
We will present some corollaries of Theorem 21. Corollary 22 is in fact stronger

than the result in [13].

Corollary 22. Let G be a simple connected graph that is not a path. Then

h(G)6max{|E(b)|: b∈B(G)\B0(G)}+ 1:

Corollary 23 (Chartrand and Wall [9]). If G is a connected graph such that �(G)¿3,
then

h(G)62:

Next, we give a simple proof of the following known result.

Theorem 24 (SaraKzin [15]). If G is a connected simple graph with �(G)¿3, then

h(G)6|V (G)| − �(G):

Proof. Let w be a vertex of G with dG(w)=�(G).
First we de@ne H ′ as follows:

V (H ′)=
�(G)⋃
i=3

Vi(G)

and

E(H ′)= ∅:

Now let H =H ′ ∪H ′′; where H ′′ is a maximal circuit of G through w (i.e., there is
no circuit K such that K 	=H ′′ and K contains H ′′):
Since G is a connected simple graph, it follows that H ∈EU|V (G)|−�(G)(G). Hence

by Theorem 6, h(G)6|V (G)| − �(G).

Note that the graph in Theorem 24 must be simple, which is not mentioned in [15].
Recently, with regard to Theorem 6, the @rst author [17] has proved that the hamiltonian
index h(G) of a graph G is less than the diameter of G; i.e., max{dG(u; v): u; v∈V (G)};
which improves the bound in Theorem 24 because d(G)− 16|V (G)| − �(G) [18].
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