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SUMMARY

The circadian clock programs daily rhythms
and coordinates multiple behavioral and physi-
ological processes, including activity, sleep,
feeding, and fuel homeostasis. Recent studies
indicate that genetic alteration in the core mo-
lecular clock machinery can have pronounced
effects on both peripheral and central meta-
bolic regulatory signals. Many metabolic sys-
tems also cycle and may in turn affect function
of clock genes and circadian systems. How-
ever, little is known about how alterations in
energy balance affect the clock. Here we show
that a high-fat diet in mice leads to changes in
the period of the locomotor activity rhythm
and alterations in the expression and cycling
of canonical circadian clock genes, nuclear
receptors that regulate clock transcription
factors, and clock-controlled genes involved
in fuel utilization in the hypothalamus, liver,
and adipose tissue. These results indicate that
consumption of a high-calorie diet alters the
function of the mammalian circadian clock.

INTRODUCTION

An important component of nutrient homeostasis in many

terrestrial vertebrates is the coordination of daily rhythms

in rest and activity, feeding behavior, energy utilization,

and energy storage across the daily 24 hr light/dark (LD)

cycle. The molecular machinery underlying the generation

of circadian rhythms involves a transcriptional/transla-

tional feedback loop that is now recognized to cycle in

the suprachiasmatic nucleus (SCN) of the hypothalamus,

as well as in most of the cells of the body (Kohsaka and

Bass, 2007). While the SCN coordinates the timing of

behavioral processes, recent molecular analyses have un-
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covered 24 hr variation in the expression of RNAs encod-

ing genes involved in lipogenesis, lipid catabolism, sterol

metabolism, and gluconeogenesis (Oishi et al., 2003;

Yang et al., 2006; Zvonic et al., 2006; Panda et al.,

2002). These findings suggest that the capacity of cells

to engage in energy utilization and/or storage may be

closely tied to the periodicity of RNA transcription pro-

grammed by the circadian clock.

We and others have recently uncovered a link between

the molecular circadian clock and metabolism by demon-

strating that Clock mutant mice exhibit hyperphagia, obe-

sity, and hyperleptinemia (Turek et al., 2005; Oishi et al.,

2006a). While the effects of the molecular circadian clock

on metabolic processes have now been well documented,

much less is known about how metabolic processes may

alter the circadian clock. Previous studies have demon-

strated that changes in cellular redox potential may affect

the activity of clock transcription factors (Rutter et al.,

2001). Furthermore, several metabolic transcription fac-

tors have been shown to bind to the promoters of Clock

and Bmal1, a gene encoding the partner of CLOCK. For

example, Bmal1 transcription is inhibited by REV-ERBa,

a transcription factor regulated by adipogenesis (Preitner

et al., 2002; Chawla and Lazar, 1993), and activated by

RORa, a nuclear receptor involved in both lipogenesis

and lipid storage (Sato et al., 2004; Lau et al., 2004). Links

between nutrient status and circadian transcription path-

ways are also likely strain-, gender-, and age-specific

(Yanagihara et al., 2006). Here, we sought to examine

whether diet-induced obesity per se might lead to altered

circadian behavioral and molecular rhythms in postpuber-

tal C57BL/6J male mice.

RESULTS

To test the hypothesis that changes in metabolic state as-

sociated with obesity and diabetes affect circadian

rhythms of behavior and physiology, we examined the ef-

fect of a high-calorie diet in mice on patterns of activity,

feeding, and hormone production and the cycling of clock

genes and their downstream clock-controlled targets.
vier Inc.

https://core.ac.uk/display/82612054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j-bass@northwestern.edu


Cell Metabolism

Impact of Diet on Molecular Clock and Metabolism
Figure 1. High-Fat Diet Lengthens the

Free-Running Period in Mice

(A and B) Four representative locomotor activ-

ity records from mice fed regular chow (RC) (A)

or a high-fat (HF) diet (B). Activity counts are in-

dicated by the vertical black marks in the activ-

ity record. The records are double plotted so

that each day’s record is presented both to

the right of and beneath that of the previous

day. Mice were maintained on a 12:12 light/

dark (LD) cycle (white and black horizontal

bars above the records) for the first 7 days

and then transferred to constant darkness

(DD) on the day indicated by a horizontal line

at the right margin. Fourteen days after the on-

set of DD, one group of mice was maintained

on RC, whereas the other group was switched

to a HF diet.

(C) Weekly comparison of the free-running pe-

riod in mice fed RC (black bars, n = 12) and

a HF diet (gray bars, n = 10). Note that week

0 represents the second week of DD, when

all animals were still receiving RC. Results are

expressed as means ± SEM (*p < 0.05).

(D) Distribution of the free-running period dur-

ing week 6 in individual animals on RC and

HF diets.
High-Fat Diet Lengthens Circadian Period
Mice fed a regular chow (RC) diet were maintained on

a 12:12 LD cycle for 1 week before being transferred to

constant darkness (DD) for 2 weeks (Figure 1). RC-fed

mice showed a characteristic free-running rhythm of activ-

ity of �23.6 hr (Figures 1A and 1C), whereas mice

switched to a high-fat (HF) chow showed an increase in

the free-running period as early as 1 week following the

start of the calorie-dense chow (Figures 1B and 1C).

This effect persisted throughout weeks 2–6 on the diet

(Figures 1B and 1C) and was consistent across individual

animals (Figure 1D). Neither the amplitude of the circadian

rhythm nor the overall activity counts differed between the

RC-fed and HF-fed groups (see Figures S1A and S1B in

the Supplemental Data available with this article online).

Interestingly, whereas period lengthening occurred after

just 1 week on the HF diet, differences in mean body

weight did not occur until the third week of HF feeding;

thus, the increase in period length was independent of
Cell M
body weight (Figure S1C). Furthermore, there was no sig-

nificant correlation between body weight change and pe-

riod change for any week of the study comparing RC-fed

and HF-fed groups (Pearson correlation; data not shown).

High-Fat Diet Attenuates the Diurnal Pattern
of Feeding Behavior
We next examined the effect of a HF diet on the diurnal

rhythm of food intake and locomotor activity in animals un-

der entrained 12:12 LD conditions. Following acclimation

to food- and activity-monitoring cages for 3 weeks, half

of the animals were switched to a HF diet, while the other

half remained on RC for 6 weeks. As expected, the RC-fed

animals exhibited a robust diurnal rhythm of food intake

and locomotor activity throughout the entire experiment,

with most activity and feeding (�80%) occurring during

the dark period (Figure 2).

Even though the HF-fed mice exhibited an overall diur-

nal rhythm in feeding, attenuation in the rhythm of this
etabolism 6, 414–421, November 2007 ª2007 Elsevier Inc. 415
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Figure 2. High-Fat Diet Attenuates

Diurnal Rhythms of Feeding and Loco-

motor Activity in Mice

(A and B) Locomotor (A) and feeding (B) activ-

ities were recorded simultaneously in 6 min in-

crements in each animal. Two representative

animals from the RC-fed (left column) and

HF-fed (right column) groups are shown. All an-

imals were fed RC for the first 21 days and were

then either maintained on RC or switched to

a HF diet starting on the day indicated by a

horizontal line at the right margin. All animals

were maintained on a 12:12 LD cycle and

were provided food and water ad libitum.

(C and D) Weekly comparisons were made for

the diurnal rhythm (% of total activity occurring

in the light period) of locomotor activity (C) and

feeding behavior (D) in mice fed either RC

(black bars, n = 6) or HF diet (gray bars, n = 7).

Note that week 0 represents days 15–21 on

RC and was used as the baseline measure-

ment for each group. Results are expressed

as means ± SEM (*p < 0.05).
behavior was observed (Figures 2B and 2D). As early as

the first week on the HF diet, mice consumed a higher per-

centage of daily food intake during the rest (light) period

(Figure 2D). The altered diurnal rhythm of food intake in

HF-fed mice was due to an increase in the amount (in

grams) of food consumed in the light period and a de-

crease in the dark period (Figure S2A). Interestingly, the

change in feeding rhythm in HF-fed mice occurred well

before the onset of significant weight gain (Figures S2A

and S2C).

In parallel with the changes in feeding behavior, HF-fed

animals had a dampened diurnal rhythm of locomotor ac-

tivity compared to RC-fed animals (Figure 2C). While not

statistically significant at any given week, the HF-fed

group consistently showed a higher percent of total activ-

ity during the light period (Figure 2C). With respect to
416 Cell Metabolism 6, 414–421, November 2007 ª2007 Elsevi
absolute activity levels, a reduction in total activity counts

first appeared during the dark period on the third week of

HF feeding, whereas no absolute difference in activity was

observed during the light period between HF-fed and RC-

fed groups (Figure S2B). It is also interesting that the re-

duction in overall activity counts observed in the HF-fed

mice was selective for LD conditions since we observed

equivalent levels of activity and preserved amplitude in ac-

tivity rhythms between RC-fed and HF-fed mice under DD

conditions (Figures S1A and S1B).

Effect of High-Fat Diet on Expression of Core
Clock Genes
To test the hypothesis that a HF diet affects clock

gene expression, we analyzed the diurnal expression of

transcripts encoding CLOCK, BMAL1, and PER2 in the
er Inc.
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Figure 3. High-Fat Diet Attenuates

Amplitude of Clock Gene Expression

Transcripts of the core circadian clock genes

Clock, Bmal1, and Per2 in the mediobasal hy-

pothalamus, fat, and liver were analyzed by

real-time PCR. Tissues were harvested every

4 hr from mice fed either RC (black lines) or

HF diet (gray dotted lines) for 6 weeks; values

are displayed as relative abundance (mean ±

SEM) after normalization to Gapdh (*p < 0.05

between groups at each time point).
mediobasal hypothalamus (MBH), fat, and liver after 6

weeks on RC or HF diet in a cohort of mice independent

from those represented in Figure 1 and Figure 2. Clock

RNA expression lacked a diurnal rhythm in the MBH (Fig-

ure 3), consistent with previous findings in other CNS

regions, including the SCN (Shearman et al., 2000). How-

ever, in both RC-fed and HF-fed groups, there was clear

cycling of both Bmal1 and Per2 RNAs in the MBH, and

the HF diet did not affect expression or rhythmicity of

these core clock genes.

In contrast to the MBH, diurnal rhythmicity in Clock gene

expression was observed in both fat and liver in the RC-fed

mice (Figure 3). In response to HF diet, the amplitude of

Clock rhythm in fat tissue was severely attenuated, with

a smaller effect in liver. In both fat and liver, the amplitude

of Bmal1 expression was reduced in both the light and dark

periods, whereas Per2 expression was decreased selec-

tively during the dark period. Collectively, these findings

reveal that HF diet generates both tissue- and gene-spe-

cific changes in expression levels of circadian clock genes.

High-Fat Diet Alters Circadian Regulation
of Humoral and CNS Metabolic Systems
We analyzed the effects of HF diet on the 24 hr profiles of

leptin, glucose, insulin, free fatty acids (FFA), and cortico-

sterone (Figure 4A). All five of these metabolic parameters

were altered in animals on the HF diet. In particular,

changes included (1) increased levels of leptin and glu-

cose during both the light and dark periods, (2) increased

insulin and FFA levels during the dark period, and (3) de-

creased amplitude of the corticosterone rhythm. Interest-

ingly, each marker displayed changes not only in absolute

expression but also in the temporal pattern of expression.

We also examined the effects of a HF diet on the 24 hr

expression profiles of RNAs encoding the primary orexi-
Cell M
genic and anorexigenic neuropeptides within the MBH

(Figure 4B). As anticipated under diet-induced obesity

conditions, the overall levels of transcripts encoding

AGRP and NPY were reduced (Chavez et al., 1998),

whereas RNAs encoding POMC and CART were in-

creased. Interestingly, we also observed a dampened

diurnal rhythm in Orx gene expression in HF-fed animals

due to decreased Orx levels toward the end of the light

period in anticipation of the onset of activity.

High-Fat Diet Impairs Circadian Regulation
of Nuclear Receptor Networks
To further explore the impact of HF feeding on the tempo-

ral regulation of transcription networks, we also studied 24

hr patterns of the expression of nuclear hormone recep-

tors (NRs) that control the expression and function of

core clock genes (Figure 4C) (McNamara et al., 2001;

Sato et al., 2004; Canaple et al., 2006; Fontaine et al.,

2003). In RC-fed mice, levels of Rev-erba displayed diur-

nal variation in both fat and liver, with a peak during the

light period and low levels throughout the dark period

(Figure 4C). Similar time-dependent cycling was observed

for levels of Rora, Rxra, Ppara, and Pparg in both fat and

liver in RC-fed mice, although the patterns of expression

were different between the two tissues (Figure 4C).

In fat tissue, levels of expression of Rora, Rxra, and

Pparg were decreased in HF-fed compared to RC-fed

mice, resulting in attenuated diurnal variation in each of

these transcripts (Figure 4C, left panel). Interestingly, re-

duced levels of expression of the lipogenic NRs Rxra

and Pparg during the dark period (Figure 4C) corre-

sponded with the observed increase in circulating levels

of FFA during the dark period (Figure 4A). The diurnal

rhythm of Rev-erba was largely preserved after HF

feeding; however, expression levels were reduced in the
etabolism 6, 414–421, November 2007 ª2007 Elsevier Inc. 417
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Figure 4. High-Fat Diet Alters Diurnal Patterns of Metabolic Markers and Transcription Networks

Mice were maintained on a 12:12 LD cycle and fed either RC (black lines) or HF diet (gray dotted lines) ad libitum for 6 weeks (n = 6–8 per group per

time point).

(A) Diurnal variation in serum leptin, glucose, insulin, free fatty acid (FFA), and corticosterone levels.

(B) Mediobasal hypothalamus sections were used to measure the mRNA expression levels of orexigenic (Agrp and Npy) and anorexigenic (Pomc and

Cart) neuropeptides, as well as orexin (Orx) transcript levels.

(C) The diurnal distribution of various circadian clock gene-regulating nuclear receptors (NRs; Rev-erba, Rora, Rxra, Ppara, and Pparg) was measured

in fat and liver.

(D) Transcripts involved in lipid metabolism (Srebp-1c, Acc, Fas, and Fabp) were measured in fat and liver.

Results are expressed as means ± SEM (*p < 0.05).
middle of the light period. The HF diet led to a variable pat-

tern of Ppara expression across the LD cycle, and there

was a significant increase above RC levels at the begin-

ning of the light period. HF-fed mice also displayed an in-

crease in the hepatic expression of Rora, Rxra, Ppara, and

Pparg across multiple time points in both the light and

dark periods (Figure 4C, right panel). Elevation of Rora,

Rxra, Ppara, and Pparg during the light period also corre-

sponded with increased activity and feeding during this

time period in HF-fed mice.

We also examined the expression of RNAs controlling

downstream metabolic pathways that are known to cycle

within adipose tissue and liver (Figure 4D; Figure S3)

(Brewer et al., 2005; Yang et al., 2006; Horton et al.,
418 Cell Metabolism 6, 414–421, November 2007 ª2007 Elsevi
2002). In fat tissue from RC-fed mice, Srebp-1c RNA

levels displayed a diurnal rhythm of expression with

a peak in the first part of the dark period. Similar patterns

were observed for the downstream lipogenic genes Acc,

Fas, and Fabp4 (fatty acid binding protein 4) (Figure 4D,

left panels). In contrast, in fat tissue from HF-fed mice,

the nighttime peak in Srebp-1c was decreased, and there

was no longer a diurnal pattern in its expression (Fig-

ure 4D). Although there was not a significant difference

in the expression of Acc and Fas in HF-fed mice, Fabp4

levels were decreased at the beginning of the light and

dark periods (Figure 4D).

In the liver of HF-fed mice, we observed several

changes in the diurnal pattern of expression of lipogenic
er Inc.
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genes, including a shift in the peak of Srebp-1c from the

dark period to the light period and an increase in Acc,

Fas, and Fabp1 at virtually all times during the day and

night (Figure 4D, right panels). In addition, we found that

levels of Lxra, Lxrb, and Rara, three cycling NRs involved

in regulation of hepatic carbohydrate and lipid turnover

(Kalaany and Mangelsdorf, 2006), were significantly

higher across the entire LD cycle in liver, but not fat, of

HF-fed animals (Figure S3).

Analysis of RNA expression of both clock-interacting

nuclear receptors (Figure 4C) and downstream metabolic

pathway regulators (Figure 4D) also revealed changes in

the synchronization of gene expression in liver and fat fol-

lowing HF feeding. For example, in RC-fed mice, we found

that levels of Pparg, Srebp-1c, Acc, and Fas each peaked

at the same time of day in both fat and liver (Figures 4C

and 4D). However, in HF-fed animals, expression of

each of these factors was no longer synchronous in liver

and fat.

DISCUSSION

Interrelationship between Nutritional Status
and Circadian Synchrony
Our observation that HF diet alters the period of the central

clock under free-running unentrained conditions indicates

that changes in energy homeostasis must either directly

or indirectly affect the molecular machinery of the clock.

Importantly, we did not find a correlation between the

change in body weight and change in period length in in-

dividual animals, indicating that the circadian effect was

not simply due to body mass. Mice fed a HF diet con-

sumed more food during the light period and less food

during the dark period, resulting in an attenuated diurnal

rhythm of food intake. It is intriguing that the extra calorie

intake on the HF diet occurred exclusively during the light

period, a time when mice normally eat very little. Disorga-

nization in the feeding rhythm may contribute to alter-

ations in body weight regulation under high-calorie con-

ditions. Indeed, other studies have demonstrated that

genetically obese animals exhibit attenuated diurnal feed-

ing rhythms and that, if food availability is restricted to the

dark period, these animals gain less weight despite eating

the same amount of food (Masaki et al., 2004). In our

HF-fed mice, the diurnal rhythm in locomotor activity was

dampened, but this was much less pronounced than for

feeding. The increase in food intake during the light period

was not accompanied by increased activity (or activity-

related energy expenditure). It should be noted that the

effects of the HF diet on circadian clock gene expression

may be gender-specific since recent studies in female

mice have not demonstrated the same magnitude of

effects on clock gene expression (Yanagihara et al., 2006).

Impact of Nutrient Excess on Circadian Synchrony
of Clock Output Pathways
Our results corroborate several observations of nuclear

receptor cycling in liver versus fat (Yang et al., 2006) and

provide additional evidence that metabolic cycles affect
Cell Me
diurnal cycles. A corollary of these findings is that not

only do conditions commonly associated with diabetes

and obesity result in altered rhythms of metabolic path-

ways, dysregulation of metabolism in turn leads to alter-

ations in circadian cycles. For example, in RC-fed mice,

we observed 24 hr oscillations in fat of two sterol-sensing

NRs (Rora and Rxra) that interact with Bmal1, whereas in

HF-fed mice, the circadian variation of Rora and Rxra was

reduced in fat. Of note, we also observed that selective

loss of the positive regulator Rora in fat was in the same

direction as the observed decrease in Bmal1 expression

(Figure 3 and Figure 4C). It is striking that the direction of

change in NR receptor expression in HF-fed animals dif-

fered in liver and fat tissue. For example, whereas we

found that hepatic expression of Srebp-1c was shifted

to an earlier time of day in liver, we found that Srebp-1c

was markedly decreased during the nighttime in fat. An

intriguing question is whether more frequent sampling

would reveal effects on circadian phase for both clock

genes and clock-controlled genes (e.g., those suggested

by the subtle shift in Srebp-1c gene expression in Fig-

ure 4D in the liver of HF-fed mice compared to RC-fed

mice).

It is possible that local physiologic factors within each

tissue may influence the cycling and expression of RNAs

encoding both the core clock components and nuclear

receptors involved in regulation of clock gene expression.

Of note, work by McKnight and colleagues (Rutter et al.,

2001) has suggested that the redox state itself may act

as a nutrient sensor and may link cell metabolism with

the transcriptional activity of CLOCK and its homolog

NPAS2.

Circadian Gene Function in Metabolic
Homeostasis
Genetic models have also indicated a close association

between the molecular events underlying metabolism

and those involved in the generation of circadian rhythms.

For example, animals with mutations in the Clock gene be-

come overweight on a HF diet and have features associ-

ated with insulin resistance at the level of fat on the

C57BL/6J background (Turek et al., 2005). Furthermore,

the Clock mutation introgressed onto C57BL/6J ob/ob

mice also results in exaggerated adiposity (Oishi et al.,

2006b). On the ICR background, the Clock gene mutation

disrupts lipid absorption and, as a consequence, attenu-

ates the diet-induced obesity observed in the C57BL/6J

background (Oishi et al., 2006a). Clock genes have been

further associated with the pathophysiology of the meta-

bolic syndrome since deficiency of Bmal1 impairs adipo-

genesis (Shimba et al., 2005; Wang et al., 2006). Ablation

of Bmal1 also leads to arrhythmicity, myopathy, arthropa-

thy, and altered hepatic carbohydrate metabolism

(Bunger et al., 2005; Kondratov et al., 2006; Rudic et al.,

2004). Thus, CLOCK, BMAL1, and other core clock tran-

scription factors function within both brain and peripheral

tissues to affect metabolic physiology. While these results

indicate that mutations in factors involved in circadian

control increase susceptibility to metabolic disease, the
tabolism 6, 414–421, November 2007 ª2007 Elsevier Inc. 419
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results of the present studies using diet-induced obesity

suggest that nutrient state affects the control of the

molecular circadian clock. Detailed analysis of temporal

changes induced by nutrient excess may provide insight

into the onset and progression of disorders such as

obesity, diabetes, and sleep and circadian disruption.

EXPERIMENTAL PROCEDURES

Animals

Male C57BL/6J mice were purchased from the Jackson Laboratory

and maintained at the Center for Comparative Medicine at Northwest-

ern University. All animal care and use procedures were in accordance

with guidelines of the Northwestern University Institutional Animal Care

and Use Committee.

Behavioral Analyses

Three-week-old mice were placed in standard mouse cages equipped

with infrared sensors to detect locomotor activity. For the first week of

activity recording, mice were maintained on a 12:12 LD cycle and fed

regular chow (RC; 16% kcal from fat, 27% kcal from protein, and 57%

kcal from carbohydrate; 7012, Harlan Teklad) diet. Starting at 4 weeks

of age, animals were maintained in constant darkness (DD) for 2 weeks

and then fed either RC (n = 12) or a high-fat (HF; 45% kcal from fat,

20% kcal from protein, and 35% kcal from carbohydrate; D12451, Re-

search Diets, Inc.; n = 10) diet for 6 weeks. The free-running period was

calculated as the duration of time between the major activity periods

on consecutive days. The amplitude of the locomotor activity rhythm

was determined by fast Fourier transformation (FFT) analysis. Total ac-

tivity counts were quantified as the total number of infrared sensor

beam breaks (The Chronobiology Kit, Stanford Software Systems).

For analyses under entrained 12:12 LD conditions, 3-week-old mice

were placed in combined feeding and activity monitors, provided

regular chow ad libitum for 3 weeks, and then fed either RC (n = 6)

or HF (n = 7) diet for 6 weeks. Food intake (Feed-Scale, Columbus

Instruments) and locomotor activity were continuously monitored

throughout the experiment.

Tissue and Blood Collection and Serum Analysis

All mice were maintained on a 12:12 LD cycle with free access to RC

diet and water and were provided at 6 weeks of age with either RC

or HF diet for 6 additional weeks. Mice were then sacrificed at 4 hr

intervals across the LD cycle to obtain tissue (mediobasal hypothala-

mus, liver, and epididymal fat) and blood samples as previously

described (Turek et al., 2005). Serum insulin and leptin levels were de-

termined by ELISA (Crystal Chem Inc.), and glucose (Analox Instru-

ments USA), free fatty acid (Wako NEFA C microtiter procedure),

and corticosterone (MP Biomedicals, LLC) levels were determined

according to the manufacturers’ instructions.

RNA Extraction and Quantitative Real-Time PCR

Total RNA was extracted from frozen tissue with TRI Reagent (Molec-

ular Research Center, Inc.), and real-time PCR was performed and

analyzed using an Applied Biosystems 7900HT Fast Real-Time PCR

System with 13 SYBR green master mix (Applied Biosystems) and

1 mM primers (see sequences in Table S1). PCR conditions were

10 min at 95�C followed by 35 cycles of 10 s at 95�C, 15 s at 60�C. Rel-

ative expression levels were determined using the comparative CT

method to normalize target gene mRNA to Gapdh.

Statistical Analysis

All results are expressed as means ± SEM. Data were analyzed by

unpaired two-tailed Student’s t test (body weight and behavioral

data) or two-way analysis of variance (ANOVA) (time of day 3 diet) fol-

lowed by Scheffe’s post hoc tests (time course data of transcripts and

serum metabolic parameters). p < 0.05 was considered to be statisti-

cally significant.
420 Cell Metabolism 6, 414–421, November 2007 ª2007 Elsevi
Supplemental Data

Supplemental Data include three figures and one table and can be

found with this article online at http://www.cellmetabolism.org/cgi/

content/full/6/5/414/DC1/.
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