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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. For a given nonlinear operator A : C — H, we
consider the following variational inequality problem of finding x* € C such that

(AX*,x —x*) >0, VxeC. (1.1)

The set of solutions of the variational inequality (1.1) is denoted by VI(A, C). Variational inequality theory has emerged as an
important tool in studying a wide class of obstacle, unilateral, free, moving, equilibrium problems arising in several branches
of pure and applied sciences in a unified and general framework. The variational inequality problem has been extensively
studied in the literature. See, e.g. [1-7] and the references therein. For finding an element of Fix(S) N VI(A, C) under the
assumption that a set C C H is closed and convex, a mapping S of C into itself is nonexpansive and a mapping A of C into H
is a-inverse strongly monotone, Takahashi and Toyoda [8] introduced the following iterative scheme:

Xnt1 = opXp + (1 — an)SPc (X — ApAXy), Vn >0,

where P¢ is the metric projection of H onto C, xo = x € C, {ay} is a sequence in (0, 1), and {A,} is a sequence in (0, 2).
They showed that, if Fix(S) N VI(A, C) is nonempty, then the sequence {x,} converges weakly to some z € Fix(S) N VI(A, C).
Recently, Nadezhkina and Takahashi [9] and Zeng and Yao [10] proposed some so-called extragradient method motivated
by the idea of Korpelevich [11] for finding a common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of a variational inequality problem. Further, these iterative methods are extended in [12] to develop a new
iterative method for finding elements in Fix(S) N VI(A, C).
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Let A, B : C — H be two mappings. Now we concern the following problem of finding (x*, y*) € C x C such that

* ko gk g
{(My +x -y, x—x") >0, VxeC, (1.2)

(UBx* +y* —x",x—y*) >0, VxeC(C,

which is called a general system of variational inequalities where A > 0 and © > 0 are two constants. The set of solutions
of (1.2) is denoted by GSVI(A, B, C). In particular, if A = B, then problem (1.2) reduces to finding (x*, y*) € C x C such that

* Kk o
{(AAy +x -y, x—x)>0, VxeC, (13)

(MAX" +y* —x*,x—y*) >0, VxeC,
which is defined by Verma [13] (see also [14]) and is called the new system of variational inequalities. Further, if we add up
the requirement that x* = y*, then problem (1.3) reduces to the classical variational inequality problem (1.1). For solving
problem (1.2), recently, Ceng et al. [15] introduced and studied a relaxed extragradient method. It is clear that their results
unified and extended many results in the literature.

Motivated and inspired by the above works, in this paper, we introduce an iterative method based on the extragradient
method for finding a common element of the set of a general system of variational inequalities and the set of fixed points
of a strictly pseudocontractive mapping in a real Hilbert space. Furthermore, we prove that the studied iterative method
strongly converges to a common element of the set of a general system of variational inequalities and the set of fixed points
of a strictly pseudocontractive mapping under some mild conditions imposed on algorithm parameters.

2. Preliminaries
In this section, we collect some notations and lemmas. Let C be a nonempty closed convex subset of a real Hilbert space
H.Recall that a mapping A : C — H is called a-inverse strongly monotone if there exists a real number « > 0 such that
(Ax — Ay, x —y) > a|Ax — Ay|?>, Vx,y€C.
A mapping S : C — C is said to be a strictly pseudo-contractive if there exists a constant 0 < k < 1 such that
ISx = SylI* < llx = yII* + kIl (I = S)x — (I = S)yl*, Vx,y €C. (2.1)

For such case, we also say that S is a k-strict pseudo-contraction. It is clear that, in a real Hilbert space H, (2.1) is equivalent
to the following

1-k
(Sx =Sy, x —y) < llx = ylI* — — =5 —d —SI?, vxyec. (2.2)

From [16], we know that if S is a k-strictly pseudocontractive mapping, then S satisfies Lipschitz condition ||Sx — Sy|| <

%Hx — y|l forall x,y € C.We use Fix(S) to denote the set of fixed points of S. It is well-known that the class of strict

pseudo-contractions strictly includes the class of nonexpansive mappings which are mappings S : C — C such that
ISx — Syll < llx —yll, Vx,y € C. Amapping Q : C — C is called contraction if there exists a constant p € [0, 1) such
that ||Qx — Qy|| < pllx — y| forallx,y € C.

For every point x € H, there exists a unique nearest point in C, denoted by Pcx such that

Ix—Pexll < llx—yll, VyeC.
The mapping P is called the metric projection of H onto C. It is well known that P is a nonexpansive mapping and satisfies
(x =y, Pcx — Pcy) = |Pex — Peyl®,  Vx,y € H.
It is known that Pcx is characterized by the following property:
(x —Pcx,y —Pcx) <0, VxeH,yeC. (2.3)
In order to prove our main results in the next section, we need the following lemmas.
Lemma 2.1 ([15]). For given x*, y* € C, (x*, y*) is a solution of problem (1.2) if and only if x* is a fixed point of the mapping
G : C — C defined by
G(x) = Pc[Pc(x — uBx) — AAPc(x — uBx)], VxeC,

where y* = Pc(x* — uBx™).
In particular, if the mappings A, B : C — H are a-inverse strongly monotone and B-inverse strongly monotone, respectively,
then the mapping G is nonexpansive provided A € (0, 2«) and u € (0, 28).

Throughout this paper, the set of fixed points of the mapping G is denoted by I".
Lemma 2.2 ([17]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {8,} be a sequence in [0, 1] with

0 < liminf,_ o By < limsup,_, o Bn < 1.Suppose x,+1 = (1 — Bn)yn + Bnxn for all integers n > 0 and lim sup,,_, o (|Yn+1 —
Yall = IXnt1 — Xgll) < 0. Then, limy_, o [|yn — Xall = 0.
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Lemma 2.3 ([17]). Let C be a closed convex subset of a real Hilbert space H and let T : C — C be a k-strictly pseudo-contractive
mapping. Then, the mapping I — T is demiclosed. That is, if {x,} is a sequence in C such that x, — x* weakly and (I — T)x,, — y
strongly, then (I — T)x* = y.

Lemma 2.4 ([18]). Assume {a,} is a sequence of nonnegative real numbers such that a,.1 < (1 — y,)a, + 8, where {y,} is a
sequence in (0, 1) and {,} is a sequence such that

(@) 2ol ¥ = 00;
(b) lim Sup,,_, oo 8n/¥n <001 Y oo |8n] < 00.

Then limy,_, o0 G, = 0.
3. Main results

Now we state and prove our main results.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S : C — C be a k-strictly pseudocontractive
mapping. Let y and & be two nonnegative real numbers. Assume (y + 8)k < y. Then

lyx—=y) +36Sx =Wl = (¥ +dllx—yll, Vx,yeC.
Proof. From (2.1) and (2.2), we have
lly (x =) +8Sx = SyII> = y?Ix = ylI* + 82ISx = Syl|* + 2y §(Sx — Sy, x — y)
Y2Ix = yI? + 82Lx = yI? + kI = S)x — (I = S)yl*]
21—k 2
+2y5 | lIx—yl° — TII(I = S)x— T =Syl

= (y +8)lx—ylI* + 8[(y + Ok — y1IId — S)x — (I — S)yll®
< (y +8)*Ix —yll*,

IA

which implies that

ly—=y)+3Cx =W = +dlx—yll. O (3.1)

Theorem 3.2. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let the mappings A,B : C — H be
a-inverse strongly monotone and S-inverse strongly monotone, respectively. Let S : C — C be a k-strictly pseudocontractive
mapping such that 2 := Fix(S) N I" # . Let Q : C — C be a p-contraction with p € [0, 1). For given xo € C arbitrarily, let
the sequences {x,}, {y,} and {z,} be generated iteratively by

zn = Pc(xn — Bxn),
Yn = anQxy + (1 — ap)Pc(zq — AAzy), (32)
Xnt1 = BnXn + VaPc(zn — AAzy) + 8nSyn, VN =0,

where 1 € (0, 2a), u € (0, 2p) and {an}, {Br}, {va}, {n} are four sequences in [0, 1] such that:

(i) Bn+ vn + 80 = Tand (yn + 8n)k < ya < (1= 2p)8y foralln > 0;
(ii) limy_ o a0y = 0 and ano oy = 00;
(ifi) 0 < liminfy— e B < IMSUP,_ o Bn < 1 and liminf,.cc 8, > O;
)

(iv) lim,_, o (]Z*glll _ ]j;jn) —o

Then the sequence {x,} generated by (3.2) converges strongly to x* = Pq - Qx* and (x*, y*) is a solution of the general system of
variational inequalities (1.2), where y* = Pc(x* — uBx*).

Proof. We divide the proof into several steps.
Step 1. limp— o0 ||Xn+1 — Xa|l = 0.
First, we can write (3.2) as X,.1 = BuXn + (1 — Bn)us, n > 0, where u, = % It follows that

Xni2 — Brr1Xn1 Xni1 — BnXn

Upp1 — Up = -

1- ﬁn—o—l 1-— lgn
. Ynr1Pc(Zni1 — AAZy 1) + Sn1SYns _ YnPc(zq — AAzp) + 8,5y
a 1= Bt 1- 6,
_ Yo+1[Pc(@ny1 — AAZni1) — Pe(zn — AAZn)] + Snp1(SYny1 — SYn)
- 1-— /3n+1

Vn+1 Vn St On
+ — Pc(z —AAZ)+( - )Sy. (3.3)
(1_/3n+1 ]_ﬂn) o " ]_ﬂn-!—l 1_,311 "
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From Lemma 3.1 and (3.2), we get

1 Vn+1[Pc(Znt1 — AAZny1) — Pc(zn — AAZn)] + nt1(SYnt1 — Syn) ||
< Va1 Wnt1 — Yn) + Snt1(SYnt1 — Syl + Yar1 I [PcZnp1 — AAZp1) — Vo1l + [Yn — Pc(za — AAZ) ]|l
< Vo1 + St D Ynt1 — Yull + Var1one1 |Qxn1 — Pe(Znt1 — AAzZn1) |l
+ Var10n|Qxn — Pc(z, — AAZy) |- (34)

Since A, B are a-inverse strongly monotone mapping and B-inverse strongly monotone mapping, respectively, then we
have

(I — AA)x — (I — AMAYII*> = llx — ylI> — 21(Ax — Ay, x — y) + A*||Ax — Ay|]?

% — yII> + A(L — 2a) |Ax — Ay|1?, (3.5)

IA

and

I — uB)x — (I — uB)y|* < x — ylI* + (e — 28)||Bx — By|1>. (3.6)
Itis clear thatif0 < A < 2w and 0 < u < 28, then (I — AA) and (I — uB) are nonexpansive. It follows that
IPc(znt1 — AAzZny1) — Pe(zn — AAZn) || < NZnp1 — AAzpy1 — (2o — AAZy) ||
=< lzny1 — zall
= ||Pc(®n+1 — 1Bxny1) — Pc(Xn — puBxn) ||
< N1 — 1Bxnt1) — (X — uBxy) ||
=< Xnp1 — Xall-
Then,
Yne1 — Yall < I1Pc(zni1 — AAZyy1) — Pc(zn — AAZp) || + otn1|Qxn1 — Pe(zZni1 — AAzZp )|l
+ on||Qxy — Pe(zq — MAzy) ||
< %n1 — Xnll + onllQxy — Pc(zn — AAZp) || + n11|Qxn1 — Pc(Znp1 — AAZyy 1)l (3.7)
Therefore, from (3.3), (3.4) and (3.7), we have

Vi
luns1 — tnll < Xnp1 — xall + <1 + n7+1> o ||Qxy — Pc(zy — AAzy)||
1- :311—0—1
Vi
+ (1 + n+1> ant1]| QX1 — Pe(Zny1 — AAZyy ) ||
1-— ﬂn+1
Yn+1 Yn
+ - (IPc(zn — AAzp) || + (ISynlD)-
‘] =B 1= ! ! !
This implies that

lim sup(flup+1 — tnll — IXn41 — xall) < 0.

n—oo

Hence by Lemma 2.2 we get lim,,_, » ||un — X,]| = 0. Consequently,
lim ||[Xp11 — %[l = lim (1 — Bp)llun — xall = 0. (3.8)
n—oo n—oo

Step 2. lim,_,  ||Az;, — Ay*|| = 0 and lim,_, » ||Bx, — Bx*|| = 0.
Let x* € £2. From Lemma 2.1, we have x* = Sx* and

X" = Pc[Pc(x* — uBx*) — MAPc (X" — uBx™)].
Put y* = Pc(x* — uBx*). Then x* = Pc(y* — AAy*). From (3.5) and (3.6), we have
IPc(zn — AAzy) — Pe(y* — MY |I* < |1z — MAzy) — (v* — AV |2
< llzw = y*II” + 10 — 20) || Az, — AY*|I°, (3.9)
and
Iza — y*1? = [IPc(¥n — puBxa) — Pc(x* — uBx*)|1?
< 10 — pBxa) — (x* — uBx")||*
< [lxa — X*[1* + (e — 2B)[IBx, — Bx*|1%. (3.10)

A
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It follows from (3.2), (3.9) and (3.10) that
lyn —x*1* < (1 — ) |Pc(zn — AAzq) — Pc(y* — AAY") 1> + ot | Qx — X*||?

< apllQxn — X*N1* + Iz — y*II* + Ak — 200) Az, — Ay*|?
< anllQxn — X* 1> + 1% — x*[I* + (1 — 28)[|Bxy — Bx*||> + A(% — 200)|| Az, — Ay*|1>. (3.11)
Using the convexity of || - ||, we have
1
X1 — X |12 = [|Balxa — x*) + (1 = B 5 [V (Pc(zn — AAZq) — X*) + 84 (Syn — X))
- Pn
2
Y, )
< Ballxa —X* 12 + (1 = Bo) | ——— (Pc(zn — AAzy) — X*) + ——(Sy, — x*)
1— /Bn 1-— /3n
YaWn — X*) + 8,(Syn — X¥) o
= Buallxa — x*|> + (1 — B —— e + ——(Pc(zq — MAzq) — Qx|
1— B 1— By
—x*) +8,(Sy, — x* 2
< Bullxa = X2 4 (1= gy | P =X E O XD
1-— IBn
< Bullxa —X*1* + (1 — B)llyn — x*|I* + Matn, (3.12)

where M > 0 is some appropriate constant. So, by (3.11) and (3.12), we have
[Xng1 = x*[1> < (%0 = x* 11> + (e — 28)(1 = Ba) | By — Bx*|)?
+ 200 = 20)(1 = ) |Azy — Ay*[1” + (M + [|Qx — x*[1*)etn.
Therefore,
AQ2a — ) (1= Bo)llAza — AV* 1> + (2B — ) (1 — By) [|Bxy — BX*|)?
< lxa = X*[1> = %ng1 — X* 1> + (M + [[Qxn — x*[|P) ey
< (%0 = X" 4 %01 = X Dl1x0 = Xas1 [l + (M + [[Qxn — X*[[*)etn.
Since liminf;,_, oo AQa — X)(1 — B;) > 0, liminf, o u(28 — w)(1 — Bn) > 0, |Ixy — Xpt1]| = 0and o, — 0, we have
nll)rgo Az, — Ay*|| =0 and nan;o |Bx, — Bx*|| = 0.
Step 3. lim,_ o0 [ISYn — ¥ull = O.
Set v, = Pc(z, — AAz,). Noting that P¢ is firmly nonexpansive, then we have
za — y*I* = [IPc(¥n — uBxa) — Pc(x* — uBx*) >
< {(xn — 1Bxn) — (X* — uBx"), zy — y*)

1
= 5 (%0 = X" — By = Bx) |12 + llzo — ¥ 1> — | (0 — x*) — w(Bxa — Bx*) — (za — ¥y*)|I*)

1
= (X — XN+ 2o = YIIP = 10 — 20) — (Bxy — BX*) — (x* = y")|1%)

1
= 5 — X2+ llzn — yHI1P = 1% — 20 — & — y)II?
+ 20 (xn — 2y — (X* — ¥*), Bxy — BX*) — 11*||Bxy — Bx*||%),
and
lvn — x*|| = |IPc(za — AAzq) — Pc(y* — AAY)|?
< (zn — AAzZ, — (.V* - )“Ay*)s Up — X*>
1
2

(llzn — Mzy — 7 = AAYIP + llog — X*11* = llzn — AAzy — V* — AAY*) — (vn — X))

S Ulzn =y I + 1o = X1 = llz0 = v + & =y
+20(Azy — A", zn — vn + (& — ") — A¥[|Azy — AY|1?)

IA

1
5(|Ixn = X7+ llon = x*11° = |z — vn + * = y)I? 4 2A(Azy — AY*, 24 — vn + (X* — ).
Thus, we have

Izn = ¥ 1% < lIxn = X1 = X0 — 20 — & = YIP + 2p(x0 — 20 — (x* = y*), Bxy — Bx*) — 1% ||Bx, — Bx*1%, (3.13)
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and

lon = X*112 < %0 = X*II* = llza — va 4+ ¢ = y)I* + 24 1Az0 — Ay* 120 — va + ¢ = y)II.

It follows that

< ol Qp — X1 4+ (1 — an)[Jon — x|

< anllQxp — X*[” + flug — x*1?

< anllQxn — X*)1° + 1% — X1 = [|20 — vn + " = y)I* + 2111 Azy — Ay* || 120 — vn + (" — Y9I

2
lyn — %"l

(3.14)
By (3.11),(3.12) and (3.13), we have
IXn1 — X*1* < BullXa — X1 + (1 = Ba)anl|Qxa — x*[I* + (1 — Bo)l|zn — ¥*[|* + Ma,
< It = x*1? = (1 = B)llxn — 20 — (X" = yO)|I?
+2(1 = B llxn — zn — (X" = y*)|| 1Bxy — Bx"|| + (M + (1 — Bp)an)atn.
It follows that
(1= Blxn — 20 — & =y < (%n = X[ 4 [Xag1 = X5 IDlxas1 — Xall + (M + (1 = Br)en)ey
+2(1 = B plxn — zn — (" — y*)|I [|Bxy — Bx"||.
Note that ||X;+1 — Xu|| = 0, @y — 0and ||Bx, — Bx*|| — 0. Then we immediately deduce
lim flx, —z, + (x* —y")|| = 0. (3.15)
n—oo
By (3.12) and (3.14), we have
%41 = X1 < %0 = X1 = (1 = Ba)lza — va + (¢ = yO)II?
+20.(1 = B lAzy — AY* || 20 — va + (X" = YOl + (M + [[Qxn — X*[|*)etn.
So, we obtain
(1= Bllzn — vn + & = yII* < X0 — 1% = llxnr1 = X*II* + 24(1 = B) 1Az, — AY*|
X [|1Zo = va 4+ X =y + (M + [|Qxa — x*[|*)ety.
Hence,
lim [z, — v, — (X" —y")|| = 0.
n—oo
This together with ||y, — v, || < o,||Qx, — vy|| — 0 imply that
lim ||z, —y, — X" —y")|| = 0. (3.16)
n—oo

Thus, from (3.15) and (3.16), we deduce that
lim [[x; — yall = 0.
n—oo
Since
18, (SYn — X | < Xnt1 — Xull + ¥ullPc(zn — AAZy) — Xal
=< Nxne1 — Xall + vallyn — xall + Yacal1Qxn — x4l
Therefore,
lim [[Syn — x| =0 and lim [|Syy — yall = 0.
n—o0o n—oo
Step 4.lim sup,,_, ., (Qx* — x*, x, — x*) < 0 where x* = P, - Qx*.

As {y;} is bounded, there exists a subsequence {y,,} of {y,} such that y,, — v weakly. First, it is clear from Lemma 2.3
that v € Fix(S). Next, we prove that v € I". We note that

lyn — GOl < anllQx; — Gl + (1 — an)lIPc[Pc(Xy — uBxyn) — AAPc (X — uBxn)] — G(yn)l|
o [|Qxn — G Il + (1 — o) [1G(Xn) — Gyl

anl|Qxy — Gl + (1 — an)llxn — Yull

— 0.

IA



3478 Y. Yao et al. / Computers and Mathematics with Applications 59 (2010) 3472-3480

According to Lemma 2.3 we obtain v € I'. Therefore, v € £2. Hence, it follows from (2.3) that

lim sup(Qx* — x*, x, — x*) = lim (Qx* — x*, x,,, — x*)

n—oo 1— 00
= (QX* _X*5 v _X*>
< 0.
Step 5. limy,_, o X, = Xx*.
From (3.2) and the convexity of || - ||, we have
X041 = X112 = 1Ba (0 — X) + Y = X*) + 8a(Syn — X*) + Vatn(Pc (20 — 2Azy) — Q) ||

=< ”,Bn(xn - X*) + Vn(yn - X*) + BH(S.VH - X*)Hz + Zynan<PC(Zn - )"Azn) - QX,,, Xn+1 — X*>
2

< full =X+ (= ) | 1=

+ 2vn00(Pc (2 — MAZy) — X*, X1 — X°) + 290, (X° — QX Xpg1 — X¥). (3.17)
By Lemma 3.1 and (3.17), we have
01 — X1 < Ballxa — x> + (1 = B)llyn — X* 1> + 2¥nenllPc (zn — AAzy) — X*[| X1 — X7
+ 2900y (X* — QXp, X1 — X¥)
< Ballxn — X*”Z + (1= B)[(1 — an)llzy _.V*”z + 200, (Qxy — X",y — X))
+2ynenllzn — Y|l X1 — X[ 4+ 2¥n0n (X" — Qxn, Xpy1 — X7).

1
‘ ——[Van — X)) + 8, (Syn — xM)]

From (3.10), we note that ||z, — y*|| < ||x, — x*||. Hence, we have
IXn41 — X*”z < Bullxn — X*”Z + (1= B)(1 —an)llxn — X*”z + 20,(1 — Bo)(Qxq — X", ¥y — X*)
+ 2¥n0nllX0 — X || IXn41 — X[ 4 20t (X" — Qxn, X1 — X7)
< [1—= (1= Bo)anllxn — x> + 2000 (Qxa — X*, Yo — Xny1)
+ 20380 (Qxn — X", yn — X°) + 20 Vullxa — X*|| X011 — X" ||
< [1= (1= Bu)enlllxa — x*[I* + 200 YnllQxa — X*[| V0 — X1l
+ 20n8n (Qxn — X*, Xn — X*) + 20080 (Qxn — X", Yn — Xn) + 20Vl X0 — X*|| [Xn41 — X"
[1— (1= Boanlllxa — X*[1* + 2anyal|Qxn — X*|| V0 — Xns1 |
+ 20n8npllXn — X*[I* + 2008, (QX* — X*, Xy — X*)
+ 2008011 Qxn — X || 1yn — Xnll + 20t ValIXn — X*[| [|X011 — X" ||
[1— (1= BuolllXn — X*I* + 200y |Qxn — X* || [y — Xns1l
+ 2080 [|%n — X*[|* 4 2008, (QX" — X", Xy — X*)
+ 20085 [1Qxn — X*[| lyn — Xall + ctn¥a(llxXn — x* 1> + X0 — x*[1%),

IA

IA

that is,
[(1 —20)8n — yalan

1—-2p)6, —
Murs = K2 < [1—w

2
an] X0 — x*11" +

1—anyn 1—anyn
2¥n .
X ——"||Qx, — X —X
{ =200 — [1Qxy, 1yn — Xns1ll
28, 26,
+ Q= X[ lyn — Xall + —————— (X" — X", X%, —X") .
=200 —va T (1-20)8 — v !
Note that lim inf, (A=20n—yn - 0, It follows that 3°° , U=2ntny  — oo, It is clear that
n—00 1—anyn : n=0 1—anyn n— :
. 2¥n Sn
limsupy ——— [|Qx,, — x* — X 4+ |10, — x* — X
n_mp{ A= 20)60 — 1 [ Qxn H1yn — xnrall A= 20)60 — 1 [ Qxx Hlyn — xall
28,

T
(1=2p)8n = yn

Therefore, all conditions of Lemma 2.4 are satisfied. Therefore, we immediately deduce that x, — x*. This completes the
proof. O

(Qx* — x*, x, — x*)} < 0.
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Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let the mappings A, B : C — H be
«-inverse strongly monotone and B-inverse strongly monotone, respectively. Let S : C — C be a k-strictly pseudocontractive
mapping such that §2 := Fix(S) N I" # (. For fixed u € C and given x, € C arbitrarily, let the sequences {x,}, {y,} and {z,} be
generated iteratively by

Zp = Pc(xn — uBxy),
Yn = antt + (1 — an)Pc(zy — AAZ,),
Xny1 = ,ann + VnPC(Zn - )‘-Azn) + ‘Snsy", vn = 0,
where X € (0, 2a), u € (0, 28) and {ay}, {Bn}, {yn}, {6n} are four sequences in [0, 1] such that:

(1) Bnt+tyn+én= 1and(%n+8 Yk < yn < 8pforalln > 0;
(ii) limy— o0 @y = 0 and Zn 0 On = 00;
(iii) 0 < liminf,— o Bn < 11m SUP,_ o0 Bn < land liminf, ., 8, > 0;
v)

Yn+l
(V) limnoo (2505 — 72, ) = O
Then the sequence {xn} converges strongly to x* = Pgou and (x*,y*) is a solution of the general system of variational

inequalities (1.2), where y* = Pc(x* — uBx™).

Corollary 3.4. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let the mappings A, B : C — H be
a-inverse strongly monotone and B-inverse strongly monotone, respectively. Let S : C — C be a nonexpansive mapping such
that 2 .= Fix(S)N I # (. Let Q : C — C be a p-contraction with p € [0, %) For given xg € C arbitrarily, let the sequences
{xn}, {yn} and {z,} be generated iteratively by

Zy = Pc(Xy — uBxy),
Yn = anQxy + (1 — ay)Pc(z; — AAzy),
Xn+1 = ,ann + ynPC(Zn - )LAZn) + SnSJ/n, vn = 0;
where A € (0, 2a), i € (0, 28) and {cen}, {Bn}, {¥n}, {60} are four sequences in [0, 1] such that:

i) Bn+yn+én= landyn < (1 —=2p)8, foralln > 0;
(i) limp 0o p = 0and Y 7 atp = 00;
(iii) 0 < liminf,— o By < limsup,_, o Bn < 1and liminf, ., y, > 0;
v)

( llmn—)oo( Yn+l  _ _n ):0‘

1*ﬁn+1 ]*ﬁn
Then the sequence {x,} converges strongly to x* = Pg - Qx* and (x*, y*) is a solution of the general system of variational
inequalities (1.2), where y* = Pc(x* — uBx™).

Corollary 3.5. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let the mappings A, B : C — H be
«-inverse strongly monotone and f-inverse strongly monotone, respectively. Let S : C — C be a nonexpansive mapping such
that 2 := Fix(S) N I # . For fixed u € C and given xo € C arbitrarily, let the sequences {x,}, {yn} and {z,} be generated
iteratively by

Zy = Pc(Xy — uBxy),
Yn = an + (1 — ap)Pc(zy — AAZ,),
Xn+1 = ﬂnxn + ynPC(Zn - )LAZn) + SnSJ/n, vn = 0;
where A € (0, 2a), u € (0, 28) and {cen}, {Bn}, {¥n}, {60} are four sequences in [0, 1] such that:

(i) Bn+yYn+n = landyn < (1 —=2p)d, foralln > 0;
(i) limp oo p =0and Y 7 atp = 00;
(iii) 0 < liminf,_ o Bn < llm SUD,_ o0 Bn < 1and liminf,_, o y5 > 0;
) llmn—)oo( Y+l ) 0.

( 1*ﬁn+1 ﬁn
Then the sequence {x,} converges strongly to x* = Pg - Qx* and (x*, y*) is a solution of the general system of variational
inequalities (1.2), where y* = Pc(x* — uBx*).
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