
Computers and Mathematics with Applications 62 (2011) 2240–2245

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A note on Hopf bifurcations in a delayed diffusive Lotka–Volterra
predator–prey system✩

Shanshan Chen a, Junping Shi b, Junjie Wei a,∗
a Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
b Department of Mathematics, College of William and Mary, Williamsburg, VA, 23187-8795, USA

a r t i c l e i n f o

Article history:
Received 3 September 2010
Received in revised form 6 July 2011
Accepted 7 July 2011

Keywords:
Predator–prey model
Reaction–diffusion
Lotka–Volterra
Delay
Stability
Hopf bifurcation

a b s t r a c t

The diffusive Lotka–Volterra predator–prey system with two delays is reconsidered
here. The stability of the coexistence equilibrium and associated Hopf bifurcation are
investigated by analyzing the characteristic equations, and our results complement earlier
ones. We also obtain that in a special case, a Hopf bifurcation of spatial inhomogeneous
periodic solutions occurs in the system.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Partial functional-differential equations have been proposed asmathematical models for biological phenomena bymany
researchers in recent years. In the last 15 years especially, the stability/instability and bifurcation of equilibrium solutions for
reaction–diffusion equations/systemswith a delay effect have been considered extensively. The theory of partial functional-
differential equations and the related bifurcation theory have been developed for analyzing variousmathematical questions
that have arisen from models of population biology, biochemical reactions and other applications [1–4].

For the models with a single population, So and Yang [5] investigated the global attractivity of the equilibrium for the
diffusive Nicholson’s blowflies equation with Dirichlet boundary condition; So, Wu and Yang [6] and Su et al. [7] also
studied the Hopf bifurcation on the diffusive Nicholson’s blowflies equation with Dirichlet boundary condition; Yi and Zou
[8] investigated the global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition;
Busenberg and Huang [9], and Su, Wei and Shi [10] investigated the Hopf bifurcation of a reaction–diffusion population
model with delay and Dirichlet boundary condition, which occurs at the spatially inhomogeneous equilibrium; Davidson
and Gourley [11] (and also [10]) studied the dynamics of a diffusive food-limited population model with delay and Dirichlet
boundary condition. For multiple-population models, there are many results on predator–prey systems (see e.g. [12–20]).

In this work we consider the following Lotka–Volterra predator–prey system:

∂u(t, x)
∂t

= d1
∂2u(t, x)

∂x2
+ u(t, x)[r1 − a1u(t, x) − a2v(t − ν, x)], t > 0, x ∈ (0, π),

∂v(t, x)
∂t

= d2
∂2v(t, x)

∂x2
+ v(t, x)[−r2 + a3u(t − τ , x) − a4v(t, x)], t > 0, x ∈ (0, π),

∂u(t, x)
∂x

=
∂v(t, x)

∂x
= 0, t ≥ 0, x = 0, π,

(1.1)
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where u(t, x) and v(t, x) are interpreted as the densities of prey and predator populations. Moreover, τ , r1, r2, a2, a3 are
positive constants and ν, a1, a4 are non-negative constants. More biological explanation of the above delayed diffusive
Lotka–Volterra prey–predator system can be found in [12].

In [12], Faria assumed that

a3r1 − a1r2 > 0, (1.2)

and then system (1.1) has a positive equilibrium

E∗ = (u∗, v∗) =


a2r2 + a4r1
a1a4 + a2a3

,
a3r1 − a1r2
a1a4 + a2a3


.

Due to the difficulties in the analysis of the characteristic equations, Faria studied the instability of the equilibrium E∗ and
associated Hopf bifurcations with some assumptions on the coefficients in reaction terms. In [4], Wu studied the Hopf
bifurcation of system (1.1) when ν = 0, a4 = 0, and he obtained that under some assumptions on the coefficients, then the
system (1.1) can give rise to a Hopf bifurcation of spatially inhomogeneous periodic solutions.

In this paper we also assume (1.2); hence the system (1.1) possesses a positive equilibrium E∗. In this note, we obtain two
new results for (1.1) which complement the ones in [12]. First we show that a similar instability analysis of E∗ holds when
the two diffusion coefficients are close to each other but without additional conditions on the coefficients in the reaction
terms. Secondly we prove that in a special case of a = b = 0 and d1 = d2, a Hopf bifurcation of spatially inhomogeneous
periodic solutions occurs and the bifurcating periodic solutions are unstable.

The rest of the paper is organized as follows. In Section 2, we analyze the stability of the positive equilibrium E∗ through
the study of the characteristic equations. We show some results on the distribution of the roots of the characteristic
equations and these results are supplementary to the ones in Faria [12]. We also show that the positive equilibrium E∗

can be destabilized through a Hopf bifurcation as τ increases when the two diffusion coefficients are close to each other. In
Section 3, we consider a special case when a = b = 0 and d1 = d2.

2. Stability analysis and bifurcation

In this section, we will carry out the analysis of stability and Hopf bifurcation of the system (1.1) and give some results
supplementary to those of Faria [12].

In [12], after the time-scaling t → t/τ , the change of variables u → a3u = u, v → a2u = v, and dropping the bars for
simplification, system (1.1) is transformed into

∂u(t, x)
∂t

= τd1
∂2u(t, x)

∂x2
+ τu(t, x)[r1 − au(t, x) − v(t − r, x)], t > 0, x ∈ (0, π),

∂v(t, x)
∂t

= τd2
∂2v(t, x)

∂x2
+ τv(t, x)[−r2 + u(t − 1, x) − bv(t, x)], t > 0, x ∈ (0, π),

∂u(t, x)
∂x

=
∂v(t, x)

∂x
= 0, t ≥ 0, x = 0, π,

(2.1)

where r = ν/τ , a = a1/a3, b = a4/a2. The positive equilibrium E∗ = (u∗, v∗) is now given by

u∗ =
r2 + br1
ab + 1

, v∗ =
r1 − ar2
ab + 1

,

with the assumptions (which we will always assume in the rest of this paper)

r1 > 0, r2 > 0, r ≥ 0, a ≥ 0, b ≥ 0, r1 − ar2 > 0. (2.2)

From [12] (5.6k), we know that the characteristic equations for the equilibrium E∗ are

∆k(λ, τ ) = λ2
+ Akτλ + Bkτ

2
+ C∗τ

2e−λ(1+r), k = 0, 1, 2, . . . , (2.3k)

where

Ak = d1k2 + d2k2 + au∗ + bv∗, Bk = (d1k2 + au∗)(d2k2 + bv∗), and C∗ = u∗v∗.

If iσk(σk > 0) is a root of Eq. (2.3k), then we have
σ 2
k − Bkτ

2
= C∗τ

2 cos σk(1 + r),
σkAk = C∗τ

2 sin σk(1 + r),

which leads to

ρ4
+ (A2

k − 2Bk)ρ
2
+ B2

k − C2
∗

= 0, (2.4)
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where

A2
k − 2Bk = (d21 + d22)k

4
+ 2(d1au∗ + d2bv∗)k2 + (a2u2

∗
+ b2v2

∗
) ≥ 0,

B2
k − C2

∗
= (d1k2 + au∗)

2(d2k2 + bv∗)
2
− u2

∗
v2

∗
, and ρ =

σk

τ
.

So if

ab ≥ 1, (2.5)

then B2
k − C2

∗
> 0, and Eqs. (2.3k), k ≥ 0, have no imaginary roots, and if

ab < 1, (2.6)

then there is an integer K0 such that Eq. (2.4) has a positive real root

ρk =
1

√
2

[
2Bk − A2

k +


(2Bk − A2

k)
2 − 4(B2

k − C2
∗
)

]1/2
if k ≤ K0 and has no positive real roots if k > K0. So Eqs. (2.3k), k > K0, have no imaginary roots and each of Eqs. (2.3k),
k ≤ K0, has only a couple of imaginary roots ±iσ k

n at τ k
n where

σ k
n =

arccos ρ2
k −Bk
C∗

+ 2nπ

1 + r
, n = 0, 1, 2, . . . , k = 0, 1, . . . , K0,

τ k
n =

σ k
n

ρk
, n = 0, 1, 2, . . . , k = 0, 1, . . . , K0,

if ab < 1 and a2 + b2 > 0.
If a = b = 0, then

σ 0
n =

2(n + 1)π
1 + r

, n = 0, 1, 2, . . . ,

τ 0
n =

σ 0
n

ρ0
, n = 0, 1, 2, . . . ,

and σ k
n , τ

k
n (k ≥ 1) are the same as those above.

If d1 = d2 = d, then

Ak = 2mk + p, Bk = m2
k + mkp + q,

where

mk = dk2, p = au∗ + bv∗, q = abu∗v∗,

and

2Bk − A2
k = −2m2

k − 2mkp − (a2u2
∗
+ b2v2

∗
),

B2
k − C2

∗
= (m2

k + mkp + q)2 − C2
∗
.

Hence we have the following lemma.

Lemma 2.1. Assume that d1 = d2 = d.

1. If ab < 1 and a2 + b2 > 0 are satisfied, then

τ k+1
n > τ k

n , 0 ≤ k ≤ K0, n = 0, 1, . . . .

2. If a = b = 0 is satisfied, then

τ k+1
n > τ k

n , 1 ≤ k ≤ K0, n = 0, 1, . . . .

Proof. When d1 = d2, we have

ρ2
k =

1
2

[
(p2 − 4q)(4m2

k + 4mkp + p2) + 4C2
∗

− 2m2
k − 2mkp + 2q − p2

]
,

ρ2
k − Bk =

1
2

[
(p2 − 4q)(4m2

k + 4mkp + p2) + 4C2
∗

− 4m2
k − 4mkp − p2

]
.

If p2 − 4q = 0, it is obvious that τ k+1
n > τ k

n , so we assume that p2 − 4q > 0 since p2 − 4q ≥ 0.
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Suppose that

x =


(p2 − 4q)(4m2

k + 4mkp + p2) + 4C2
∗
;

then

x ≥


(p2 − 4q)p2 + 4C2

∗
,

and

τ k
n =

arccos


x− x2−4C2∗

p2−4q
2C∗


+ 2nπ

1+r
√
2


x −

x2−4C2
∗

2(p2−4q)
−

1
2p

2 + 2q
 1

2

def
= g(x).

It is easy to verify that if y > z ≥ p2 − 4q and y, z are in the domain of g , then g(y) > g(z).
So we can obtain that if ab < 1 and a2 + b2 > 0 are satisfied, then

τ k+1
n > τ k

n , 0 ≤ k ≤ K0, n = 0, 1, . . . ,

and if a = b = 0 is satisfied, then

τ k+1
n > τ k

n , 1 ≤ k ≤ K0, n = 0, 1, . . . . �

It is obvious that τ k
n+1 > τ k

n , so we have τ 0
0 = min{τ k

n }0≤k≤K0,n=0,1,... if d1 = d2 = d, ab < 1, and a2 + b2 > 0. From
Lemma 2.1 and the continuous dependence of τ k

n on d1 and d2 we have the following proposition.

Proposition 2.2. Assume that (2.2) holds, ab < 1, and a2 + b2 > 0; then there exists an ϵ(d, a, b, ri, r) such that for any
d1, d2 ∈ (d − ϵ, d + ϵ), τ 0

0 = min{τ k
n }0≤k≤K0,n=0,1,....

Suppose that λk(τ ) = µk(τ ) + iσk(τ ) is the root of Eq. (2.3k) satisfying
µk(τ

k
n ) = 0, σk(τ

k
n ) = ±σ k

n ;

then using the same method as in [12, Theorem 3.2] we have the following transversality result.

Lemma 2.3. Assume that (2.2) holds, ab < 1, and a2 + b2 > 0; then µ′

k(τ
k
n ) > 0 for 0 ≤ k ≤ K0 and n = 0, 1, 2, . . ..

From Lemma 2.3, Proposition 2.2, [12, Theorem 3.3] and [3, Theorem 3.3.2], we have the following conclusions on the
distribution of the roots of Eqs. (2.3k), k ≥ 0.

Lemma 2.4. Assume that (2.2) holds.
1. When ab ≥ 1, then all of the roots of Eqs. (2.3k) (k ≥ 0) have negative real parts for τ ∈ [0, ∞).
2. When ab < 1 and a2 + b2 > 0, then for any d > 0 there exists an ϵ(d, a, b, ri, r) defined in Proposition 2.2 such that for any

d1, d2 ∈ (d − ϵ, d + ϵ):
(i) If τ ∈ [0, τ 0

0 ), then all of the roots of Eqs. (2.3k) (k ≥ 0) have negative real parts.
(ii) If τ = τ 0

0 , then all of the roots of Eq. (2.30) except ±iσ 0
0 and Eq. (2.3k) (k ≥ 1) have negative real parts.

(iii) If τ ∈ (τ 0
0 ,min(τ 0

1 , τ 1
0 )), Eq. (2.30) has only one pair of roots with positive real parts, and all of the roots of Eqs. (2.3k)

(k ≥ 1) have negative real parts.
(iv) If τ > min(τ 0

1 , τ 1
0 ), then Eqs. (2.3k) (k ≥ 0) have at least two pair of roots with positive real parts.

This lemma gives the spectral properties when d1 and d2 are close to each other, which is complementary to Theorem
5.1 of Faria [12]. Remarkably in this theorem τ 0

0 equals τ0 of [12], and σ 0
0 equals σ0 of [12]. Here we do not assume

ab(au∗ + bv∗)
2

≤ u∗v∗ as in [12] but we have the additional assumption on the diffusion coefficients d1 and d2. Spectral
properties in Lemma 2.4 immediately lead to the following results on the dynamics of system (1.1) (or equivalently (2.1)).

Theorem 2.5. Consider system (1.1), and assume that (2.2) holds.
1. If ab ≥ 1, then E∗ is locally asymptotically stable.
2. If ab < 1 and a2 + b2 > 0, then for any d > 0 there exists an ϵ(d, a, b, ri, r) defined in Proposition 2.2 such that for any

d1, d2 ∈ (d − ϵ, d + ϵ),

E∗ is locally asymptotically stable when τ ∈ [0, τ 0
0 ), and is unstable when τ > τ 0

0 . Furthermore, the system undergoes a Hopf
bifurcation of spatially homogeneous periodic orbits at E∗ when τ = τ 0

0 .

From this theoremwe know that when the diffusion coefficients for the prey and predator are very close to each other in
the delayed diffusive Lotka–Volterra prey–predator system, the diffusion terms have no impact on the local stability of the
positive equilibrium E∗. Here we also do not assume ab(au∗ +bv∗)

2
≤ u∗v∗ as in [12] but we have an additional assumption

on the diffusion coefficients d1 and d2.
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3. A special case

In this section we will analyze system (1.1) (or equivalently (2.1)) in the special case when a = b = 0 and d1 = d2 = d.
It can be easily verified that

τ k
n =

arccos

1 −

2d2k4
C∗


+ 2nπ

(1 + r)

C∗ − d2k4

, 1 ≤ k ≤ K0, and n = 0, 1, 2, . . . ,

τ 0
n =

2(n + 1)π
(1 + r)

√
C∗

, n = 0, 1, 2, . . . .

From [12, Theorem 3.4] and Lemma 2.1, we obtain:

Theorem 3.1. Assume that (2.2) holds, a = b = 0, and d1 = d2 = d.

1. When d2 − C∗ ≥ 0, then all of the roots of Eqs. (2.3k) (k ≥ 1) have negative real parts for τ ∈ [0, ∞).
2. When d2 − C∗ < 0:

(i) If

τ 1
0 =

arccos

1 −

2d2
C∗


(1 + r)


C∗ − d2

>
2π

(1 + r)
√
C∗

= τ 0
0 , (3.1)

then all of the roots of Eqs. (2.3k) (k ≥ 1) have negative real parts for τ ∈ [0, τ 0
0 ].

(ii) If

τ 1
0 =

arccos

1 −

2d2
C∗


(1 + r)


C∗ − d2

<
2π

(1 + r)
√
C∗

= τ 0
0 , (3.2)

then a Hopf bifurcation of spatially inhomogeneous periodic solutions occurs at E∗ for system (1.1) and these spatially
inhomogeneous periodic solutions are unstable when τ is near τ 1

0 .

Proof. When a = b = 0, d1 = d2 = d, the characteristic equations of system (1.1) are

λ2
+ Akτλ + Bkτ

2
+ C∗τ

2e−λ(1+r)
= 0, (k = 0, 1, 2, . . .),

where

Ak = 2d2k, Bk = d2k4, and C∗ = u∗v∗.

Then Eq. (2.4) becomes

ρ4
+ 2m2

kρ
2
+ d2k4 − C2

∗
= 0. (3.3)

If d2 − C∗ ≥ 0, then Eq. (3.3) has no positive roots for k ≥ 1, so all of the roots of Eqs. (2.3k) (k ≥ 1) have negative real parts
for τ ∈ [0, ∞).

If d2 − C∗ < 0, then Eq. (3.3) has a positive root for k = 1. So if

arccos

1 −

2d2
C∗


(1 + r)


C∗ − d2

>
2π

(1 + r)
√
C∗

,

we have τ 0
0 < τ 1

0 and τ 1
0 < τ k

0 , 1 ≤ k ≤ K0, from Lemma 2.1. Then all of the roots of Eqs. (2.3k) (k ≥ 1) have negative real
parts for τ ∈ [0, τ 0

1 ]. If

arccos

1 −

2d2
C∗


(1 + r)


C∗ − d2

<
2π

(1 + r)
√
C∗

,

we have τ 0
0 > τ 1

0 , and when τ = τ 1
0 , Eqs. (2.3k) (k ≥ 0) have no pure imaginary roots except k = 1. From [12, Theorem 3.4],

we know that (2.3k) has at least two roots with positive real parts when τ > 0. So when τ = τ 1
0 , Eqs. (2.3k) (k ≥ 0) have

only one pair of simple imaginary roots and at least two roots with positive real parts. Then a Hopf bifurcation of spatially
inhomogeneous periodic solutions occurs at E∗ for system (1.1) when τ = τ 1

0 , and these spatially inhomogeneous periodic
solutions are unstable. �

Remark 3.2. In Theorem5.2 of [12], Faria gave a sufficient condition for all of the roots of Eqs. (2.3k) (k ≥ 1) to have negative
real parts for τ ∈ [0, τ 0

0 ] when a = b = 0. In this theoremwe give a sufficient and necessary condition for all of the roots of
Eqs. (2.3k) (k ≥ 1) to have negative real parts for τ ∈ [0, τ 0

0 ] with the assumption d1 = d2 = d. We also obtain a sufficient
condition for the occurrence of Hopf bifurcation of spatially inhomogeneous periodic solutions.
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