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Abstract 

This paper describes some classes of infinite distance-transitive graphs. It has no pretensions 
to give a complete list, but concentrates on graphs which have no finite analogues. @ 1998 
Elsevier Science B.V. All rights reserved 

1. Introduction 

There are various degrees of symmetry which a graph might display. Most of these 
are of a ‘local-to-global’ type, asserting that, if two configurations which look the 
same with respect to some local property, then one can be mapped to the other 
by an automorphism of the graph. The strongest such property is homogeneity, as- 

serting that any isomorphism between finite induced subgraphs extends to an auto- 
morphism of the graph. All finite or countable graphs with this property have been 
determined [13,20]. 

A weaker condition is k-homogeneity, where we only require that isomorphisms be- 
tween subgraphs on at most k vertices extend to automorphisms. Thus l-homogeneity 
is simply vertex transitivity. A finite graph is 2-homogeneous if and only if its auto- 
morphism group is a rank 3 permutation group of even order. (The rank of a transitive 
permutation group is the number of its orbits on ordered pairs of points. In the case 
of a 2-homogeneous graph, the orbits consist of pairs which are equal, adjacent, and 
non-adjacent, respectively.) 

The determination of the rank 3 permutation groups (and so, implicitly, the finite 
2-homogeneous graphs) was completed by Liebeck [21], building on many earlier 
results, and in particular, using the classification of finite simple groups. Without the 
classification, the best result is that of Cameron [3], who found that all finite 
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5-homogeneous graphs are homogeneous. Note that, for all k ~5, there are graphs 
which are k-homogeneous but not (k + 1 )-homogeneous. 

For countably infinite graphs, much less is known. A referee has pointed out to me 
that graphs which are k-homogeneous but not (k + 1 )-homogeneous exist for all k (see 
Section 4). The same question has been considered for other classes of structures, such 
as posets: [23,11]. 

Homogeneity can be weakened in another way. Any connected graph can be regarded 
as a metric space. We may call a graph metrically homogeneous if any isometry 
between finite subsets extends to an isomorphism, and metrically k-homogeneous if 
this holds for all subsets with cardinality at most k. Now, metrically 2-homogeneous 
graphs are precisely distance-transitiue graphs: any two pairs of vertices at the same 
distance are equivalent under an automorphism. 

The finite distance-transitive graphs have not yet been determined, but a considerable 
amount of work has been done, based on a classification due to Smith [25]. A graph is 
imprimitive if there is an equivalence relation on its vertex set which is preserved by 
all automorphisms. Smith showed that, in the case of a distance-transitive graph of va- 
lency greater than 2, there are only two possibilities for such an invariant equivalence 
relation: either it is a bipartition, or it is the relation of being equal or at maximal 
distance (the so-called antipodal relation). If the graph is bipartite, then a connected 
component of the distance-2 graph (on a bipartite block) is distance-transitive. If it 
is antipodal, then the quotient by the antipodal relation is distance-transitive. After at 
most one reduction of each type, a primitive distance-transitive graph is reached. So 
the program is first to determine the finite primitive distance-transitive graphs (using 
the classification of finite simple groups), and then to find all ‘bipartite doubles’ and 
‘antipodal covers’ of these graphs. The first part is almost complete, the second rather 
less so. 

A very complete reference on finite distance-transitive graphs is the book of Brouwer 
et al. [l]. 

By contrast, the theory of infinite distance-transitive graphs is open. Not even 
the countable metrically homogeneous graphs have been determined. The purpose of 
this article is to describe the known examples of infinite distance-transitive 
graphs. 

There are two other kinds of graph symmetry which we will meet in passing. 
An s-arc is a sequence ~0, VI,. . . , v, of vertices such that vi and vi+1 are adja- 

cent for 0 <i <s - 1, and Ui # vi+2 for 0 < i 6 s - 2. Thus it is a walk, with repeated 
edges or vertices permitted, but which never immediately retraces an edge. A graph is 
s-arc transitive if its automorphism group acts transitively on s-arcs. Weiss [29] showed 
that a finite graph with valency greater than 2 cannot be more than 7-arc transitive. 
However, a regular tree is s-arc transitive for all s. 

The second condition does not initially seem to have anything to do with symmetry. 
A countable structure M is No-categorical if any countable structure satisfying the same 
first-order sentences as M is isomorphic to M. According to the theorem of Engeler 
et al. (see [5]), M is No-categorical if and only if its automorphism group is 
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oligomorphic. (A permutation group is oligomorphic if it has only finitely many orbits 
on n-tuples of points for all natural numbers n.) 

Note that, for example, an No-categorical graph has finite diameter (since pairs of 
points at different distance cannot be in the same orbit of the automorphism group). By 
contrast, let M be a homogeneous graph (or, more generally, a homogeneous relational 
structure over any finite relational language). Then two finite subsets lie in the same 
orbit of the automorphism group if and only if they induce isomorphic substructures; 
the orbits on n-element subsets correspond to the isomorphism types of n-element 
structures, which are finite in number. So M is No-categorical. 

2. Macpherson’s theorem 

There is one class of infinite distance-transitive graphs which is completely known: 
the locally finite ones. Let s and t be positive integers. There is a unique biregular tree 
with valencies s + 1 and t + 1. (This means that all vertices have valency s + 1 or t + 1, 
and two adjacent vertices have different valency ifs # t. Said otherwise, all vertices in 
one bipartite block have valency s + 1, and all those in the other have valency t + 1.) 

Define the graph M(s, t) to be the distance-2 graph on the bipartite block with 
valency t + 1. In other words, its vertices are the vertices of the tree of valency t + 1, 
and two vertices are adjacent if their distance in the tree is 2. Note that, if s = 1, this 
graph is the (t + 1 )-valent tree. 

Macpherson 1221 proved: 

Theorem 2.1. A locallyjinite infinite distance-transitive graph is isomorphic to M(s, t) 
for some positive integers s and t. 

A consequence of this result is the following: 

Corollary 2.2. For any given integer k >2, there are only finitely manyjnite distance- 
transitive graphs of valency k. 

The proof uses the compactness theorem of first-order logic. There are only finitely 
many structures for the d-neighbourhood of a vertex v, and the group of permutations 
induced on it by automorphisms fixing v, for any fixed d. So, if there were infinitely 
many such graphs, then there would be infinitely many with the same d-neighbourhood 
structure. So, by compactness, there would be an infinite graph with this structure, 
necessarily M(s, t) for some s and t. But the resulting restrictions can be eliminated 
using arguments of finite group theory. The first proof of this [4] used the classification 
of finite simple groups; this was later avoided by Weiss [30]. 

The graph M(s, t) can be defined as well when one or both of s and t is infinite, 
and is distance-transitive. 
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3. Analogues of finite graphs 

The book [l] contains extensive lists of finite distance-transitive graphs. Many of 
these have infmite analogues. What follows is not a complete survey. 

One class consists of the Hamming graphs H(n,q), whose vertices are all the words 
of length n over an alphabet of q symbols, two vertices adjacent if they differ in exactly 
one coordinate. Now, it is clear that we can allow the size of the alphabet to become 
infinite and use the same definition to obtain infinite distance-transitive graphs with 
diameter n. If, however, we allow the word length to be infinite, the graph is no 
longer connected: two words lie in the same component if and only if they differ 
in only finitely many coordinates, and there are uncountably many components. Each 
component is distance-transitive with infinite diameter, and all are isomorphic. It is 
customary to select a distinguished component as follows: assume that one of the 
symbols in the alphabet is called ‘zero’; then take all words with only finitely many 
non-zero components. 

Similarly, the Johnson graph J(u,k) (whose vertices are the k-subsets of a u-set, 
joined if their symmetric difference has size 2), can be infinitised in two ways. If 
we allow u to be infinite but keep k finite, we obtain a distance-transitive graph with 
diameter k. 

If we allow both u and k to be infinite, things are different. We assume for simplicity 
that u = k = No, and take only infinite sets whose complement is infinite. First of all, 
the smallest size of the symmetric difference is now 1, rather than 2, and we obtain 
the same graph as the Hamming graph with q = 2 (apart from two special components 
corresponding to finite and cofinite sets). 

Now the subsets (and hence the components) fall into complementary pairs. The 
set of equivalence classes of such partitions which have both parts infinite carries a 
distance-transitive graph of diameter 2: we join two classes of partitions if the common 
refinement of a partition from each class has only three (rather than four) infinite 
classes. Note that this provides a rank 3 permutation representation of the symmetric 
group of countable degree modulo the finitary symmetric group. This observation is 
due to B.H. Neumann. Moreover, there is a unique countable graph with the same 
first-order theory: it is also distance-transitive with diameter 2. 

In the finite case, there are also various graphs defined in terms of finite vector 
spaces. For example, the q-analogue of a Johnson graph has as vertices the 
k-dimensional subspaces of a u-dimensional vector space. Both the dimension u and 
the size of the field can be allowed to become infinite without any problem. 

If the automorphism group of a projective plane is transitive on pairs of points, 
pairs of lines, flags, and antiflags, and the plane is self-dual, then its incidence graph 
is distance-transitive with diameter 3. In the finite case, 2-transitivity on points implies 
that the plane is Desarguesian, whence all the other conditions follow. In the infinite 
case, there are highly symmetric non-Desarguesian planes (see [17]). Further examples 
are obtained from incidence and point graphs of generalised polygons. 
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4. Graphs of diameter 2 

The most useful method for constructing objects with a large amount of symmetry 
is based on Fraisse’s Theorem. The age of a graph or other structure is the class of 
all finite structures embeddable in it. The amalgamation property for a class of finite 
structures asserts that, if structures BI, B2 in the class have substructures both isomor- 
phic to a common structure A, then there is a structure C in the class containing copies 
of BI and B2 with the common substructure identified according to the isomorphism. 
Now Fraisse’s Theorem states: 

Theorem 4.1. A class $7 of finite structures is the age of a countable homogeneous 
structure M tf and only tfV is closed under isomorphism, closed under taking induced 
substructures, contains only countably many non-isomorphic structures, and has the 
amalgamation property. If these conditions hold, then M is unique up to isomorphism. 

See [5] for discussion. The structure A4 is called the FraBse limit of the class %?. 
One strengthening we need later is the strong amalgamation property, where it is 
required that the intersection of B1 and B2 inside C is precisely A (not larger). This 
is equivalent to the condition that, in the Frai’sse limit M, for any finite set of points 
the group of automorphisms fixing those points has no further fixed points. 

For example, the class of all graphs satisfies Fraisse’s conditions; the Fraisse limit 
is the random graph, or Rado’s graph. More generally, Henson [ 151 observed that, 
for any n 2 3, the class of finite graphs containing no K, satisfies Fraisse’s conditions. 
(To amalgamate two K,-free graphs with a common subgraph, take the union, with no 
additional edges.) The Fraisse limit, denoted H,,, is a homogeneous graph containing 
no K,, but embedding all finite K,,-free graphs. This gives us an infinite family of 
distance-transitive graphs of diameter 2. 

This is essentially the complete list of countable homogeneous graphs. Lachlan and 
Woodrow [20] showed: 

Theorem 4.2. A countable homogeneous graph is one of the following: the disjoint 
union of m complete graphs of size n, with at letrst one of m and n infinite; the 
complement of one of these; one of Henson’s graphs H,, or their complements; or the 
random graph. 

Further graphs can be obtained by modifying the procedure, taking the finite graphs to 
have extra structure. For example, the class of bipartite graphs fails to be homogeneous, 
since given two non-adjacent vertices, we do not know whether they are in the same 
bipartite block or not. So, for example, it is impossible to amalgamate a path of length 2 
and one of length 3 with common endpoints in this class. However, the class of graphs 
with a prescribed bipartition does satisfy Fraisst’s conditions. (There are two structures 
in this class which as graphs consist of two nonadjacent vertices.) The Fraisse limit is 
a universal bipartite graph which is distance-transitive of diameter 3. 
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A referee has pointed out the following examples. For k 2 1, let %? be the class 
of finite graphs with a (k + 1 )-ary relation R such that, if R(xo, . ,xk) holds, then 
{x0,..., xk} is a maximal (k + l)-clique. The Frai’sse limit is a k-homogeneous but not 
(k + 1 )-homogeneous graph, which is distance-transitive of diameter 2 if k > 2. 

For another example, take the FraIssC limit of the class consisting of finite sets 
carrying two independent total orders, and then form a graph by joining two points 
whenever the two orders agree on those points. This is the comparability graph of the 
universal two-dimensional partial order, or the universal permutation graph: see [14]. 

A more complicated variation is due to Covington [9], who showed how to give 
extra structure to the class of finite N-free graphs (graphs with no induced path of 
length 3) so that Frai’sse’s conditions hold. The Frai’sst limit is distance-transitive with 
diameter 2. Unlike most Fraisse limits, Covington’s graph has an explicit description. 
Partition the rational numbers into two dense subsets A and B. Now the vertices of the 
graph are the finite subsets of Q, two vertices adjacent if and only if the least element 
of their symmetric difference is in A. 

Henson’s triangle-free graph H has diameter 2 and girth 4, and contains induced 
cycles of length 5. It is easy to see that, in consequence, the Cartesian product H x K2 
is a distance-transitive graph of diameter 5. (The Cartesian product H x K of two 
graphs H and K has an edge {(ui,u~),(u~,v~)} whenever {ui,u2} is an edge of H and 
{vi, u2} is an edge of K.) This procedure applied to other homogeneous graphs does 
not yield distance-transitive graphs (apart from, trivially, the complete graph G = KN~, 
for which G x K2 is the complete bipartite graph with a matching removed). 

5. Homogeneous metric spaces 

In this section we construct distance-regular graphs of arbitrary diameter (possibly 
infinite). They are not homogeneous as graphs, so we construct them as metric spaces. 
We need to be able to recognise metric spaces which come from distance-transitive 
graphs. 

We consider integral metric spaces, that is, metric spaces where all distances are 
non-negative integers. In such a metric space (M,d), we form a graph (the distance-l 
graph of M) by joining two points whose distance is 1. 

The metric space (M,d) is 2-homogeneous, or distance-transitive, if whenever 
d(x, y)= d(u, v), there is an isometry of A4 mapping (x, v) to (u, u). 

We say that the integral metric space M is graphic if the distance in M is equal to 
the distance in its distance-l graph X. 

The following result is straightforward. 

Proposition 5.1. Let M be an integral metric space which is distance-transitive and 
whose distance-l graph is connected. Then M is graphic (and its distance-l graph is 
distance-transitive). 
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Proof. Let G be the distance-l graph, and d M, do the metrics in M and G, respectively. 
By the Triangle Inequality, dM dd o. If d = dM(x, y) < do(x, y) for some x, y, and d is 
minimal subject to this, then there two points at distance d in M which are joined by a 
path of length d in G, and another two points at distance d which are not, contradicting 
the distance-transitivity of M. El 

Theorem 5.2. The class of finite integral metric spaces has the amalgamation 
property; so there exists a unique countable homogeneous graphic metric space M. 

Proof. Let A,Bl,Bz be finite integral metric spaces with A a subspace of both B1 and 
Bz. It suffices to consider the case where BI = A U {x}, 82 = A U {y}: the general case 
can be done by a number of steps of this kind. We have to define an integral distance 
d(x, y) so that the triangle inequality is satisfied. This means that, for any a E A, we 
must have 

ld(a,x) - d(a, y)J <4x, y)<d(a,x) + d(a, y). 

This could only fail if there exist a, b E A such that 

Id(a,x) - d(a,y)l >d(b,x) + d(b,y). 

Assume that this holds and, without loss, that d(a,x)>d(a, y). Then 

d(a,x) - d(b,x)>d(a, y) f d(b, y), 

contradicting the fact that 

d(a,x) - d(b,x)6d(a,b)~d(a,y)$ d(b,y). 

So the choice of d(x,y) is always possible. 

The construction can be varied in a number of ways. 

First variation. Consider the class of finite integral metric spaces with diameter 
at most n, for any fixed n. For, in the above argument, the only possible failure of 
amalgamation would occur if ld(a,x) - d(a, y)l >n, which is impossible if d(a,x) and 
d(a,y) are both at most n. 

If we choose n = 2, the distance-l graph is the random graph. 

Second variation. Consider the class of finite integral metric spaces in which each 
triangle has even perimeter. In this case, 

d(a,x) - d(b,x) z d(a, b) =d(a, y) + d(b, y) (mod 2) 

and so the upper and lower bounds for d(x, y) have the same parity, and we can choose 
d(x,y) to have the same parity as these bounds. 

Note that the distance-l graph of this metric space is bipartite. Hence, the distance-2 
graph on a bipartite block is also distance-transitive, and in fact is isomorphic to the 
distance-l graph of the universal homogeneous metric space. 
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We can combine this variation with the previous one to produce a homogeneous 
metric space of diameter n in which all triangles have even perimeter. For II = 3, the 
distance-l graph is the universal almost-homogeneous bipartite graph (see Section 4). 

Remark. This construction is similar, but not identical, to one due to Komjath 
et al. [ 181, who constructed a countable universal graph omitting odd cycles up to 
some fixed length. No doubt, further such variations are possible. 

Third variation. The upper bound for d(x, y) is always at least 2, so we are never 
forced to prescribe d(x, y) = 1. Hence, for fixed m, the class of integral metric spaces 
containing no m points mutually at distance 1 has the amalgamation property, and we 
obtain a distance-transitive K,-free graph. We can combine this with a diameter bound 
of n as in the first variation. For n=2, we obtain Henson’s homogeneous KM-free 
graph. 0 

6. Homogeneous coboundaries ’ 

In this section, we construct some further distance-transitive graphs as covers of com- 
plete or complete bipartite graphs. These covers are defined by universal homogeneous 
coboundaries, which we now define. 

Let A be an abelian group, fixed throughout most of the discussion. For any graph 
r = (V, E), an oriented cycle in r is an n-tuple (x0,. . . ,x,-l ) (up to cyclic permutation) 
for which {xi,xi+i} is an edge for i =O,. . . , n - 1 (the subscripts taken modn). Its 
rejection is obtained by reversing the order. It is induced if it contains no other edges. 

For k = 0, 1,2, we define a k-cochain on r to be a function from vertices, directed 
edges, or oriented induced cycles, respectively, to A, where if k = 1 we require that 
reversing the direction of the edge changes the sign of the function, and if k = 2 
we require that reflecting the cycle changes the sign. We denote by Ck the set of 
k-cochains; it is an abelian group under pointwise operations. 

A k-cochain f on r defines a relational structure on V, with a relation R, for each 
CI E A For k = 1, the relations are given by 

with a similar definition for k = 0. For k = 2, we need a family of relations for each a, 
one for each possible length of an induced cycle in r. It is clear what automorphisms, 
amalgamation, and homogeneity should mean. 

There are homomorpisms called coboundary maps ~3~ : Ck + Ck+’ for k = 0, 1, given 
by 

S”f(x, Y) = f(v) - f(x) for f E Co, 

~‘f(x~,...,x~-~)=f(x~,~~)+~~~+f(x~_~,x~) for fEC’. 
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We denote the kernel and image of dk by Zk and Bk+' , respectively, and call their 
elements k-cocycles and (k + 1 )-coboundaries, respectively. 

A simple calculation shows that 6’6’ = 0, so that B’ C Z’. In fact, equality holds. 
For suppose that f E Z’. Then the sum of the values of f on the edges of any oriented 
induced cycle is zero. The same holds for any cycle, since it can be decomposed into 
induced cycles, and the contributions of the additional edges cancel. So, if we choose 
a fixed basepoint x0 in each connected component, and define e(x) to be the sum of 
the values of f on the edges of a path joining the relevant basepoint x0 to x, then e(x) 
is well defined, independent of path. It is clear that ,f = doe E B1. 

Similarly, any 1-cocycle which vanishes on the edges of a spanning forest F is zero, 
since any additional edge lies in a fundamental cycle with respect to F. Hence, two 
1-cochains which have the same coboundary and agree on F are equal. 

Consider, for example, the case where n is the cyclic group of order 2, say /i = 
(0, l}, and I‘ is the complete graph. Then a 0-cochain is the characteristic function 
of a set of vertices, and a 1-cochain of a set of edges (which we can take to be the 
edge set of a graph on r). If e is a 0-cochain, then hoe is the edge set of a complete 
bipartite graph. Adding hoe to f is the same as switching the graph corresponding to 
,f with respect to the set of vertices corresponding to e. Thus, switching classes are 
cosets of Z’ in C’, and are mapped bijectively by 6’ to 2_coboundaries, that is, to 
two-graphs (see Section 7). 

Let f be a 1-cochain on r. We define a graph rf as follows: the vertex set is 
V x .4; the vertices (x, a) and (y, /?) are adjacent in r,, if and only if f (x, y) = j - CC. 
Then rf is a cover of r, with covering projection p given by p(x, LX) =x. 

Suppose that f and f’ are 1-cochains with the same coboundary. Then they differ 
by a 1 -cocycle. Since B1 = Z’ , this means that f ‘(x, y) = f (x, y) + e( y ) - e(x) for some 
e E Co. Then the map 

$J : (x, a> H (x, ci + e(x)) 

is easily checked to be an isomorphism from rf to Q. So the cover is determined by 
a 2-coboundary, in other words, by a coset of Z’ in C’. 

The automorphisms are related as follows. 

Proposition 6.1. (a) Let g be an automorphism of the 2-coboundary 6’f. Then there 
is a 0-cochain e such that, for all x N y, we have 

f (xg, yg) = f (x, Y) + e(y) - 4x1. 

(b) If e, f,g are as in (a), and CI, fi E A, then there is an automorphism 3 of r, 
mapping (x, ‘xx) to (xg,p), given by 

Proof. Calculation. 0 
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Theorem 6.2. Let %? denote the age of a countable homogeneous graph r, and assume 
that W has the strong amalgamation property. Then the set of 2-coboundaries on 
graphs in V has the strong amalgamation property. Hence, tf A is finite or countable, 
then there is a unique countable homogeneous 2-coboundary on r. 

Proof. First we show the following. If h is a 2-coboundary on B, A C B, and hlA = Sf, 
then there is an extension of f to a 1-cochain f’ on B with h = 6 f ‘. For let h = Sf “. 
Since f “IA and f have the same coboundary, f “IA = f + 6e for some 0-cochain e. 
Extend e to a cochain e’ on B in any manner, and set f’ = f” - 6e’. Then f’lA = f 
and df’=6f”=h. 

So suppose that we have 2-coboundaries hl, h2 on BI and Bz, and A G Bl,Bz such 
that hl and h2 have the same restriction to A. As above, we can assume that hi = SA 
for i = 1,2, where fi and f2 agree on A. Now amalgamate BI and Bz over A with 
no additional intersection, and define f on C = BI U BZ by the rule that f IB, = fi for 
i = 1,2; then 6 f is the required strong amalgam. 

If n is at most countable, then Frai’sse’s third condition holds. The other conditions 
are obvious. 

It follows from the theorem of Lachlan and Woodrow [20] that the ages of all 
countable homogeneous graphs do have the strong amalgamation property, except for 
unions of countably many finite complete graphs and their complements. However, 
only in two cases do we get distance-transitive graphs: 

Theorem 6.3. Let n be a positive integer or No. Let A be either C; or UP. Let r be 
the countable complete graph, or the countable complete bipartite graph (with both 
parts injinite). Let h be the universal homogeneous 2-coboundary on r, with h = 6’f. 
Then rf is distance-transitive of diameter d and is (d - 2)-arc transitive, where d is 
the girth of r. 

Proof. I give the argument for the complete graph; the complete bipartite graph is 
similar. 

Since a 2-coboundary on an edge is trivial, the group preserving h is transitive on 
ordered edges. Now it is readily checked that (x, a) and (y, /?) lie at distance 2 if and 
only if x # y and f (x, y) # p - a; and at distance 3 if and only if x = y and j3 # a. (So 
the graph is antipodal of diameter 3). Now, the stabiliser of (x, 0) in the automorphism 
group of h fixes all (x, a). So we have to find extra automorphisms. 

These are provided by the group H = Aut(n), acting on the second coordinates of 
the vertices of rf, by the rule 

(Y? P)” = (Y? P” + f (x2 Y) - f (XT v>“) 

for CT E Aut(/l). The groups /i of the theorem are precisely the finite or countable 
abelian groups for which Aut(/i) acts transitively on the non-zero elements of /1. So, 
immediately, we see that the vertices at distance 3 from (x, 0) form an orbit. Also, 
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the stabiliser of (x, 0) acts transitively on the fibres {(y, p): B E A} for y # x. Given 
a fibre, the group Aut(n) fixes (y, f(x, y)) (the unique vertex in the fibre adjacent to 
(x,0)) and acts transitively on the other vertices. So ff is indeed distance-transitive. 

Remark. In the case where r is complete, the graph cf has the property that the 
induced subgraph on the neighbourhood of any point is the random graph. 

Remark. It is easy to see that no other homogeneous graph has a universal coboundary 
giving rise to a distance-transitive cover. For if the girth of r is d, then the antipodal 
cover has diameter d, and so any geodesic in r must be contained in a d-cycle, whence 
r has diameter at most d/2. 

Suppose we want to find a distance-transitive cover of Henson’s universal homo- 
geneous triangle-free graph H by this method. The induced cycles in Henson’s graph 
have length 4 or 5, and the above argument shows that the coboundary must vanish 
on all 4-cycles. This easily implies that it takes a constant value a on 5-cycles, and 
that a is an involution (so we may suppose that .4 is the cyclic group of order 2). The 
resulting cover is the Cartesian product H x K2, which we noted in Section 4. 

7. Further two-graphs 

The covers described in Section 6 are very special, except in the case InI = 2: any 
double cover of a graph is of this form. This is because there are only two ways to 
join two fibres of size 2 by disjoint edges, and these correspond to the two possible 
values of f(x, y). 

In particular, double covers of complete graphs correspond to two-graphs [24]. 
A two-graph on 52 is a 2-coboundary on the complete graph on 52 with values in 
Z/2. In other words, it is a set T of 3-subsets of 0, with the property that any 4-set 
contains an even number of members of T. 

The double cover is distance-transitive if and only if the two-graph admits a 2- 
transitive automorphism group. All finite 2-transitive two-graphs have been determined 
by Taylor [26]. Apart from sporadic examples, these are associated with vector spaces, 
either of fixed dimension over arbitrary finite fields (those admitting PSL(2,q), 
PSU(3,q), or 2G2(q)), or of arbitrary even dimension over a fixed field (those ad- 
mitting Sp(2n,2) or 2 . 2n. Sp(2n 2)). These have infinite analogues, constructed in the , 
same way. In fact, the methods of [6] for constructing more general covers of complete 
graphs admitting classical groups of Lie rank 1 also work more generally. 

Examples with no finite analogues are less common. There is a countable universal 
homogeneous two-graph, otherwise the universal homogeneous 2-coboundary over Z/2 
on the complete graph. The vertex neigbourhood is the random graph R. It can also be 
constructed as the coboundary of R, where a graph is regarded as a 1-cochain on the 
complete graph, edges and non-edges corresponding to values 1 and 0, respectively. 
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Thus, it is a reduct of the random graph, one of the five reducts appearing in Thomas’ 
classification [27]. 

Two further examples are constructed from trees. They depend on the following two 
constructions of two-graphs from trees [7]: 
??Take Q to be the edge set of a tree. A triple of edges is in T if and only if the 

smallest subtree containing these edges contains a trivalent vertex. 
?? Colour the internal vertices black and white. Now take s2 to be the set of leaves of 

the tree; a triple of leaves is in T if and only if the trivalent vertex of the smallest 
tree containing the three leaves is black. 

The two classes of two-graphs are the ages of two countable, almost-homogeneous (and 
in particular, 2-transitive) two-graphs, and hence give rise to two distance-transitive 
double covers of complete graphs. They can be characterised by forbidden substruc- 
tures: the pentagon and hexagon in the first case, the pentagon in the second. (These 
are the two-graphs which are the coboundaries of the 5- and 6-cycle graphs.) 

8. Circular structures 

The next class of examples is based on the unit circle. In order to obtain countable 
graphs, we will use the countable analogue of the unit circle, the set Q of all complex 
roots of unity. The group of permutations preserving the cyclic order on this set is 
transitive on k-sets for all k (Cameron [2]). 

Let n be an integer greater than 1. We partition s2 into parts of size n, two points z 
and w belonging to the same part if and only if the argument of wz-l is a multiple of 
27c/n. (For n = 2, the equivalence classes are antipodal pairs.) A set d of representatives 
of the equivalence classes is good if it is dense in Sz. Good sets exist uniquely: 

Proposition 8.1. (a) If we choose representatives of the equivalence classes randomly, 
the resulting set is good with probability 1. 

(b) Any two good sets are equivalent under a permutation of !S preserving the 
cyclic order. 

Now take A to be a good set. Then A carries the cyclic order induced from Q. In 
addition, we define n binary relations Ro, RI,. . . , R,_l on A by the rule that (z, W) E Rj 
if and only if 

2nj/n < arg(wz-’ ) <2x( j + 1)/n. 

By our choice of A, each pair of distinct points satisfies Rj for a unique value of j. 
The converse of Rj is R,_ 1-j. The structure A, equipped with the relations Ro, . . . , R,_l 
and the circular order, is homogeneous. 

Not also that the set A is equivalent to its reflection; so there is a permutation of A 
which interchanges each relation with its converse (and reverses the circular order). 
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For n = 2, the relations RO and RI form a converse pair of tournaments, isomorphic 
to each other. Lachlan [ 191 showed that there are exactly three finite homogeneous 
tournaments: this one, the transitive tournament Q, and the Fraisse limit of the class 
of all finite tournaments. 

For n = 3, the isomorphic converse digraphs Ro and R2 arise as a sporadic example in 
Cherlin’s classification of homogeneous digraphs [8]. The relation RI is self-converse, 
and hence is a graph. It is not homogeneous, but Droste et al. [lo] showed that it 
has the weaker property of being set homogeneous: this means that, if two finite 
induced subgraphs A and B are isomorphic, then some automorphism of the graph 
carries A to B. These authors showed, moreover, that if a countable graph is 8-set 
homogeneous (this means that the above condition holds for subgraphs A and B with 
at most 8 vertices) but not 3-homogeneous, then it is isomorphic to the graph RI or 
its complement RO U R2. 

These examples generalise. For any n, consider the graph Ro U R,_, . The ends 
of a path of length d have angular separation less than 2xd/n, and so are in the 
relation Rj or R,_ 1 _j for j <d. It follows that the graph has diameter [n/21 and is 
distance-transitive. Also, if II is odd, say n = 2m + 1, consider the graph R, (whose 
edges join points at greatest angular distance). Then a path of length 2k joins points 
in the relation Rj or Rzm_j for j< k, while a path of length 2k + 1 joints points in 
the relation R,+j or R,-j for j< k. So again the graph has diameter m + 1 and is 
distance-transitive. 

The relation of these two distance-transitive graphs on the same set of vertices (for 
n odd) resembles that of the Johnson graph J(m, 2m + 1) and the ‘odd graph’ Om+l in 
the finite case. 

I do not know whether there are higher-dimensional analogues of these graphs, with 
a sphere replacing the circle. 

9. Hrushovski’s graphs 

Some of the most remarkable distance-transitive graphs to have been found are 
described by the following theorem. 

Theorem 9.1. For every natural number d, there are 2No non-isomorphic countable 
graphs which have diameter d and girth 2d, and are distance-transitive, d-arc 
transitive, and No-categorical. 

I will not give a complete proof of this theorem, but will follow the original con- 
struction of Hrushovski [16]. To get the theorem as stated, a bit more work is needed; 
this is due to David Evans (personal communication). 

The graphs I consider are Hrushovski’s graphs HE for suitable a. Hrushovski dis- 
covered a very powerful strengthening of Fraisd’s method for constructing countable 
structures by amalgamation. In his variant, not all amalgamations are required, but 
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only those where the bottom structure has a certain closure property. Hrushovski never 
published the precise result described here, though he did use similar methods for other 
purposes in model theory [ 161. A survey, including these graphs in a more general 
context, can be found in the article by Wagner [28]. Hrushovski’s graphs have diam- 
eter d and have just two orbits on pairs of vertices at distance d; they are (d - 1)-arc 
transitive. 

I will give a brief account. This is a description, rather than a construction, of the 
graphs, since no account of the proof of Hrushovski’s theorem is attempted. Let VX 
and EX denote the vertex and edge sets of the graph X. For an irrational number o! in 
(4, l), we define 6(X)= IVXl - alEXI. We define a function f by 
?? k(n) is the greatest rational approximation to l/cc from below with denominator not 

exceeding n; 
0 c(n) = c:‘:,’ k(i); 
0 f(n)=n - crc(n). 

We choose an irrational tx such that f is unbounded. (The set of such tl is residual, 
so we can find one arbitrarily close to any prescribed value.) 

Hrushovski’s graph H” has the property that its age 59 consists of all graphs X 
such that, for all induced subgraphs X’ of X, we have 6(X’) 3 f (1 VX'l) (equivalently, 

lE(X’)I Gc(lvx’l)). 
A finite graph X E V is closed if X c Y E V” implies 6(X) d 6( Y). (We can take 

strict inequality here: the irrationality of CI means that if graphs have different numbers 
of vertices, the values of 6 are different.) Now, if X is closed, then any embedding 
Xc Y in the age can be realised inside Hz; and any isomorphism between closed 
subgraphs can be extended to an automorphism. The first property means that the 
closure of X depends only on its isomorphism type: it is closed if any Y in the 
age properly containing it has 6(Y) > 6(X). We can this think of ‘closed’ as meaning 
‘closed in H”‘. 

Since f(n + 1) - f(n) = 1 - c&(n), with k(n)< l/a, we see that f is strictly in- 
creasing. So any graph X on the boundary of the age, that is, with 6(X) = f (I VXI), 
is closed. For example, if c1> (d - 1 )/d, then k(n) = 1 for IZ Gd, whence c(n) = n - 1. 
Thus, every tree on at most d vertices is closed. In particular, H, is (d - I)-arc 
transitive. 

It is trivial that 6(X u Y) + 6(X n Y) < 6(X) + 6(Y), with equality if and only 
if there are no edges from X\Y to Y\X. Using this, one shows that, if A and B are 
closed, so is A n B. So the closure of X, written cl(X), is the unique smallest closed 
subgraph containing X. Moreover, we have 

since f is unbounded, it follows that the size of the closure of a set is bounded. 
We take LX to lie in the interval 

(d - l)/d<a<(2d - 1)/(2d + 1). 
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k, c and n behave. First, since 1 + 2/(2d - 

From this, we deduce 

Range c(n) f(n) 
n<d n-l - n - (7r - 1)o 

d+lLn<2d-1 n - 1 + (n - d)/d R - (n - 1 + (n - d)/d)cr 

n = 2d 2d + l/d(2d - 1) 2d( 1 - cr) - a/d(2d - 1) 

n=2d+l Pd + 110 + .&$ Pd + 110 - (1 + z&i+4 

From the values of c(n), we see that Lc(n)J = n - 1 for n <2d - 1. So the graphs on 
at most 2d - 1 vertices in the age are forests, and conversely. However, [c(2d)] = 2d, 
so the age contains a 2d-cycle. We conclude that the girth of the graph is 2d. 

To determine the orbits of the automorphism group on pairs of vertices, we have to 
compute the closure of a pair of vertices. If X is an edge, then X is closed, as noted 
above; so the automorphism group is transitive on (ordered) edges. 

Now, let X be a non-edge. Then 6(X) = 2, so the closure A of X satisfies 6(A) ~2. 
Wehavef(2d+1)=(2d+l)(l-(l+l/d(2d-l))a>2(byourchoiceofa<d(2d- 
l)‘/(d - 1)(2d + 1)2 - note that (2d - 1)/(2d + l)<d(2d - l)‘/(d - 1)(2d + 1)2). So 
the closure of X has at most 2d vertices. Moreover, if Y is a tree on d + 2 vertices, 
then 6(Y) = 2 + 1/(2d + 1)>2, so if A is a tree then it has at most d + 1 vertices. If 
a path on d + 1 vertices is not closed, then its closure is a 2d-cycle. So the closure of 
a non-edge is either a path of length at most d or a 2d-cycle. All cases occur. (We 
have seen that a path of length at most d - 1 is closed. A cycle C on 2d vertices is 
closed since, as we have seen, 6(C) < 2 but f(n) > 2 for n > 2d.) 

It follows that P has diameter d and girth 2d and is (d - 1)-arc transitive, as 
asserted. 

The graphs H” for different values of c( have different ages, and so are non- 
isomorphic. 

As noted earlier, Evans has modified this construction to produce such a graph which 
is distance-transitive. In Evans’ graph, it is possible for a non-adjacent pair of vertices 
to be closed: this happens if and only if the vertices lie at distance d. Note that, since 
such a graph E are distance-transitive with diameter d and girth 2d, and contain an 
induced (2d + 1)-cycle, it follows as for Henson’s triangle-free graph that E x K2 is a 
distance-transitive double cover of E with diameter 2d + 1. 
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