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Abstract
We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and
texture from computed tomography (CT) scans of non–small cell lung cancer (NSCLC). CT images are dependent
on various scanning factors. We focus on characterizing image features that are reproducible in the presence
of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans
were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented
using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-
dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered
to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was
measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features,
normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across
segmentation methods found with CCCTreT and DR ≥ 0.9 and R2

Bet ≥ 0.95. These reproducible features were
tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an
area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an
independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level
nonuniformity, was statistically significant in separating the samples into survival groups (P ≤ .046).
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Introduction
Lung cancer has been one of the most common forms of cancer and
a leading cause of death in the United States and most of the world.
Although a small percentage (about 15%) of the cases are curable
when detected early, the 5-year survival rate remains low at about
16.6% [1,2]. The disease has been very visible with the publication
of the association of increased risk with tobacco usage [3]. Early de-
tection of lung cancer through screening has resulted in adopting
lung computed tomography (CT) as the standard modality for early
detection of the disease. In the last decade, enormous advancements
in genomics technologies have contributed to the understanding of
the biology of lung cancer. Despite these advancements, the survival
rate of patients with lung cancer has not changed significantly. There
has been great improvement in the imaging technologies in the last
decade, especially in CT that has seen increases in the number of
detector rows, decreased rotation time, sophisticated radiation dosing
methods, helical scanning, and better reconstruction methods. All
these improvements have led to better capturing of the anatomic
structure for the regions of interest (ROIs).
The tumor regions in CT images have traditionally been described

qualitatively to measure size and degree of spread, organ invasion, as
well as aggressiveness [4,5]. Such features are typically described and
quantified subjectively (i.e., “mildly irregular,” “highly spiculated,”
and “moderate necrosis”). Currently, the standard method to mea-
sure tumor response to therapy using CT remains the Response Eval-
uation Criteria in Solid Tumors (RECIST) that is a unidirectional
linear measurement to estimate tumor diameter [6]. The RECIST
criteria assume a spherical tumor with linear growth uniformly in all
directions. A simple linear measurement allows the practicing clinician
to make an easy assessment; however, the linear growth assumption is

often violated. This is reflected in high interobserver variability in find-
ing the lesion boundary between radiologic experts due to nonuniform
growth (and other anatomic structural factors), resulting in RECIST
measurement variability [7]. Typically, clinical response criteria involve
using RECIST linear measurements to discretely categorize patients
into “complete response,” “partial response,” “stable disease,” and “pro-
gressive disease.” This categorization is a “coarse” metric, which is seen
as a loose bound to categorize growth: partial response is defined by
30% linear sum reduction. Although these metrics are considered
satisfactory under ideal conditions, reduction in tumor size often does
not reflect clinicopathologic response [8,9].

The CT tumor measurement “bias” and “variance” are critical issues
with widespread influence especially in clinical trials that study the effec-
tiveness of drugs in patient treatments [10]. Hence, there is a need to
identify features from CT images that can be reliably extracted and
converted into quantifiable, mineable data as potential prognostic, pre-
dictive response biomarkers. However, to be useful as biomarkers, fea-
tures must be reproducible, quantifiable, and objective [11]. National
Cancer Institute (NCI) funded RIDER project [12] has been a tremen-
dous resource and enabled this repeatability study.

In prior work, we have demonstrated that a semiautomated (ensem-
ble) multiseed point segmentation can reliably generate segmented
volumes, as defined by the Dice similarity index (SI). The SI between
machine-segmented lesions was >0.93, whereas the SI for manual seg-
mentation was 0.73 across a test set of 129 patients [11]. Hence, lesions
in the current study were segmented by both manual and ensemble
methods, and 219 3D (and 110 2D) features were extracted from these
segmented volumes. Although we began with a large feature set com-
pared to prior conventional radiologic analyses [13], it is expected that
there may be redundancy in these features due to various limitations on

Figure 1. Process flow for finding representative image features using test-retest data set and testing for prognosis using independent
data set.
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the sample size, texture, and consistency in the population. Thus, to
reduce the dimensionality of this agnostic feature set, we first filtered
features on the basis of their reproducibility, i.e., those with the highest
intrafeature concordance correlation coefficients (CCCTreT) between
the repeats. As a second filter, we used dynamic range (DR) on the
basis of the interpatient variability normalized by test-retest difference.
Finally, redundancy was assessed by computing an interfeature coeffi-
cient of determination (R2Bet) between all possible pairs of features, and
a representative feature set was found by combing dependent groups to
form a reduced set. These features were then tested for their ability to
predict a radiologist-created prognostic score. In an effort to create a
prognostic reproducible biomarker, 59 independent non–small cell

lung cancer (NSCLC) samples of adenocarcinoma subtype were curated,
and 219 3D-image features were extracted. A subset of repeatable fea-
tures was obtained on the basis of the current study, and these tested
for prognostic ability. Figure 1 pictorially illustrates the process flow.

Materials and Methods
The CT of the thorax for 32 patients in the test/retest (baseline and
follow-up) was acquired within 15 minutes of each other, using the
same CT scanner and imaging protocol [13]. The patients in the study
were asked to get off the scan table between the repeats. Unenhanced
thoracic CT images were acquired using Light Speed (GE Medical
Systems, Milwaukee, WI) or VCT scanner with 16/64 detectors

Figure 2. SI of manual to ensemble segmentation. The average SI is 79% and 78% for test and retest data sets.

Figure 3. Bland-Altman plot for test and retest to data is shown for conventional univariate, bivariate, and volume features in (A) manual
and (B) ensemble segmentations.
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in 28/4 patients, respectively. The scan voltage was set at 120 kVp,
pitch 1.375:1 (0.984 for VCT) with rotation time of 0.5 second, and
image slices at 1.25 mm were reconstructed using a lung convolution
kernel without overlap. The CT scans were acquired from patients (mean
age = 62.1 years; range = 29-82 years) with NSCLC. There were 16 men
(mean age = 61.8 years; range = 29-79 years) and 16 women (mean age =
62.4 years; range = 45-82 years). All patients had a primary pulmonary
tumor of 1 cm or larger. The CT lung cancer images were downloaded
from the Cancer Imaging Archive (http://cancerimagingarchive.net).
The images are contained in “RIDER Lung CT,” under the “Collec-
tions” sections.

Segmentation of Tumors
We used Definiens Developer XD© (Munich, Germany) as the

image analysis platform to perform tumor segmentation and feature
extraction. Definiens is based on the Cognition Network Technology
[14,15] that allows the development and execution of image analysis
applications. Here, the Lung Tumor Analysis application was used
[16]. Lung Tumor Analysis is a semiautomated three-dimensional
“Click&Grow” approach for segmentation of tumors under the guid-
ance of an operator. To perform the seed-based segmentation of a target
lesion, the latter has to be completely within a lung-image object. In
cases where a medical expert concluded that the automated prepro-
cessing described above failed to accurately identify the border between
a target lesion and the pleural wall, it was necessary to enable correction
of the automated lung segmentation.
The manual segmentation process required many human inter-

actions to get the “correct” segmentation boundaries. In our study,
we used a trained radiologist to assist in the manual segmentation

process. Consequently, we developed an automatic single-click ensem-
ble segmentation (SCES) algorithm [11]. In brief, the SCES algorithm
uses the initial seed point to automatically generate multiple seed points
with region growing. It makes use of the “Click&Grow” algorithm by
using a manually selected initial seed point to define a small circum-
scribed area within the tumor boundary, within which multiple seed
points are automatically generated. An ensemble segmentation is ob-
tained from the multiple regions that were grown from these multiple
seed points. In this algorithm, an ensemble segmentation refers to a set of
different input segmentations (multiple runs using the same segmenta-
tion technique but different initializations) that are combined to gen-
erate a “consensus” segmentation.

Once the segmentation of all target lesions was deemed sufficiently
accurate, statistics for each lesion, such as volume, center of gravity,
and average density, all readily available as object features within the
commercial cognitive network language, were extracted. Figure 2
shows a comparison of the segmentation masks between segmenta-
tions and repeats.

In total, 64 lesions were segmented, i.e., 2 per patient, and quan-
titative values of image features were extracted from each segmented
volume. Figure 3 shows a Bland-Altman plot of conventional size
measurements (long diameter, longest diameter*short axis, and vol-
ume), estimated after manual and ensemble segmentations (Table 1).
The volume distribution showed a diverse population with relatively
high variability in midsized to smaller sized tumors. Half the samples
had small volume ≤ 4 cm3 tumors, whereas the rest of them are
larger (the largest group close to 120 cm3). Figure 4 shows an
example of a patient tumor delineated with manual segmentation
for test/retest scans.

Table 1. CCC for Conventional Size-Based Measures (RECIST and WHO) Are Reported with 95% Confidence Limit Estimated by Bootstrap Resampling (n = 5000).

Feature Name Manual CCC Ensemble CCC Manual and Ensemble CCC

Univariate: (RECIST)
Longest axis (cm) 0.9963 (0.967, 0.9998) 0.9920 (0.9509, 0.9997) 0.9943 (0.9523, 0.9997)
Short axis (cm) 0.9951 (0.9047, 0.9952) 0.9868 (0.9078, 0.9995) 0.9878 (0.9084, 0.9995)
Bivariate: (WHO)
(Longest axis *Short axis) 0.9855 (0.9384, 0.9997) 0.9757 (0.8342, 0.9988) 0.9807 (0.8848, 0.9992)
Volumetric:
Volume (cm3) 0.9934 (0.9571, 0.9997) 0.9913 (0.9552, 0.9997) 0.9924 (0.9574, 0.9998)

Figure 4. Example of slice and 3D region for a sample segmented using manual method for test and retest of the patient (top and
bottom rows). The subset of slices was arbitrarily selected by increasing slice numbers (matched for test and retest) to approximately
cover the entire volume.
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Image features. We extracted several types of image features, both
in 2D and 3D with most of our analysis directed on using 3D fea-
tures. In this work, we present 3D features that are broadly divided
into the following two classes: nontexture and texture features. Each
of these classes can be subdivided into several categories on the basis
of their functional description, which also facilitate analysis and presen-
tation. Specifically, nontexture class includes tumor size, tumor shape,
and tumor location categories, and texture class includes pixel histo-
gram, run length, co-occurrence, Laws, and wavelet feature categories.
We note that texture features have been shown to be good descriptors
of the tumor and some have shown to be useful in survival prediction
[17]. In this study, we have used 219 three-dimensional and 111 two-
dimensional image features. Most of these were implemented within
the Definiens platform [18], whereas some were computed by imple-
menting the algorithms in C/C++ (former Bell Labs USA) and
MATLAB (Mathworks, Natick, MA). All the features were obtained
from the ROI (i.e., after the segmentation). The 2D features are
expected to have lower variability in measurement due to limited span
of the ROI; in this repeated experiment, matching slices between test/
retest has been a challenge, which adds to measurement noise. In this
study, our focus has been geared toward 3D features, which provide
better description of the tumor volume region.

Texture descriptors provide measure of properties such as smooth-
ness, coarseness, and regularity, as no standard description exists.
Typically, the following three principal approaches are used to de-

scribe texture: statistical, structural, and spectral [18]. Our features
cover all the categories and use most popular approaches for texture
computation. A brief description of each feature category is provided,
and additional information is provided in the Supplemental section.

Nontexture features. Tumor size, shape, and location descrip-
tors make up our nontexture features.

� Tumor size category contains features that can be broadly catego-
rized as univariate (longest diameter, short axis, width, and other
size measurements), bivariate (area, length by width, length by
thickness, and other size measurements), and volume measure-
ments both in pixel units and in native resolution (centimeters).

� Tumor shape category feature measures circularity of the tumor
in various forms: compactness, largest elliptical fit in the tumor
region, asymmetry, density, and compactness. Asymmetry is a
measure of variance from round shape (disproportional length).
It is computed as a ratio of smallest and largest Eigen values
of the tumor. Density describes spatial distribution of the
pixels with respect to cubical object. The density is higher
when the volume of the object follows a cubical shape (lower
when it is like a filament). Compactness measures the cuboid
occupied by the object computed as a ratio of the first three
Eigen values to the number of voxels in the tumor. The
“MacSpic” feature measures the number of countable spicu-
lations in the tumor.

� Tumor location category feature measures tumor position with
respect to anatomic structure of the lung. The Attached to
Pleural is a binary flag that tells if the tumor (in 3D) is attached
to lung wall. The Main direction feature is a measure of the
angle between the best-fit line on the centers of gravity for each
2D slice to the z-axis.

Texture features. In CT images, texture is typically attributed
to gray-level changes seen by a radiologist. In other types of imaging,
in addition to gray-level changes, texture is well characterized in trans-
formed domain (kernel based or functional mapping). These features
have been shown to be useful in medicine [19]. We categorized

Table 2. Histologic Sample Details on Both the Arms Split at the Median Value of Feature
(Run-Length GLN).

Adenocarcinoma (Dichotomized: Run-Length GLN feature)

All < Median ≥ Median

No. of samples 59 29 30
Median survival (mo): 27 30 21
Mean and SD of survival 26.19 (15.97) 28.86 (15.11) 23.6 (16.59)
Vital statistics (alive/dead) 30/29 19/10 11/19
Gender (male/female) 28/31 15/14 13/17
TNM score (1A/1B) 13/8 10/2 3/6
TNM score (2A/2B) 2/9 2/3 0/6
TNM score (3A/3B/unknown) 9/3/14 7/1/5 2/2/9

Table 3. Features Obtained after CCC (Test and Retest) and DR Filtering Procedures for Manual and Ensemble Segmentations Using (A) 3D Features and (B) Outlier-Removed 3D Features.

Feature Category No. of Features: CCCTreT and DR ≥ 0.90

Manual Segmentation Ensemble Segmentation Common (Manual and Ensemble)

(A) CCCTreT and DR: 3D features
C1: Tumor size 12 (92.31%) 11 (84.62%) 11 (84.62%)
C2: Tumor shape 6 (50%) 4 (33.33%) 4 (33.33%)
C3: Tumor location 11 (78.57%) 8 (57.14%) 8 (57.14%)
C4: Histogram 6 (75%) 3 (37.5%) 3 (37.5%)
C5: Run length and co-occurrence 6 (35.29%) 6 (35.29%) 6 (35.29%)
C6: Laws 16 (12.8%) 74 (59.2%) 16 (12.8%)
C7: Wavelets 15 (50%) 0 (0%) 0 (0%)
All Categories 72 (32.88%) 106 (48.4%) 48 (21.92%)

(B) CCCTreT and DR: Filtered 3D features
C1: Tumor size 12 (92.31%) 12 (92.31%) 8 (61.54%)
C2: Tumor shape 6 (50%) 8 (66.67%) 7 (58.33%)
C3: Tumor location 11 (78.57%) 6 (42.86%) 5 (35.71%)
C4: Histogram 3 (37.5%) 1 (12.5%) 1 (12.5%)
C5: Run length and co-occurrence 4 (23.53%) 5 (29.41%) 1 (5.88%)
C6: Laws 13 (10.4%) 68 (54.4%) 8 (6.4%)
C7: Wavelets 19 (63.33%) 23 (76.67%) 19 (63.33%)
All Categories 68 (31.05%) 123 (56.16%) 49 (22.37%)

76 Reproducible and Prognostic Image Features Balagurunathan et al. Translational Oncology Vol. 7, No. 1, 2014



histogram, run length, co-occurrences, Laws kernel, and wavelet-based
features as textures.

� Pixel intensity histogram features are computed on the pixel
intensity (in Hounsfield units or HU) for the region (voxel) of
interest. First and higher-order statistics, entropy, and energy on
the tumor volumes are reported as features.

� Run-length and co-occurrence features may find some correlation
to radiologist-visualized texture. The run length is defined as a
measure of contiguous gray levels along a specific orientation.
Fine textures tend to have short run length, whereas coarser
texture will have longer run lengths with similar gray level.
These features capture coarseness in 3D-image structure and
have been found useful in a number of texture analyses
[20,21]. If R (k,p) is the run-length matrix n1 by n2, at gray-

level k, then the number of such lengths equals p, along an
orientation, in the volume (x,y,z). One useful measure of run
length in this study has been the measure of nonuniformity
(RunLGLN) that measures extent of smoothness or similarity
in the image.

RunLGLN =
1
n
∑
n1

k¼1
∑
n2

p¼1
Rðk; pÞ

 !2 !
ð1Þ

We compute 11 different run-length metrics, each of which has a
property to capture gray-level variations in the tumor. The co-occurrence
matrix contains the frequency of one gray-level intensity appearing in a
specified spatial relationship with another gray-level intensity in a given

Figure 5. Distribution of DR and CCC computed on test/retest data in (A) manual and (B) ensemble segmentations.
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range. The co-occurrence matrix is first constructed, and different
formulations of the values are then calculated where measurements
include contrast, energy, homogeneity, entropy, mean, and maximum
probability [22].

� Laws features are constructed from a set of five one-dimensional
kernels each designed to reflect a different type of structure in the
image [23]. The kernel has the ability to enhance certain regions
of the image. About 125 features are computed on different sets
of kernel and orientation.

� Wavelet features are kernel-based functions that decompose the
image (3D) into orthogonal components. We used Daubechies
(Coiflet) wavelets in this study [24,25]. Statistics on the decom-
position have been widely used in image texture identification.

In this study, we calculate two metrics (energy and entropy)
along each direction of the 3D-image volume with two levels
of decomposition yielding 30 features.

Two-dimensional features. Traditionally, image processing has
been carried out on 2D gray-scale images; however, most proposed fea-
tures could be extended to 3D. The advantage of 2D features includes
easier interpretability and visualization. In this study, the tumors were
delineated in 3D using the segmentation methods described in the pre-
vious section. Slices (2D) in the ROI were matched between test/retest
scans by a trained radiologist. The identification criteria were based on
the anatomic structure of the lung. On a 2D slice, we extracted 110 2D
features that describe the shape, size, and texture of the lesion. Addi-
tionally, 2Dmeasurements are an estimate of the true tumor size that is

Figure 5. (continued).

78 Reproducible and Prognostic Image Features Balagurunathan et al. Translational Oncology Vol. 7, No. 1, 2014



dependent on segmentation methods (see Supporting Analysis section,
Tables O1–O3). The slice matching between test and retest experi-
ments adds additional variations that may not be uniform across the
features, making it difficult to discern test/retest variability.

Repeatable and representative features. Finding features that are
consistent in repeated experiments is a prerequisite step, which is fol-
lowed by a redundancy reduction step to obtain an informative set.
We tested the consistency between the test and retest experiments.
For each image feature, the CCCTreT was computed to quantify repro-
ducibility between two scans performed on each patient. The CCCTreT

measures deviation from the 45° line, which is appropriate for repeated
experiments and shown to be superior to the Pearson correlation
coefficient [26]. On this set of highly reproducible features, the next
step was to select the features with a large interpatient variability, using
the “dynamic range” metric. The normalized DR for a feature was
defined as the inverse of the average difference between measurements
to the observed biologic (interpatient) range:

DR = 1 −
1
n
∑
n

i¼1

jTestðiÞ − RetestðiÞj
Max − Min

� �
ð2Þ

where i refers to an individual sample from the n patient cases;
the maximum and minimum are computed on the entire sample set.
The DR runs from 0 to 1. Values close to 1 are preferred and imply
that the feature has a large biologic range relative to reproducibility. In-
creasing variation between the test-retest repeats will lead to a reduction
in the DR value. Screening for a large DR will eliminate features that
show greater variability in the repeat scans compared to the range of the
coverage. The last step is to eliminate redundancies, on the basis of the
calculation of dependencies within the group. We computed the R2Bet
between the remaining features to quantify the dependency. The R2 has
a range of 0 to 1 and is a ratio of known variance measured by linear
model to total variance between two variables, where one is the out-
come and the other is used to form the predictor. Values close to
1 would mean that the data points are close to the fitted line (i.e., closer
to dependency) [24,25]. The R2 of simple regression is equal to the
square of the Pearson correlation coefficient [27,28]. The features were
grouped on the basis of the R2Bet between them; in this subset, one
representative that had the highest DR was picked. The procedure
was repeated recursively to cover all the features, resulting in a most
representative group. This was carried out in two ways: done indepen-
dently for each category and across categories.

We implemented different cutoff values for R2Bet to consider the fea-
ture as linearly dependent with any other features in the list. Because
the purpose of this third filter is to eliminate redundancies (and not
necessarily identify independence), features with R2Bet values in the

Table 4. Representative Image Features That Were Obtained by Combining Those with High
R2Bet, with CCC and DR ≥ 0.90.

(A) No. of Representative Features (CCCTreT and DR ≥ 0.90; Combine R2Bet ≥ 0.95)

Category Redundancy Reduction
Categorywise

Redundancy Reduction across
All Categories

All Samples After Outlier
Removal

All Samples After Outlier
Removal

C1: Tumor size 9 8 7 9
C2: Tumor shape 3 5 2 3
C3: Tumor location 6 5 6 5
C4: Histogram 3 1 2 1
C5: Gray scale 4 1 2 1
C6: Laws 4 6 4 6
C7: Wavelets 0 5 0 5
Total 29 31 23 30

(B) (i) Representative Feature (CCCTreT ≥ 0.90 and DR ≥ 0.90) Obtained at R2Bet ≥ 0.95
(All Samples)

(F No.: Suffix No. represents feature index in the total list of 219.)
Category C1: Representative features (9):
F1:LongDia; F2:ShortAx-LongDia; F3:ShortAx; F6:Vol-cm; F33:Area-Pxl; F36:Width-Pxl;
F37:Thickness-Pxl; F38:Length-Pxl; and F41:Border-Leng-Pxl

Category C2: Representative features (3):
F14:9c-3D-Compact; F25:Density; and F30:Shape-Index
Category C3: Representative features (6):
F8:8a-3D-Attch-Pleural; F9:8b-3D-Bord-to-Lung; F15:9d-3D-AV-Dist-COG-to-Border; F16:9e-
3D-SD-Dist-COG-to-Border; F17:9f-3D-Min-Dist-COG-to-Border; and F19:10a-3D-Relat-
Vol-Airspaces

Category C4: Representative features (3):
F4:Mn-Hu; F186:Hist-Energy-L1; and F187:Hist-Entropy-L1
Category C5: Representative features (4):
F44:AvgCooC-Constrast; F48:AvgGLN; F51:AvgLRE; and F54:AvgRLN
Category C6: Representative features (4):
F67:3D-Laws-9; F74:3D-Laws-16; F103:3D-Laws-45; and F128:3D-Laws-79
Category C7: None

(B) (ii) Removing Outliers

Representative feature (CCCTreT ≥ 0.90 and DR ≥ 0.90) obtained at R2Bet ≥ 0.95 (prefix rep-
resents feature index in the total list of 219).

Category C1: Representative features (8):
F1:LongDia; F2:ShortAx-LongDia; F3:ShortAx; F6:Vol-cm; F34:Volume-pxl; F36:Width-Pxl;
F37:Thickness-Pxl; and F38:Length-Pxl

Category C2: Representative features (5):
F13:9b-3D-Circularity; F14:9c-3D-Compact; F25:Density; F30:Shape-Index; and F32:RectangularFit
Category C3: Representative features (5):
F9:8b-3D-Bord-to-Lung; F12:9a-3D-FractionalAnisotropy; F16:9e-3D-SD-Dist-COG-to-Border;
F17:9f-3D-Min-Dist-COG-to-Border; and F18:9g-3D-Max-Dist-COG-to-Border

Category C4: Representative features (1):
F186:Hist-Energy-L1
Category C5: Representative features (1):
F48:AvgGLN; F51
Category C6: Representative features (6):
F62:3D-Laws-4; F68:3D-Laws-10; F69:3D-Laws-11; F72:3D-Laws-14; F143:3D-Laws-94; and
F182:3D-Laws-133

Category C7: Representative features (5):
F197:3D-WaveP2-L2-8; F206:3D-WaveP1-L2-17; F208:3D-WaveP1-L2-19; F211:3D-WaveP1-
L2-22; and F216:3D-WaveP1-L2-27

(C) Common between Manual and Ensemble: Across Categories (All Samples)

Concordance cutoff: CCCTreT ≥ 0.90 and DR ≥ 0.90
Representative features (23): Combine features with R2Bet ≥ 0.95
C1: Tumor size:
F1:LongDia; F2:ShortAx-LongDia; F3:ShortAx; F6:Vol-cm; F33:Area-Pxl; F37:Thickness-Pxl;
and F38:Length-Pxl

C2: Tumor shape:
F25:Density and F30:Shape-Index
C3: Location:
F8:8a-3D-Attch-Pleural; F9:8b-3D-Bord-to-Lung; F15:9d-3D-AV-Dist-COG-to-Border; F16:9e-
3D-SD-Dist-COG-to-Border; F17:9f-3D-Min-Dist-COG-to-Border; and F19:10a-3D-Relat-
Vol-Airspaces

Table 4. (continued ).

(C) Common between Manual and Ensemble: Across Categories (All Samples)

C4: Pixel intensity histogram
F4:Mn-Hu and F187:Hist-Entropy-L1
C5: Co-occurrence and run length:
F48:AvgGLN; F51:AvgLRE
C6: Laws features:
F67:3D-Laws-9; F74:3D-Laws-16; F103:3D-Laws-45; and F128:3D-Laws-79

(A) Number of 3D features. (B) Feature description. (C) Feature description across categories.
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Figure 6. Hierarchial clustering of repeatable image features (CCC and DR > 0.9) in test/retest data and across segmentations. The
representative features are obtained by removing features with high dependency (R2 ≥ 0.95); those that pass the cutoff are outlined
(see Table 4C ). The feature value was averaged over different segmentations (manual and ensemble) and repeats (test and retest). The
features were standardized to 0 to 1. The clustering was arbitrarily stopped at seven and four groups on feature and sample axes,
respectively. The F No. indicates feature position in the overall set of 219 3D features.
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range ≥0.75 to ≥0.99 were found. This was repeated for different
segmentation methods (manual, ensemble, and common between).

Prognostic Scoring and Independent Data Set
The RIDER test/retest data are a unique set that enables us to

measure the effect of scanner and patient variability on the extracted
features. Due to the unavailability of clinical information, we have
created a physician (radiologist)–based prognostic risk score. Putting
the samples into prognostic groups enables us to study the ability of
image features to predict prognosis under typical scan variations. We
used a trained radiologist to categorize the test/retest data set using
five conventional observations for prognosis to score the tumor on
a point scale. It has been reported that tumor size, differentiation,
vascular invasion, and margin status (negative versus positive or close
margins) have all been shown to have prognostic value [29–31]. We
used five observable features—lobulated margin, size of the tumor
lesion, spiculated margin, plueral wall attachment, and texture (e.g.,
ground-glass opacity)—as factors to scale the tumor into high-risk to
moderate-risk individuals. The observations were given a score of 1 to
5. The five values were summed, averaged, and standardized to a scale
of 0 to 1 to obtain a prognostic score. A normalized prognostic score
over the median value was considered high risk (or poor prognosis),
whereas the score lower than the median value is considered to be
moderate risk (or better prognosis) as first proposed in [32]. Two sam-
ples could not be scored reliably using the point-scale metric due to
diffused lesions, and one sample was partly scored due to an obscured
margin. In total, three samples were eliminated from the scoring. The
two created categories were then used to find discriminatory markers
between the poor to better prognosis groups. Table W6 shows the
score for individual samples.

Independent data set. Non-small cell lung tumor samples were
collected in an Institutional Review Board (IRB)-approved study;
of the 81 lung adenocarcinoma samples, 22 had mixed histology.
In this study, prognostic testing was confined to adenocarcinoma
group (59 samples; median split) and late-stage adenocarcinoma versus
early-stage (TNM ≥ 3A vs TNM ≤ 1B; 15 vs 35 samples). These
patients had a CT scan before surgical resection. The tumor sample
was analyzed by a board-certified pathologist. The clinical and vital
statistics were obtained from the Moffitt Cancer registry (Tampa,
FL). The vital statistics are typically updated on a yearly basis. Table 2
shows broad histology information for the data.

Results
As described in the Materials and Methods section, the CT data

were segmented in two ways: ensemble (E) with a single human inter-
action; andmanually (M), with multiple human decisions on the tumor
boundaries. In the obtained ROIs, 219 3D (and 110 2D) features (see
Supporting Analysis section, Table O1) were extracted and quantified;
a comprehensive list is shown in TablesW7 andW8.We computed the
variability bound (95% confidence limits) using the concordance cor-
relation confidence for three conventional features (see Table 1), using
both manual and ensemble segmentations. A strong confidence bound
was obtained for both segmentations for these size measurements, also
observed by previous authors [13]. Figure 3 shows the Bland-Altman
difference distribution plots between test and retest for the three mea-
sures (longest diameter, longest diameter*short axis, and volume). As
the tumor size increased, the difference between test and retest was

reduced in most cases. Figure 4 shows a sample CT image with a seg-
mentation boundary for test and retest cases. The segmentation
methods defined the tumor boundaries and hence influenced the
extracted features (most directly size and shape). The SI was computed
between manual and ensemble boundaries in the test and retest exper-
iment (see Figure 2). SI is the ratio of common volume to union of the
two, which measures extent of similarity between methods. The average
SI between manual and ensemble delineation in test (retest) was 79%
(78.9%) with an SD of 21% (22%), respectively. The SCES had dif-
ficulty delineating tumors that were attached to the pleural wall where
the boundary definition was heuristic. In these challenging cases, the
boundary found by the methods was based on semioptimal pixel valley,
which may disagree with the expert. There are also cases with ground-
glass opacity and concave-type tumors for which it was difficult to find
accurate boundaries with automated methods. Numerous studies have
compared boundaries created by different radiologists. In Meyer et al.
[33], an estimated volume difference was more than 31% for pulmo-
nary nodules. In large isolated and solid tumor lesions, segmentation is
fairly easy, but issues remain in finding boundaries for attached and
diffuse tumors.

Concordance in Repeated Experiment
The 219 extracted features (3D and 110 2D) were first compared

in a test/retest experiment using the CCCTreT, which is a stringent
measure of reproducibility. A CCCTreT value ≥ 0.75 indicates that
the data are of acceptable reproducibility. At a second level of analysis,
the DR was computed as described in Materials and Methods section,
and this metric will identify those features with the largest biologic

Table 5. Representative Image Features in Test/Retest Data were Used to Predict Prognostic Scores.

Feature Accuracy (%) Sensitivity Specificity Area Under
the Curve

C1: Tumor size
1 F1:LongDia 81.03 0.8 0.82 0.88
2 F2:ShortAx-LongDia 80.17 0.75 0.86 0.89
3 F3:ShortAx 77.59 0.77 0.79 0.87
4 F6:Volume(cm3) 71.55 0.57 0.88 0.91
5 F33:Area-Pixel 68.97 0.45 0.95 0.92
6 F37:Thickness-Pixel 77.59 0.7 0.86 0.90
7 F38:Length-Pixel 75 0.67 0.84 0.83
C2: Tumor shape
1 F25:Density 63.79 0.73 0.54 0.64
2 F30:Shape-Index 78.45 0.92 0.64 0.90
C3: Tumor location
1 F8:8a-3D-Attch-Pleural 74.14 0.87 0.61 0.53
2 F9:8b-3D-Bord-to-Lung 69.83 0.57 0.84 0.75
3 F15:9d-3D-AV-Dist-COG-to-Border 81.9 0.72 0.93 0.92
4 F16:9e-3D-SD-Dist-COG-to-Border 61.21 0.65 0.57 0.75
5 F17:9f-3D-Min-Dist-COG-to-Border 80.17 0.72 0.89 0.88
6 F19:10a-3D-Relat-Vol-Airspaces 64.66 0.97 0.30 0.71
C4: Pixel intensity histogram
1 F4:Mean (HU) 66.38 0.9 0.41 0.79
2 F187:Hist-Entropy-L1 78.45 0.73 0.84 0.85
C5: Gray scale: Run length and co-occurrence
1 F48:AvgRunL(GLN) 70.69 0.47 0.96 0.93
2 F51:AvgRunL(LRE) 73.28 0.67 0.80 0.79
C6: Texture: Laws features
1 F67:3D-Laws-9 81.03 0.98 0.63 0.91
2 F74:3D-Laws-16 76.72 0.95 0.57 0.89
3 F103:3D-Laws-45 70.69 0.88 0.52 0.79
4 F128:3D-Laws-79 68.10 0.88 0.46 0.79

An optimal threshold was obtained using linear discriminant function. All values were rounded to
two-decimal precision.

Translational Oncology Vol. 7, No. 1, 2014 Reproducible and Prognostic Image Features Balagurunathan et al. 81



range relative to their reproducibility. For our data set, we examined
various cutoffs and, with stringent limits, there were 72 (manual, M)
and 106 (ensemble, E) 3D features that had a CCCTreT ≥ 0.90 and
DR ≥ 0.90. Of these, 48 (∼22%) of the features were common be-
tween segmentations (in total of 219 features; see Table 3A). In the 2D
set, 51 (manual, M) and 28 (ensemble, E) features had a CCCTreT ≥
0.90 and DR ≥ 0.90. Of these, 17 (15.3%) of the features were
common between the segmentations. Details are reported in Support-
ing Analysis section, Tables O2 and O3. It was interesting to note that
some of the texture features (wavelet and Laws kernel) were not repeated

in the ensemble segmentation. This was attributed to feature outliers
due to segmentation boundary differences, which resulted in adding
different regions in test/retest. When the outlier samples were removed
(in the samples with wavelet layer 1 energy > 20%), there was an 8%
increase in the number of ensemble features (see Table 3B).

These concordance and DR filtering procedures will result in
obtaining a set of features that are reproducible with a large range
compared to the variability between the test and retest experiments.
However, these resulting features may have interdependencies.
Therefore, we used the R2Bet between the features to quantify the

Figure 7. Discrimination of prognostic score with feature value for size- and texture-based features with optimal threshold. (A) Volume
feature, (B) run-length GLN, and (C) Laws feature.
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levels of similarity. In this approach, if a feature of interest is linearly
predicted by any other feature in the filtered feature set, the two were
grouped together, repeated to cover all pairs. In the group of inter-
dependent features, the one having the largest DR was chosen as the
representative feature for the group, and the rest were removed. The
procedure was repeated to cover the entire subset to form the reduced
set. The cutoff level to reduce features based on linear dependency is
critical and is subject to change with the sample size and the tumor
shape and texture. This redundancy reduction can be carried out
categorywise or by combining the categories; both were attempted.
Finding reproducible features categorywise with redundancy reduc-

tion will help us form an informative feature set that will translate
to a similar range of tumors. We performed the filtering at a few
different levels: at R2Bet ≥ 0.95, there were 29 common features
between segmentation methods for CCCTreT and DR ≥ 0.90. After
removing the category bounds, there were 23 common features.

Figure 5 shows the ordered distribution plot for the DRs along
with the distribution of concordance coefficients. The features’ con-
cordance and DR criteria were computed for manual and automatic
segmentation independently, and the common features were ob-
tained later. We tested interdependency by computing the R2Bet
between the image features in each of the filtered sets and followed

Figure 7. (continued).

Figure 8. The 2D slice and 3D rendering of three samples selected in the test/retest RIDER data. The samples in A had a better radi-
ologist prognostic score (smaller average run-length GLN), whereas the samples in B had a poor radiologist prognostic score (larger
average run-length GLN).
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the described procedure to find a representative feature for a group of
highly dependent features (see Discussion section).

Table 4 shows feature details, whereas Table W3 provides features
with categorywise reduction.When category boundaries were removed,
more feature reduction was observed. Table 4, A and C , and Table W5
show feature details without category restrictions. Figure 6 shows a
clusterogram heat map of representative features that are common be-
tween segmentations. The feature value was averaged in the test/retest
experiment and across segmentations (manual and ensemble). The
concordance and DR was set at: CCCTreT and DR ≥ 0.90. The rep-
resentative features were outlined for both types of segmentations with
feature reduction cutoff of R2Bet ≥ 0.95.

Discrimination Ability of Radiologic Prognostic Score
The subset of features with a high DR that were reproducible and

nonredundant was subsequently used to test the discrimination abil-
ity of a radiologist-determined prognostic score. Each observation in
manual/ensemble test/retest was considered an independent mea-
surement, and the optimal threshold for each was computed by linear
discriminant analysis. Using the radiologic score as observed truth,
the discriminator’s performance was tested by computing sensitivity,
specificity, and area under the receiver operating characteristic (ROC)
curve for each of the image features. Table 5 lists the values for each
feature, and Figure 7 shows conventional shape-based (volume) feature
compared to texture features (run length and Laws kernel). The ROC
curve for the discrimination is presented in Figure W1. Figure 8 shows
the sample tumors in the test-retest data set with different values
of run-length feature (average run-length nonuniformity or GLN)
for the better and poorer prognostic groups. This feature measured
the distribution of the similarity of gray-level pattern, which can
be considered measure of heterogeneity in the gray levels. It was
interesting to note that run-length long run emphasis and run-length

nonuniformity (GLN) follow similar trends (but at different scales).
Testing the features on the radiologist prognostic scores allowed us to
test the ability of features to predict expert observations in the presence
of repeatable noise.

Prognostic Ability on Independent Data
The 219 3D-image features were extracted on 59 adenocarcino-

mas from selected Moffitt patients accrued before 2010, with survival
refreshed. The feature set was filtered to select reproducible represen-
tative features across segmentations (CCCTreT and DR ≥ 0.90), and
these were then tested for prognostic potential in patient data. The
data set was dichotomized at the median value of the image feature.
The survival function was estimated by the Kaplan-Meier approach,
and statistical significance was computed using the log-rank test.
Table 6 lists the P value for the representative features tested using
the adenocarcinoma samples. The texture feature average run-length
nonuniformity (GLN) shows statistical significance (P = .046). Fig-
ure 9 shows the survival plot and sample tumors for the two factions.
A large value of run-length GLN indicates a more homogeneous
tumor, and this was related to a longer survival, whereas low values
of run-length GLN indicate more heterogeneity, and this was related
to shorter survival. Notably, this texture feature had better prognos-
tic potential compared to the more conventional measurements of
shape and size; including longest diameter, longest diameter*short axis,
and volume.

Discussion
The reproducibility of radiographical features obtained from CT
scans of lung cancer was investigated to establish potential quantita-
tive imaging biomarkers. Most of the features showed high reproduc-
ibility using an automated image analysis program with segmentation
done by a single reader. A key component of our work is application
of an ensemble (semiautomatic) segmentation process so that mini-
mal operator input and manual editing were required. Prior work has
demonstrated three conventional univariate, bivariate, and volumetric
(RECIST and World Health Organization or WHO defined criteria)
measures to infer concordance consistency for automatically segmented
lung lesions, which seem to be limited in describing the complex
nature of the tumor [13]. In the current study, our focus has been to
describe the tumor with many features using the following different
categories: size (volume, diameter, and border length), shape (shape
index, compactness, and asymmetry), boundary region (border length
and spiculation), relation to the lung field, image intensity-based
features (mean, SD, average air space, deviation of airspace, energy,
entropy, skewness, and other features), and transformed texture de-
scriptors (wavelet transform: entropy, energy, and Laws features).
For this new set of features, consistency in the repeat scans (test,
retest) was tested and filtered for independent features to yield an
image feature set to better predict prognosis.

In a parallel study, we demonstrated that a semiautomated (ensem-
ble) multiseed point segmentation can reliably generate segmented
volumes, as defined by the SI. The SI between machine-segmented
lesions was >0.93, whereas the SI for manual segmentation was
0.73 across a test set of 129 patients [11].

One requirement for a feature to be qualified as a response bio-
marker is that the change in an image’s feature between pretherapy
and posttherapy scans must be significantly greater than the difference

Table 6. Significance Values of the Representative Image Features on Independent NSCLC Images
(59 adenocarcinomas, with 15 vs 32 Samples Correspond to TNM ≥ 3A vs ≤1B).

Feature Adenocarcinoma Adenocarcinoma: Extreme Grades
(TNM ≥ 3A vs ≤1B)

C1: Tumor size (log-rank test: P values)
1 F1:LongDia 0.233 0.261
2 F2:ShortAx*LongDia 0.079 0.261
3 F6:Volume (cm3) 0.322 0.516
C2: Tumor shape (log-rank test: P values)
1 F25:Density 0.979545 0.690185
2 F30:Shape-Index 0.205607 0.497
C3: Tumor location (log-rank test: P values)
1 F8:8a-3D-Attch-Pleural 0.079279 0.030118
2 F9:8b-3D-Bord-to-Lung 0.063549 0.085015
3 F15:9d-3D-AV-Dist-COG-to-Border 0.067196 0.898633
4 F16:9e-3D-SD-Dist-COG-to-Border 0.085849 0.516197
5 F17:9f-3D-Min-Dist-COG-to-Border 0.394427 0.982512
6 F19:10a-3D-Relat-Vol-Airspaces 0.960735 0.842027
C4: Pixel intensity histogram (log-rank test: P values)
1 F4:Mean (HU) 0.871203 0.528778
2 F187:Hist-Entropy-L1 0.082696 0.053524
C5: Gray scale: Run length and co-occurrence (log-rank test: P values)
1 F48:AvgRunL(GLN) 0.04596 0.898633
2 F51:AvgRunL(LRE) 0.092659 0.898633
C6: Texture: Laws features (log-rank test: P values)
1 F67:3D-Laws-9 0.702408 0.166091
2 F74:3D-Laws-16 0.748021 0.643091
3 F103:3D-Laws-45 0.993109 0.142433
4 F128:3D-Laws-79 0.587798 0.06058
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observed in test-retest study (also referred to as “coffee break”) mea-
surements. In the present study, we can estimate the change of indi-
vidual features posttherapy against the entire pretherapy biologic range.
The ratio of the range to the interscan variability is a measure of
“dynamic range,” as shown in Figure 5 ( first panel ). Features showing
highDRwere considered potentially more informative. Figure 5 (second
panel ) also shows the distribution of concordance coefficients between
test and retest, which is skewed toward higher end values as one would
expect showing high concordance between the test and retest cases.
There is also a larger peak toward zero values in both manual and
ensemble segmentation. Investigating the peaks shows that some of
the Laws and higher level wavelet features show low concordance be-
tween test and retest repeats. It is hypothesized that reimaging the
patients resulted in some change in texture. These Laws features com-

pute energy after filtering in a region. Small changes in subregional tex-
tures would make these features vary as they capture small localized
changes. A similar analogy could be made for wavelet features for higher
layer decompositions (or higher layers), where discordance can be seen.

In prior work, Segal et al. has used a correlation coefficient cutoff
of 0.9 to distinguish highly correlated features [34]. Feature reduc-
tion to combine features that convey similar information has been
widely investigated; different metrics that have been used in the past
are the correlation coefficient and regression methods [35–37]. In
our study, we found a representative feature set that will eliminate
redundancy in terms of information content, as complete indepen-
dence may not be as relevant for our study as texture information is
subjective (sample issues, scanner settings, protocol followed, etc.). We
used the R2Bet between features to quantify dependency. Features were

Figure 9. Prognostic test result using run-length nonuniformity (GLN) image feature split at the median value is shown. (A) Kaplan-Meier
plot for independent adenocarcinoma cases. (B) Example of three extreme tumor samples with low and high values of average run-
length GLN is shown in 2 and 3D plots.
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grouped on the basis of R2Bet between them; in this subset, one rep-
resentative that had the highest DR was picked. The procedure was
repeated recursively to cover all the features, resulting in a most repre-
sentative group both with and without the category labels. The test,
retest values were averaged before computing R2Bet. We set different
limits on the R2Bet to decide when to combine the features, from
0.75 to 0.99 (user choice of acceptable level of dependency). For higher
cutoff values of R2Bet, a relatively smaller number of features will be
indicated as dependent set, resulting in a larger representative group.
Setting the R2Bet to a lower limit will group more number of features
into a dependent set, resulting in a smaller representative feature set.
The combination of reproducible, informative, and independent sets
of features is critical to obtain a feature set that may be a good candidate
for imaging biomarkers.

Looking closely at the features, the ensemble segmentation has
more independent features than manual segmentation with the high-
est R2Bet settings. Less than half the features in the manual segmen-
tation appear in the ensemble list. The texture features (wavelet and
Laws) show a less than expected concordance in the ensemble seg-
mentation. The difference could be attributed to suboptimal segmen-
tation in tumors with ill-defined boundaries. It is known that the
manual methods involve more operator inputs that could include areas
around the tumor, creating more visually smooth regions, whereas the
ensemble method looks at connected regions with spurious local min-
ima being a stopping condition, which may result in some differences
in repeated segmentation. This situation is mitigated by generating
multiple seed points (more than 21 seed points spread in eight direc-
tions) in an SCES method.

The image features are expected to capture different aspects of mor-
phology and texture information. Due to the consistency in samples
chosen, a limited sample population the image features computed may
show a higher level of dependency, which was also observed in Figure 6,
which could be attributed to a greater reduction in the final feature set.

Prognosis
The radiologic prognostic score provides us a method to capture

expert opinion in a quantifiable fashion. This type of scoring scheme
has been used in the past [38,39], but in our work, we use it as a
metric to group the samples into risk populations. This allows us to
develop predictive schemes and quantify the ability of image markers
to match the opinion of a conventional radiologist (see Table 4 and
Figures 7 and 8). The true prognostic ability has been conventionally
tested using survival plots [40] that provided a quantifiable measure
of survival differences between groups in the population. We used
the reproducible features to test their true prognostic ability in an in-
dependent NSCLC set. Each of the representative features across seg-
mentation methods was used to dichotomize the population and the
survival groups (or factions) tested for significance (see Table 6 and
Figure 9). A texture feature (run-length GLN) that tracks consistency
of gray-scale values shows a prognostic significance in adenocarcinoma.
Dividing the sample into higher grade (TNM ≥ 3A vs ≤1B) did not
help to improve significance. This could be attributed to small sample
size for the secondary test.

Conclusions
In the current study, we demonstrated that many CT features of pri-
mary lung cancer are repeatable in a controlled test-retest scan and
independent of segmentation methods (manual and semiautomatic).
Across all patients, the biologic ranges for several individual features

were highly variable. Combining interscan variance, segmentation
differences, biologic range, and covariance, we have reduced the total
number of features from 219 (3D features) to a most informative set
of 48 features (in both ensemble and manual) at CCCTreT and DR≥
0.90. Of these, 29 features are representative features (R2Bet ≥ 0.95),
with stringent cutoffs. These repeatable features predicted a conven-
tional radiologist prognostic score with area under the curve of 0.9.
The sensitivity and specificity could be improved using a multivariate
approach. The true prognosis was tested using an independent
NSCLC set (59 samples of adenocarcinoma) with mixed stages, where
a repeatable and representative texture feature (run-length GLN)
showed significance. The current findings will allow selection of
reproducible, informative/independent, and prognostic features as the
candidate imaging biomarkers to predict or assess therapy response.

References
[1] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, and Thun MJ (2008).

Cancer statistics, 2008. CA Cancer J Clin 58, 71–96.
[2] SEER-NCI (2013). SEER Cancer Statistics Review (CSR) 1975-2010. In

N Howlader, AM Noone, M Krapcho, J Garshell, N Neyman, SF Altekruse,
CL Kosary, M Yu, J Ruhl, Z Tatalovich, et al. (Eds). National Cancer Institute,
Bethesda, MD.

[3] USPH-Service (1964). Smoking and Health: Report of the Advisory Committee to
the Surgen General of the Public Health Service. Government Printing Office,
Washington, DC.

[4] Nguyen T and Rangayyan R (2005). Shape analysis of breast masses in mammo-
grams via the fractal dimension. Conf Proc IEEE Eng Med Biol Soc 3, 3210–3213.

[5] Schuster DP (2007). The opportunities and challenges of developing imaging
biomarkers to study lung function and disease. Am J Respir Crit Care Med 176,
224–230.

[6] Therasse OP, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L,
Verweij J, Van Glabbeke M, Van Oosterom AT, Christian MC, et al. (2000).
New guidelines to evaluate the response to treatment in solid tumor. J Nat
Cancer Inst 92, 205–216.

[7] Schwartz LH, Mazumdar M, Brown W, Smith A, and Panicek DM (2003).
Variability in response assessment in solid tumors: effect of number of lesions
chosen for measurement. Clin Cancer Res 9, 4318–4323.

[8] Suzuki C, Jacobsson H, Hatschek T, Torkzad MR, Bodén K, Eriksson-Alm Y,
Berg E, Fujii H, Kubo A, and Blomqvist L (2008). Radiologic measurements of
tumor response to treatment: practical approaches and limitations. Radiographics
28, 329–344.

[9] Tuma RS (2006). Sometimes size doesn’t matter: reevaluating RECIST and tumor
response rate endpoints. J Natl Cancer Inst 98, 1272–1274.

[10] McNitt-Gray MF, Bidaut LM, Armato SG, Meyer CR, Gavrielides MA,
Fenimore C, McLennan G, Petrick N, Zhao B, Reeves AP, et al. (2009).
Computed tomography assessment of response to therapy: tumor volume
change measurement, truth data, and error. Transl Oncol 2(4), 216–222.

[11] Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, Bendtsen C, Velazquez
ER, Dekker A, Aerts H, et al. (2013). Automated delineation of lung tumors
from CT images using a single click ensemble segmentation approach. Pattern
Recognit 46, 692–702.

[12] Armato SG III, Meyer CR, McNitt-Gray MF, McLennan G, Reeves AP, Croft
BY, andClarke LP (2008). RIDERResearchGroupThe Reference ImageDatabase
to Evaluate Response to therapy in lung cancer (RIDER) project: a resource for the
development of change-analysis software. Clin Pharmacol Ther 84, 448–456.

[13] Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, Lefkowitz RA, Qin Y,
Riely GJ, Kris MG, and Schwartz LH (2009). Evaluating variability in tumor
measurements from same-day repeat CT scans of patients with non–small cell
lung cancer. Radiology 252, 263–272.

[14] Athelogou M, Schmidt G, Schaepe A, Baatz M, and Binnig G (2007). Cogni-
tion Network Technology - a novel multimodal image analysis technique for
automatic identification and quantification of biological image contents. In
Imaging Cellular and Molecular Biological Functions, Principles and Practice. SL
Shorte and F Frischknecht (Eds). Springer-Verlag, Berlin, Germany. pp. 407–422.

[15] Baatz M, Zimmermann J, and Blackmore CG (2009). Automated analysis and
detailed quantification of biomedical images using Definiens Congnition Network
Technology. Comb Chem High Throughput Screen 12, 908–916.

86 Reproducible and Prognostic Image Features Balagurunathan et al. Translational Oncology Vol. 7, No. 1, 2014



[16] Bendtsen C, Kietzmann M, Korn R, Mozley P, Schmidt G, and Binnig G
(2011). X-ray computed tomography: semiautomated volumetric analysis of
late-stage lung tumors as a basis for response assessments. Int J Biomed Imaging
2011, 1–11.

[17] Basu S, Hall LO, Goldgof DB, Gu Y, Kumar V, Choi J, Gilles RJ, and Gatenby
RA. Developing a classifier model for lung tumors in CT-scan images, Systems,
Man and Cybernetics (SMC), 2011 IEEE Conference, Anchorage, AK.
pp. 1306–1312.

[18] Jain R, Kasturi R, and Schunck BG (1995). Machine Vision, McGraw-Hill,
New York, USA.

[19] Koss JE, Newman FD, Johnson TK, and Kirch DL (1999). Abdominal organ
segmentation using texture transforms and Hopfield neural network. IEEE
Trans Med Imaging 18, 640–648.

[20] Galloway M (1975). Texture analysis using gray level run lengths. Computer
Graphics Image Process 4, 172–179.

[21] Tang X (1998). Texture information in run-length matrices. IEEE Trans Image
Process 7, 1602–1609.

[22] Haralic RM and Shanmugam K (1973). Texture features for image classification.
IEEE Trans System Man Cybernet 6, 610–621.

[23] Laws K (1980). Texture Image Segmentation. University of South California,
Los Angeles, CA.

[24] Jafari-Khouzani K, Soltanian-Zadeh H, Elisevich K, and Patel S (2004).
Comparison of 2D and 3D wavelet features for TLE lateralization. Proc of SPIE
Medical Imaging 2004: Physiology, Function and Structure from Medical Images
5369, 593–601.

[25] Daubechies I (1988). Orthogonal bases of compactly supported wavelets.Commun
Pure Appl Math 41, 909–996.

[26] Lin LI-K (1989). A concordance correlation coefficient to evaluate reproducibility.
Biometrics 45, 13.

[27] Steel RGD and Torrie JH (1960). Principles and Procedures of Statistics.
McGraw-Hill, New York.

[28] Colin Cameron A, Windmeijer F, Gramaji H, Cane DE, and Khosla C (1997).
An R-squared measure of goodness of fit for some common nonlinear regression
models. J Econom 77, 1790–1792.

[29] Aoki T, Tomoda Y, Watanabe H, Nakata H, Kasai T, Hashimoto H, Kodate
M, Osaki T, and Yasumoto K (2001). Peripheral lung adenocarcinoma: cor-
relation of thin-section CT findings with histologic prognostic factors and sur-
vival. Radiology 220, 803–809.

[30] Takashima S, Maruyama Y, Hasegawa M, Saito A, Haniuda M, and Kadoya M
(2003). High-resolution CT features: prognostic significance in peripheral lung adeno-
carcinoma with bronchioloalveolar carcinoma components. Respiration 70, 36–42.

[31] Subramanian J and Simon R (2010). Gene exression–based signature in lung
cancer: ready for clinical use? J Natl Cancer Inst 102, 464–474.

[32] Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Basu S, Korn R, Zhao B,
Goldgof DB, Hall LO, et al. Reproducibility of quantitative features extracted
from CT images of lung tumors. J Digital Imaging (in review).

[33] Meyer CR, Johnson TD, McLennan G, Aberle DR, Kazerooni EA, Macmahon
H, Mullan BF, Yankelevitz DF, van Beek EJ, Armato SG III, et al. (2006).
Evaluation of lung MDCT nodule annotation across radiologists and methods.
Acad Radiol 13, 1254–1265.

[34] Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR,
Barry CT, Chang HY, et al. (2007). Decoding global gene expression programs
in liver cancer by noninvasive imaging. Nat Biotechnol 25, 675–680.

[35] Jain AK and Zongker D (1997). Feature selection: evaluation, application, and
small sample performance. IEEE Trans Pattern Analysis 19, 153–158.

[36] Pudil P, Novovièová J, and Kittler J (1994). Floating search methods in feature
selection. Pattern Recognit Lett 15, 1119–1125.

[37] Saeys Y, Inza I, and Larrañaga P (2007). A review of feature selection techniques
in bioinformatics. Bioinformatics 23, 2507–2517.

[38] Kress MA, Collins BT, Collins SP, Dritschilo A, Gagnon G, and Unger K
(2012). Scoring system predictive of survival for patients undergoing stereotactic
body radiation therapy for liver tumors. Radiat Oncol 7, 148.

[39] Colinet B, Jacot W, Bertrand D, Lacombe S, Bozonnat MC, Daurès JP, and
Pujol JL, oncoLR health network (2005). A new simplified comorbidity score
as a prognostic factor in non-small-cell lung cancer patients: description and
comparison with the Charlson’s index. Br J Cancer 93, 1098–1105.

[40] Kaplan EL and Meier P (1958). Nonparametric estimation from incomplete
observations. J Amer Statist Assn 53, 457–481.

Translational Oncology Vol. 7, No. 1, 2014 Reproducible and Prognostic Image Features Balagurunathan et al. 87




