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1. Introduction

It is well-known that a circle is characterized as a closed plane curve such that the chord joining

any two points on it meets the curve at the same angle at the two points (cf. [6, pp. 160–162]). From

the viewpoint of differential geometry, this characteristic property of circles can be stated as follows:

Theorem 1. Let X = X(s) be a unit speed closed curve in Euclidean plane E2 and T(s) = X′(s) be its unit
tangent vector field. Then X = X(s) is a circle if and only if it satisfies the following condition:

(C) : 〈X(t) − X(s), T(t) − T(s)〉 = 0 holds identically.

Generalizing above, Chen and the authors proved the following [3]:
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Theorem 2. A unit speed curve X = X(s) in Euclidean m-space Em (m� 2) is a W-curve if and only if it

satisfies the Condition (C).

Here, X = X(s) is called aW-curve if its Frenet curvatures are constant along X . On a hypersurface

of Euclidean space, a unit normal vector field G is naturally defined on M. Such G is also called the

Gauss map ofM. For a hypersphereM of Euclidean space, the chord joining any two points on it meets

the sphere at the same angle at the two points, that is, the sphere satisfies the Condition:

(D): 〈y − x, G(x) + G(y)〉 = 0 holds identically.

From the previous theorems, it is natural to ask the following question:

“What are hypersurfaces of Euclidean space which satisfy the Condition (D)?”

In differential geometry, the shape operator is the most natural tool to observe the extrinsic shape

of submanifolds. Among those, the isoparametric hypersurface is one of nice hypersurface of Euclidean

space, which have constant principal curvatures.

Boas [1,2] studied the hypersurfaces of Euclidean space which satisfy the Condition (D) and later,

Wegner [8] gave a differential geometric proof for such hypersurfaces.

In this article, we provide a much easier and elementary characterization of isoparametric hyper-

surfaces of Euclidean space and characterize the W-curves by using the similar techniques.

In Section 2, we study hypersurfaces of Euclidean space Em which satisfy the Condition (D). For this

we have the following:

Theorem A. For a hypersurface M in Em, the following are equivalent:
(i) M satisfies the Condition (D).
(ii) For an m × mmatrix A and a vector b ∈ Em we have G(x) = Ax + b.
(iii) M is a isoparametric hypersurface.
(iv) M is an open part of one of the following hypersurfaces:

Em−1, Sm−1(r), Sp−1(r) × Em−p.

In Section 3 we give a characterization ofW-curves as follows:

Theorem B. For a unit speed curve X(s) in Em, the following five statements are equivalent:
(i) X(s) satisfies the Condition (C).
(ii) For an m × mmatrix A and a vector b ∈ Em we have X′(s) = AX(s) + b.

(iii) For each k (k = 1, 2, . . . , m), |X(k)(s)| is constant.
(iv) X(s) is a W-curve.

(v) X(s) can be written as one of the following:

X(s) = (a1 cos c1s, a1 sin c1s, . . . , an cos cns, an sin cns, 0, . . . , 0),
X(s) = (a1 cos c1s, a1 sin c1s, . . . , an cos cns, an sin cns, bs, 0, . . . , 0)

(1.1)

for distinct nonzero numbers c1, . . . , cn and a nonzero number b.

Throughout this article, we assume that all objects are smooth and connected unless otherwise

mentioned.

2. Proof of Theorem A

LetM be a hypersurface in Em which satisfies the Condition (D). Without loss of generality, wemay

assume thatM is not contained in any hyperplane, that is,M is full in Em. Then onM, there exist points

y0, y1, . . . , ym such that the set {yj − y0|j = 1, 2, . . . , m} spans Em.
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From the Condition (D) we have

〈G(x), y0〉 = 〈G(x), x〉 − 〈G(y0), y0〉 + 〈G(y0), x〉 , (2.1)〈
G(x), yj

〉 = 〈G(x), x〉 − 〈
G(yj), yj

〉 + 〈
G(yj), x

〉
, j = 1, 2, . . . , m. (2.2)

By subtracting (2.1) from (2.2), we obtain
〈
G(x), Aj

〉 = 〈
Bj, x

〉 + cj, j = 1, 2, . . . , m, (2.3)

where we put

Aj = yj − y0, Bj = G(yj) − G(y0), cj = 〈G(y0), y0〉 − 〈
G(yj), yj

〉

for j = 1, 2, . . . , m.

Lemma 2.1. For an m × mmatrix A and a vector b ∈ Em we have G(x) = Ax + b.

Proof. Let A denote the matrix defined by At = [B1, B2, . . . , Bm][A1, A2, . . . , Am]−1, where [B1, B2,
. . . , Bm] denotes the matrix with column vectors B1, B2, . . . , Bm. If we let b = ∑

bjAj, where bj is

defined by

(b1, b2, . . . , bm)t = (Cjk)
−1(c1, c2, . . . , cm)t , Cjk = 〈

Aj, Ak

〉
,

then we have G(x) = Ax + b. �

By differentiating G covariantly with respect to a tangent vector X toM, it follows from Lemma 2.1

that

AX = −S(X), X ∈ TxM, (2.4)

where S denotes the shapeoperator. Choose anorthonormal frameE1, . . . , Em−1 such thatE1, . . . , Em−1

are eigenvectors of S associatedwith eigenvaluesμ1, . . . ,μm−1. Then from (2.4), for all x ∈ Mwehave

AEj(x) = −μj(x)Ej(x), j = 1, 2, . . . , m − 1. (2.5)

SinceA is a constantmatrix and the set of eigenvalues of amatrix is discrete, theprincipal curvatures

μ1, . . . ,μm−1 are all constant, that is,M is an isoparametric hypersurface. Hence it follows fromawell-

known theorem (cf. [5,7]) that M is an open part of either a sphere Sm−1(r) or a generalized cylinder

Sp−1(r) × Em−p.

Here, we give an elementary proof. Since S is self-adjoint and {X ∈ TxM|x ∈ M} spans Em, (2.4)

shows that A is symmetric. For the function f : Em → R defined by f (x) = 〈Ax + b, Ax + b〉, it follows

fromLemma2.1 thatM ⊂ f−1(1)becauseG(x) is a unit vectorfield. This shows that the gradient vector

∇f (x) = 2A(Ax + b) is proportional to G(x). Hence for some function λ(x) we have

A(Ax + b) = λ(x)(Ax + b), x ∈ M. (2.6)

Since the set of eigenvalues of a matrix is discrete, λ(x) must be a constant. It follows from (2.6) that

V = {Ax + b|x ∈ M} is contained in an eigenspace of A corresponding to eigenvalue λ.
From the assumption that M is not contained in any hyperplane, as in the proof of Lemma 2.1 we

see that

Im A = Span{AAj|j = 1, 2, . . . , m} ⊂ V . (2.7)

It follows from (2.6) that

(A2 − λA)x = −Ab + λb, x ∈ M. (2.8)

Hence we have

(A2 − λA)(yj − y0) = 0, j = 1, 2, . . . , m, (2.9)
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which shows

A2 − λA = 0. (2.10)

Suppose λ = 0. Then (2.10) shows that A2 = 0. Since A is symmetric, Amust vanish. Together with

Lemma 2.1, this shows that M is an open part of an hyperplane Em−1. This contradiction implies that

λ /= 0. Together with (2.10) and (2.8) shows that b = 1
λ
Ab ∈ ImA. Hence (2.7) implies V = Im A.

Let us denote λ = ± 1
r
with r > 0. Then we have A|V = ± 1

r
I.

Case 1. Suppose that V is of dimension m. Then we have A = ± 1
r
I. Therefore we see that G(x) =

± 1
r
x + b, which shows thatM is a hypersphere of radius r.

Case 2. Suppose that V is of dimension pwith 2� p�m − 1. Then the orthogonal complement V⊥ of V

is of dimension (m − p) and it is contained in the tangent space TxM for all x ∈ M. Around a fixed x0 ∈
M, choose an orthonormal frame E1(x), . . . , Em−1(x) such that E1, . . . , Em−p are all constant vectors in

V⊥. Then we see that {Em−p+1(x), . . . , Em−1(x), G(x)} generates V . For the distribution T spanned by

{Em−p+1(x), . . . , Em−1(x)}, it is obvious that T is integrable and its integral submanifold M1 through

x0 is nothing but the intersection M1 = M ∩ (x0 + V). Thus M is decomposed as M = M1 × Em−p,

where Em−p = V⊥.
Note that M1 is a hypersurface in V = Ep. Its Gauss map G1(x) in Ep satisfies

G1(x) = G(x), x ∈ M1. (2.11)

This shows that

G1(x) = A1x + b, x ∈ M1, (2.12)

where A1 denotes the p × p matrix A|V . In fact, A1 = ± 1
r
I. Hence it follows from Case 1 that M1 is

a (p − 1)-dimensional sphere Sp−1(r), which shows that M is an open part of a generalized cylinder

Sp−1(r) × Em−p.

Case 3. Suppose that V is 1-dimensional. ThenG(x) is constant. ThusM is an open part of a hyperplane.

The remaining part of the proof of Theorem A is straightforward.

3. Proof of theorem B

Let X(s) be a unit speed curve in Em which satisfies the Condition (C). Without loss of generality,

we may assume that X(s) lies fully in Em. Then on X , there exist points X(t0), X(t1), . . . , X(tm) such

that the set {X(tj) − X(t0)|j = 1, 2, . . . , m} spans Em. From the Condition (C) we have

〈T(s), X(t0)〉 = 〈T(s), X(s)〉 + 〈T(t0), X(t0)〉 − 〈T(t0), X(s)〉 (3.1)

and for j = 1, 2, . . . , m we also have
〈
T(s), X(tj)

〉 = 〈T(s), X(s)〉 + 〈
T(tj), X(tj)

〉 − 〈
T(tj), X(s)

〉
. (3.2)

Hence we obtain
〈
T(s), Aj

〉 = 〈
Bj, X(s)

〉 + cj, j = 1, 2, . . . , m, (3.3)

where we denote for j = 1, 2, . . . , m

Aj = X(tj) − X(t0), Bj = T(t0) − T(tj), cj = 〈
T(tj), X(tj)

〉 − 〈T(t0), X(t0)〉 .

As in Section 2, we get

Lemma 3.1. For an m × mmatrix A and a vector b ∈ Em we have X′(s) = AX(s) + b.

Together with the Condition (C), Lemma 3.1 shows that

〈A(X(s) − X(t)), X(s) − X(t)〉 = 0. (3.4)
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Hence for the symmetric matrix B = At + A, we also have

〈B(X(s) − X(t)), X(s) − X(t)〉 = 0. (3.5)

This implies that

〈BX(s), X(t0)〉 = 1

2
{〈BX(s), X(s)〉 + 〈BX(t0), X(t0)〉} (3.6)

and for j = 1, 2, . . . , m

〈
BX(s), X(tj)

〉 = 1

2

{〈BX(s), X(s)〉 + 〈
BX(tj), X(tj)

〉}
. (3.7)

By subtracting (3.6) from (3.7), we get
〈
BX(s), Aj

〉 = dj, (3.8)

where we denote by Aj, dj for j = 1, 2, . . . , m

Aj = X(tj) − X(t0), dj = 1

2
{〈BX(tj), X(tj)

〉 − 〈BX(t0), X(t0)〉}.
Since {Aj} is a basis for Em, (3.8) shows that BX(s) is a constant vector. In particular, B(Aj) = BX(tj) −
BX(t0) = 0 for j = 1, 2, . . . , m. This shows that B must vanish, that is, A is skew symmetric.

From X′(s) = AX(s) + b, we have

AX(k)(s) = X(k+1)(s), k = 1, 2, . . . , m.

Since A is skew symmetric, we see that for k = 1, 2, . . . , m
〈
X(k)(s), X(k)(s)

〉′ = 2
〈
AX(k)(s), X(k)(s)

〉
= 0.

Thus for each k = 1, 2, . . . , m, |X(k)(s)| is constant.
The remaining part of the proof of Theorem B follows from [3,4] and a straightforward calculation.

Acknowledgment

The authors would like to express their sincere thanks to the referee for his valuable suggestions

that would improve this paper.

References

[1] H.P. Boas, A geometric characterization of the ball and the Bochner–Martinelli kernel,Math. Ann. 248 (1980) 275–278.
[2] H.P. Boas, Spheres and cylinders: a local geometric characterization, Illinois J. Math. 28 (1) (1984) 120–124.
[3] B.-Y. Chen, D.-S. Kim, Y.H. Kim, New characterization ofW-curves, Publ. Math. Debrecen 69 (4) (2006) 457–472.
[4] D.-S. Kim, On the Gauss map of hypersurfaces in the space form, J. Korean Math. Soc. 32 (3) (1995) 509–518.
[5] T. Levi-Civita, Famiglie di superficie isoparametriche nell’ordinario spacio euclideo, Rend. Acad. Lincei 26 (1937) 355–362.
[6] H. Rademacher, O. Toeplitz, Princeton Science Library, Princeton University Press, Princeton, NJ, 1994.
[7] B. Segre, Famiglie di ipersuperficie isoparametriche negli spazi euclidei ad un qualunque numero di demensioni,Rend. Acad.

Lincei 27 (1938) 203–207.
[8] B. Wegner, A differential geometric proof of the local geometric characterization of spheres and cylinders by Boas, Math.

Balkanica (N.S.) 2 (4) (1988) 294–295.


	New characterizations of spheres, cylinders and W-curves
	Introduction
	Proof of Theorem A
	Proof of theorem B
	References


