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The analytic methods of Polya, as reported in [l, 61 are used to determine the 
asymptotic behavior of the expected number of (unlabeled) trees in a random 
forest of orderp. Our results can be expressed in terms of q = .338321856899208.. ., 
the radius of convergence of t(x) which is the ordinary generating function for 
trees. We have found that the expected number of trees in a random forest 
approaches 1 + xFz1 t(~~) = 1.755510... and the form of this result is the same 
for other species of trees. 

The problem of estimating the number of trees in a large, random labeled 
forest was treated in Moon’s book Counting Labeled Trees [3, p. 291. It was 
found that the average number of labeled trees in all labeled forests ofp points 
approaches 3/2 as a limit as p increases. We have investigated the same 
question for unlabeled trees and have found that in this case the average 
number of trees also approaches a constant, namely 1.755510**. This average 
an be expressed in terms of the ordinary generating function t(x) for trees 
and its radius of convergence 7. We use the notation and terminology of the 
book GraphicaZ Enumeration [I] and the analytic methods of Polya as 
reported in [ 1, 61. 

Let F,, be the number of forests of order p and let FD,n be the number of 
these consisting of exactly n trees. Then the expected number of trees in a 
random forest is Cn nF,,,/F, . It is the asymptotic behavior of this quotient 
that we will determine. We begin by focusing our attention on the denomi- 
nator. 
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110 PALMER AND SCHWENK 

COUNTING FORESTS 

The counting series I;(X) for forests is defined by 

F(x) = 5 F#‘. 
?I=1 

As demonstrated in the book, Graphical Enumeration [l, p. 581, Polya’s 
enumeration theorem can be applied to express F(x) in terms of the series 
t(x) which counts trees and the cycle index Z(S,) of the symmetric group of 
degree n: 

1 + F(x) = c Wn , t(x)). 
Formula (2) is conveniently altered by substitution in the identity (3.1.1) 

of [l]: 

1 + F(x) = exp f t(x’“)/k. 
k=l 

This formula (3) is, of course, just the usual relation between the generating 
function for graphs whose components are specified. Compare the relation 
(4.2.3) in [l] which expresses the generating function for graphs in terms of 
connected graphs. 

For computational purposes an explicit formula for F, can be obtained by 
differentiating (3) and equating coefficients. For neatness, we set F, = 1 but 
we emphasize that the empty forest is not admitted even temporarily (see 
Figure 1 of [2]). The formula for FD can then be stated in terms of the number 
td of trees of order d: 

F,, = ; k$l Fn-k 2 dtd ’ 
dlk 

The number td of trees of order d has been computed from Otter’s formulas 
by the second author through d = 44 and reported [6] through d = 36. 

To establish the asymptotic behavior of FP we first review Otter’s formula 
[4] for trees as reported in [l, p. 2141. Following Polya’s approach [5], Otter 
proved that 

b3 t, - - 4(rr)l~ T 
312 rl-p 

p5/2 9 

where 7 = .3383219... is the radius of convergence of the power series t(x) 
and (b13/4 (~)l/~) v312 = .5349485***. This was accomplished by showing that 
0 < 7 -K 1, that x = 71 is the unique singularity of t(x) on the circle of 
convergence / x 1 = q, and that 7 is a branch point of order 2 for the con- 
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tinuation of t(x). Thus he could expand t(x) as follows (see formula (9.530) 
of [I, p. 2131): 

t(x) = a, - a,(7 - xy2 + a,(7) - x)*/2 + u,(T) - x)3/2 + *-*. (6) 

From this expression and the relation between t(x) and the generating 
function T(x) for rooted trees, he was able to show that a, = 0 and a, = 
b,3/3, where b, had already been determined from a similar treatment of 
T(x). The details of the computation of b, and hence a3 are found in the 
exposition of Otter’s work in [I, Chapter 9.51. Then the asymptotic estimate 
(5) for t, follows from Polya’s lemma [5, p. 240 or 6, p. 3671 presented below, 
together with the observation that I’(-3/2) = 4(7r)‘12/3. 

LEMMA (Pblya). Let the power series 

f(x) = co + c,x + c2x2 + * * - (7) 

have thejinite radius of convergence p > 0 with x = p the only singularity on 
its circle of convergence. Suppose furthermore that f (x) can be expanded near 
x = p in the form 

f(x) = (1 - x/p)-’ g(x) + (1 - x/p)-* N-4, (8) 

where g(x) and h(x) are analytic at x = p, g(p) # 0, s and t are real, s # 0, 
- 1, -2,..., and either t < s or t = 0. Then 

To apply the lemma to t(x), we first note that t(x) can be expressed as 

t(x) = 4’ (v - ~)“/“{l + d,(q - x) + d,(y - x)” + . ..) 

+ (a,, + a,(7j - x)’ + 47 - x)” + . ..}. 

Therefore we can also write 

(10) 

where 

and 

t(x) = (1 - x/$~‘~ g(x) + h(x) 

bl7 3 312 

d-4 = --y- (1 + 4(7 - 4 + d,(T - xl” i- ...I 

44 = a, -I - a& - xy + &(?j - x)” + -**. 

(11) 

(12) 

(13) 

Rona-lp-" 
cn - P(s) * 
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The two series g(x) and h(x) are analytic at x = 7 and so the lemma can be 
applied with t = 0, s = -3/2 and g(q) = b,3T3/2/3 to obtain (5). 

A similar procedure can be applied to the series 1 + F(x) for forests to 
obtain the next theorem. 

THEOREM 1. The asymptotic behavior of the number F,, of forests of 
order p is given by 

F,, - b(l + F(d). (14) 

Proof. Our goal is to apply Polya’s lemma to the generating function 
1 + F(x) for forests, so first we must investigate its behavior at x = 7. We 
begin by rewriting (3) as 

1 + F(x) = exp t(x) exp f t(x”)/k. 
k=2 

(15) 

Next we note that the second factor on the right side of (15) is analytic at 
x = 7. To establish this fact it is sufficient to show that CL2 t(x’“)/k con- 
verges for real x between 0 and n lj2. This is quickly accomplished by the 
following inequalities: 

; t(x2) < 2 t(x’“)/k = f * f t,x”D 
k=2 h-=2 p=1 

,< 2 t,(x2)“(1 - XV’ 
p=1 

< (1 - x)-l t(x”). 

Therefore, the infinite sum above has the same radius of convergence as 
t(x”), namely $j2. The fact that 1 + F(x) has radius of convergence n with 
x = n as the sole singularity on its circle of convergence now follows from 
the analogous fact for t(x). 

Now we turn our attention to exp t(x). 
From (11) it follows that 

exp t(x) = exp h(x) exp((1 - x/q)312 g(x)) (16) 

where h(x) and g(x) are both analytic at x = 7, h(T) = a,, = t(q) and g(q) = 
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br3q3/2/3. On expanding the second factor on the right side of (16) in a 
Maclaurin series and rearranging the terms we have 

exp t(x) = exp h(x) g(x)(l - x/~])~P f [(l - x/T)~ g(x)2]k/(2k + 1) ! 
I k=O 

+ f Kl - xm3 d421k/w)! . I k=O 
(17) 

Therefore we can simplify our notation and conclude that 

exp t(x) = (1 - x/$3/z g(x) e hw(X) + u(x) (18) 

where d(x) and a(x) are both analytic at x = 7, d(v) = 1, and a(q) = exp 
NT) = ew t&d. 

Now it follows from (15) and (18) that 

1 + F(x) = (1 - xlq)3’2 q(x) + b(x) 

where q(x) and b(x) are analytic at x = 7 and 

4(v) = g(v) w f t(179lk. 
k=l 

and 

(19) 

(20) 

b(x) = a(x) exp 5 t(xk)/k. 
k=2 

(21) 

Formula (20) has the compact form 

dd = g(rl)(l + F(T)) (22) 

on substitution with (3). And for future reference, note also that 

WI) = 1 + Fe?>* (23) 

Finally, on applying Polya’s lemma we have I;, in terms of t, and F(7). 

COUNTING TREES IN FORESTS 

To count forests with both points and number of trees as enumeration 
parameters, we simply introduce another variable in formulas (l), (2) and (3). 
Formula (1) becomes 

cc 

1 + F(x, Y) = c Fz,,nx”y” (24) 
?J,n=1 
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where FD,,, is the number of forests with exactly n trees. Then Polya’s 
enumeration theorem can be applied to express F(x, y) in terms of JQ(X), the 
series which counts forests with exactly one tree in each: 

1 + Fc% Y) = f w, , YW). (25) 
?L=O 

The multi-variable form of the identity (3.1.1) of [l] is then used to obtain 

I + F(x, y) = exp f ykt(xk)/k. (26) 
k=l 

Now we note that on differentiating formula (24) with respect to y and 
setting y = 1 we have 

(27) 

the generating function which has as the coefficient of XP the total number of 
trees in all forests of order p. To simplify our notation we denote this series 
by F,(x, 1). Therefore in differentiating (26) we have Fw(x, 1) in explicit form: 

\ F& 1) = jexp j$ t(xk)/k j$ t(Xk). 
I 

Now substitution from (3) gives 

(28) 

F&G 1) = U + F(x)) f t(xkL). 
k=l 

The next formula for the coefficients of FJx, 1) is quickly derived: 

?I=1 

P 
1 nF,., = f Fp--le (1 fd). 

k=l dlk 

(29) 

(30) 

The behavior of (30) asp increases is obtained in the next theorem. 

THEOREM 2. The asymptotic behavior of the number XL, nF,., of trees in 
allforests of order p is given by 

i nFpsn . n=1 I 
Proof. It follows from (29) and our discussion at the beginning of the 

proof of Theorem 1 that F,(x, 1) also has 17 as its radius of convergence and 
x = 7 in the only singularity on the circle of convergence. On substituting 
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the expressions (11) for t(x) and (19) for 1 + F(x) in (29) and simplifying, we 
have 

h(x) + f G") + g(x) b(x) 
k=2 1 i 

+ (1 - x/d” g(x) 4(x) + b(x) [ h(x) + f 0”) 1 . (32) 
k=2 

Now the values of q(x), h(x), g(x) and b(x) at x = r] can be collected to 
evaluate the coefficient of (1 - x/$3/z in (32) at x = 7: 

= &Ml + %I)) 1 + f t(vk) 
k=l 1 

Then on applying Polya’s lemma to FV(x, 1) we have (3 1). 

THE AVERAGE NUMBER OF TREES IN A RANDOM FOREST 

An immediate consequence of the two theorems is the following corollary 
which provides an estimate for the average number of trees in a large random 
forest. 

COROLLARY. The asymptotic behavior of the expected number of trees in a 
random forest is given by 

i nF,,,IF, - 1 + f t(Tk). 
?I=1 k=l 

(34) 

The first eight coefficients of t(x) are sufficient to calculate the first five 
digits of the right side of (34) and we find that it begins 1.7555e.e. 

Formulas (4) and (30) have been used to calculate the entries in Table I 
which includes the average number of trees per forest of order p. 

We have also investigated the same questions for forests of rooted trees and 
planted trees. Formulas (4) and (30) are exactly the same except for inter- 
pretation. The number T, of rooted trees of order p was calculated [6] for 
p < 44 and T1, is also the number of planted trees of order p + 1. Note also 
that deletion of the root in a tree leaves a rooted forest, so that the number of 
forests of rooted trees withp points is just T,,, . Tables II and III contain the 
relevant data for rooted and planted forests. 
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. TABLE I 

Forests of Trees 

P t%J F, 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

1 
. 
1 
2 
3 

6 
11 
23 
47 
106 

235 
551 
1301 
3159 
7741 

19320 
48629 
123867 
317955 
823065 

2144505 
5623756 
14828074 
39299897 
104636890 

279793450. 
751065460. 
2023443032. 
5469566585. 
14830871802. 

40330829030. 
1.0997241022E + 11 
3.0062886248E + 11 
8.2377963172/Z + 11 
2.2623663437E + 12 

6.2263060372E + 12 
1.7169677491E + 13 
4.7436313524E + 13 
1.3129054378E + 14 

3.6399025778E + 14 
1.0107480767E + 15 
2.8109864835E + 15 
7.8289862215E + 15 
2.1835027913E + 16 

1 
2 
3 
6 
10 

20 
37 
76 
153 
329 

710 
1601 
3658 
8599 
20514 

49905 
122963 
307199 
775529 
1977878 

5086638 
13184156 
34402932 
90328674 
238474986. 

632775648. 
1686705630. 
4514955632. 
12132227370. 
32717113805. 

88519867048. 
2.402356753E + 11 
6.53843295E + 11 
1.7843008656E + 12 
4.881427413E + 12 
1.33857707656 + 13 
3.6787224247E + 13 
1.0131005004E + 14 
2.79549894678 + 14 

7.7280707782E + 14 
2.14015469246 + 15 
5.9366613173E + 15 
1.6494004573E + 16 
4.5894756724E + 16 

X nF,,m Average 

1 1 
3 1.5 
6 2 
13 2.16667 
24 2.4 

49 2.45 
93 2.51351 
190 2.5 
381 2.4902 
803 2.44073 

1703 2.39859 
3755 2.34541 
8401 2.29661 
19338 2.24887 
45275 2.20703 

108229 2.1687 
26204 2.13563 
647083 2.1064 
1613941 2.08108 
4072198 2.05887 

10374138 2.03949 
26663390 2.02238 
69056163 2.00728 
180098668. 1.99382 
472604314. 1.98178 

1247159936. 1.97094 
3307845730. 1.96113 
8814122981. 1.95221 
23585720703. I .94406 
63359160443. 1.93658 
1.7081554171E + 11 1.92969 
4.6204925016E + 11 1.92332 
3.2536852527E + 12 1.91741 
3.4114299618E + 12 1.91191 
9.3078478603E + 12 1.90679 
2.5459661335E + 13 1.90199 
6.9803793987E + 13 1.8975 
1.9180827015E + 14 1.89328 
5.2815539543E + 14 1.88931 

1.4571734141E + 15 1.88556 
4.0278115401E + 15 1.88202 
3.1153020082E + 16 1.87867 
3.0934399422E + 16 1.87549 
8.5937004292E + 16 1.87248 
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TABLE II 

Forests of Rooted Trees 

P TD 

1 1 
2 1 
3 2 
4 4 
5 9 

6 20 
7 48 
8 115 
9 286 

10 719 

11 1842 
12 4766 
13 12486 
14 32973 
15 87811 

16 235381 
17 634847 
18 1721159 
19 468676 
20 12826228 

21 35221832 
22 97055181 
23 268282855. 
24 743724984. 
25 2067 174645. 

26 5759636510. 
27 16083734329. 
28 45007066269. 

F?l L’ nF,,n Average 

29 1.2618655431E + 11 
30 3.544268476E + 11 

31 9.97171513E + 11 
32 2.8099343527E + 12 
33 7.9298197844E + 12 
34 2.2409533674E + 13 
35 6.34117302586 + 13 

36 1.7965593044E + 14 
37 5.095880498lE + 14 
38 1.4470233846E + 15 
39 4.1132541199E + 15 
40 1.170378008E + 16 

41 3.3333125878E + 16 
42 9.5020085894E + 16 
43 2.7109773717E + 17 
44 7.7408802343E + 17 

1 1 1 
2 3 1.5 
4 7 1.75 
9 17 1.88889 
20 39 1.95 

48 96 2 
115 232 2.01739 
286 583 2.03846 
719 1474 2.05007 
1842 3797 2.06135 

4766 9864 2.06966 
12486 25947 2.07809 
32973 68738 2.08468 
87811 183612 2.09099 
235381 493471 2.09648 

634847 1334143 2.10152 
1721159 3624800 2.10602 
468676 9893860 2.11016 
12826228 27113492 2.11391 
35221832 74577187 2.11736 

97055181 205806860. 2.12051 
268282855. 569678759, 2.12343 
743724984. 1581243203. 2.12611 
2067174645. 4400193551. 2.1286 
5759636510. 12273287277. 2.13091 

16083734329. 34307646762. 2.13306 
45007066269. 96093291818. 2.13507 
1.2618655431E + 11 2.696540049E + 11 2.13695 
3.544268476E + 11 7.5801431209E + 11 2.1387 
9.97171513E + 11 2.134300171E + 12 2.14035 

2.8099343527E + 12 6.01861339566 + 12 2.14191 
7.9298 197844E + 12 1.6996511299E + 13 2.14337 
2.2409533674E + 13 4.80627475916 + 13 2.14475 
6.3411730258E + 13 1.3608466446E + 14 2.14605 
1.7965593044E + 14 3.85771991476 + 14 2.14728 

5.095880498lE + 14 1.0948251932E + 15 2.14845 
1.4470233846E + 15 3.11046538296 + 15 2.14956 
4.11325411998 + 15 8.8460299877E + 15 2.15062 
1.170378008E + 16 2.5182082762E + 16 2.15162 
3.3333125878E + 16 7.17520793886 + 16 2.15258 

9.5020085894E + 16 2.0462458967E + 17 2.15349 
2.7109773717E + 17 5.8404170531E + 17 2.15436 
7.7408802343E + 17 1.6683073006E + 18 2.15519 
2.2120392457E + 18 4.7681276168E + 18 2.15599 
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TABLE III 

Forests of Planted Trees 

P T,-I FlJ 2 nF,.. Average 

1 0 
2 1 
3 1 
4 2 
5 4 

6 9 
7 20 
8 48 
9 115 

10 286 

11 719 
12 1842 
13 4766 
14 12486 
15 32973 

16 87811 
17 235381 
18 634847 
19 1721159 
20 4688676 

21 12826228 
22 35221832 
23 97055181 
24 268282855. 
25 743724984. 

26 2067174645. 
27 5759636510. 
28 16083734329. 
29 45007066269. 
30 1.26186554314 f 11 

31 3.544268476E + 11 
32 9.97171513E + 11 
33 2.8099343527E + 12 
34 7.9298197844E + 12 
35 2.2409533674E + 13 

36 6.3411730258E + 13 
37 1.7965593044E + 14 
38 5.0958804981E + 14 
39 1.4470233846E + 15 
40 4.1132541199E + 15 

41 1.170378008E + 16 
42 3.3333125878E + 16 
43 9.5020085894E f 16 
44 2.7109773717E + 17 

0 0 0 
1 1 1 
1 1 1 
3 4 1.33333 
5 6 1.2 

13 18 1.38462 
27 35 1.2963 
68 93 1.36765 
160 214 1.3375 
404 549 1.35891 

1010 1362 1.34851 
2604 3534 1.35714 
6726 9102 1.35326 
17661 23951 1.35615 
46628 63192 1.35524 

124287 168561 1.35622 
333162 451764 1.35599 
898921 1219290 1.35639 
2437254 3305783 1.35636 
6640537 9008027 1.35652 

18166568 24643538 1.35653 
49890419 67681372 1.3566 
137478389. 186504925. 1.35661 
380031868. 515566016. 1.35664 
1053517588. 1429246490. 1.35664 

2928246650. 3972598378. 1.35665 
8158727139. 11068477743. 1.35664 
22782938271. 30908170493. 1.35664 
63752461474. 86488245455. 1.35663 
1.787400145lE + 11 2.4248115991E + 11 1.35661 

5.0202656579E + 11 6.8104878438E + 11 1.3566 
1.4124098942E + 12 1.916051726E + 12 1.35658 
3.9799473781E + 12 5.39906262E + 12 1.35657 
1.1231414222E + 13 1.52359599E + 13 1.35655 
3.1739032973E + 13 4.30549624768 + 13 1.35653 

8.9809052506E + 13 1.2182703769E + 14 1.35651 
2.5443781772E + 14 3.4514310652E + 14 1.35649 
7.21687118756 + 14 9.7894984871E + 14 1.35647 
2.0492500044E + 15 2.7797157244E $ 15 1.35646 
5.8249836893E + 15 7.9012195814E + 15 1.35644 

1.65739196348 + 16 2.2481157702E + 16 1.35642 
4.720251853E + 16 6.4025459588E + 16 1.3564 
1.34553427536 + 17 1.8250571297E + 17 \ .35638 
3.8388013022E + 17 5.2068082317E + 17 1.35636 
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Otter showed [4] that the series T(X) for rooted trees can be expanded as 

T(x) = 1 - bl(T - x)1/2 + b2(q - x)2/2 + b,(q - x)3/2 + *.*. (35) 

We hasten to point out that the constants b, in (35) and (5) are the same 
(see also [I, p. 2121). 

Therefore T(x) can be expressed in the proper form for Polya’s lemma: 

T(x) = (1 - xlr1Y2 g,(x) + h(x) (36) 

where g,(q) = -b,q l/2 and h,(q) = 1. The asymptotic behavior follows with 
the observation that r(-l/2) = -2(~)l/~. 

The generating function for planed trees is just XT(X) and on multiplying 
the right side of (35) by 7 - (r] - x), it too can be brought into an expansion 
of the proper form. 

On carrying out the details for the expected values for rooted forests and 
planted forests, we again arrive at a conclusion of the form of (34). Moreover, 
this result holds in general whenever the generating function for a class of 
trees can be expanded as in (8). In particular, the expected number of rooted 
trees in a large random forest is 1 + CT=‘=, T(7)“) = 2.191837... and for forests 
of planted trees the number is 1 + x;c”==, $+T(T”) = 1.355131***. 

The actual calculations of these averages are simplified by certain rear- 
rangements of the terms in the series. Since the series for trees and planted 
trees depend on the series T(x) for rooted trees, it is sufficient to indicate the 
approach for T(x) alone. By interchanging the order of summation and using 
T(T) = 1, the average for rooted trees can be written as 

1 + f Y-(77”) = 2 + 5 T,172pl(l - qq. 
k=l II=1 

(37) 

The numbers Tp of rooted trees are bounded above by the Catalan numbers 
(see [I, p. 2091). These bounds can be used to estimate the truncation error 
when the right side of (37) is terminated at p = m. We find that this error is 
less than (4T2)m+1/(m + 1) for all m > 0 and so, for example, with m = 5, the 
truncation error is already less than 2 . 10-l. 

A routine analysis of the rounding error also shows that if 17 is estimated 
with s significant digits, we can obtain s - 1 significant digits in our result, 
provided m is sufficiently large. 

Note that there are fewer planted trees per large, random forest than 
ordinary trees, even though for large p there are always more planted trees 
than ordinary trees of order p. This difference is accounted for by noting that 
a single point is a tree but not a planted tree. Therefore t(x) begins with x 
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itself and this term contributes to the estimate 1.755510*** for trees the im- 
portant sum q + q2 + *a* = ~/(l - 7) which is more than enough to make 
up the difference between 1.755510*** and 1.355131***. 

PROBABILITY OF EXACTLY k TREES IN A FOREST 

A related question asks for the probability that a large random forest has 
exactly k trees. The generating function for forests with exactly k rooted 
trees is Z(S,; T(x), 7(x2),...). The desired probability for a forest on p points 
is the coefficient of xp in this cycle index divided by the total number of p- 
point forests. Now in [6] we demonstrated that the coefficient in xp in the 
cycle index is asymptotic to TD * Z(S,-,; T(v), T(q2),...). Since F, - T9 
(1 + F(q)), we conclude that as p increases, the desired probability that a 
forest on p points has exactly k trees approaches the limiting value of 

Wk--l ; T(v), T(r12),..J 
1 + FM ’ (38) 

The same analysis applies to other varieties of forests, so long as T(x) is 
replaced by the appropriate counting series, for example, r(x) for unrooted 
forests and XT(X) for planted forests. 

The identity 

kZ(& ; s1 , s2 ,...) = C siZ(S,ei ; s1 , s2 ,...) 
i=l 

(39) 

(see [1, p. 361) permits the cycle indices in (38) to be evaluated recursively. 
Thus, we have computed the limiting probabilities in Table IV. 

In conclusion, we observe that it has been shown [7] that for large k 

-W, ; T(q), Th2L..) - crl” WI 

where the constant c is given by 

c = fi (1 - ?#+)- Ti+l = 7.758 160 291. 
i=l 

A similar analysis for unrooted threes provides that for a large k 

(41) 

with 

Z(Sk; t(q), t(T2)v..) - 4” (42) 

d = fi (1 - qi)- ti+l = 2.129 384 514. (43) 
i=l 



NUMBER OF TREES IN A RANDOM FOREST 121 

TABLE IV 

Limiting Probability of Exactly k Trees in a Forest 

forest of forest of forest of 
k trees rooted trees planted trees 

1 .522 841 424 .338 321 857 .707 218 415 
2 .295 794 369 .338 321 857 .239 267 448 
3 .117 521 272 .191 403 541 .045 796 637 
4 .041 950 320 .083 180 075 .006 733 378 

5 .014 451 944 .031 622 733 .ooo 866 050 
6 .004 919 432 .Oll 256 322 .OO 104 297 
7 .OOl 667 802 .003 887 755 .OOO 012 187 
8 .ooo 564 649 .OOl 325 758 .OOO 001 406 
9 .ooo 191 079 .OOO 449 832 400 000 161 

10 BOO 064 651 .OOO 152 344 .ooo ooo 018 

large k 3.290 743 438 7k 7.758 160 291 7” 49.934 941 04 p 

The planted problem is solved by the identity 

Expression (38) can now be estimated to obtain the final line of Table IV. 
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