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Abstract
An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on
high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration
consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as
inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network
model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-
peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures
(25�e300 �C), strains (0.05e0.3) and strain rates (1500e4500 s�1) were employed to formulate JeC model to predict the flow stress behaviour
of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the
flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and
average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE
for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental
data for all strain rates and temperatures.
Copyright © 2014, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

The mechanical properties as well as deformation and frac-
ture mechanisms at high strain rates are quite different from
those exhibited under quasi-static loading. Hence the accurate
predictions may not be drawn from the quasi-static stress-strain
data (10�3e10�1 s�1) at high strain rates (102e107 s�1), and the
use of such data in the analysis and design of dynamically loaded
structures may lead to erroneous conclusions and designs. It is
therefore essential to study the material deformation charac-
teristics at high strain rates for applications involving high strain
rate deformations. The data obtained is helpful for the purpose
* Corresponding author. Tel.: þ40 24346332; fax: þ40 24342252.

E-mail address: ravindranadhbobbili@gmail.com (R. BOBBILI).

Peer review under responsibility of China Ordnance Society.

http://dx.doi.org/10.1016/j.dt.2014.08.004

2214-9147/Copyright © 2014, China Ordnance Society. Production and hosting by
of design of products as well as for developing the constitutive
strengthmodels of thematerials. In order to developmore robust
strength models and failure criteria under dynamic loading,
more and more experimental data obtained over wide range of
strain rates is required. An iterative procedure involving dy-
namic material testing and computer modelling may reduce the
time and expense required for the development of advanced
materials for applications such as armour. Characterization of
deformation, fracture and load carrying capability of materials
subjected to high strain rate is paramount for optimum material
selection for design of armour materials which experience high
strain rate dynamic deformation during impact of projectiles,
blast loading, explosive forming and other impact events.

Various high strain rate test methods, such as drop weight,
split Hopkinson pressure bar (SHPB), gas gun, Taylor impact
and expanding ring, were reported in Refs. [1e5]. Split
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Fig. 1. Schematic diagram of Split Hopkinson pressure bar (SHPB).
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Hopkinson pressure bar test method has been extensively used
for testing in the strain rate regime of 102e104 s�1 in tension and
compression modes [2,3]. The three important considerations
intrinsic to high strain rate testing are wave propagation, influ-
ence of strain rate on deformation ofmaterials, and effect of high
strain rate and temperature on properties of materials [2].

The effect of strain rate on material properties, viz., flow
stress, strain rate sensitivity, etc., varies for each material. An
increase in ductility of Al 7075 alloy was also reported by
Magd et al. [2]. Metallographic investigations of the material
showed ductile shear failure. Existence of two regions of strain
rate sensitivity in Al 7075 over a range of strain rates was
explained by Lee et al. [6]. It was reported that the strain rate
has only slight effect on flow stress in the strain rate regime of
102e103 s�1, which is higher than 103 s�1 at strain rates, and
the flow stress increases more rapidly with strain rate having
an approximate linear relationship. Hou et al. [7] carried out
the high strain rate experiments on Mg-Gd-Y alloy using
SHPB over a range of temperatures. A modified JeC model
was proposed to predict the dynamic response of this material
over a wide range of strain rates and temperatures.

Ji et al. [8] carried out the hot compression tests on Aer-
met100 steel using Gleeble-3800 thermo-mechanical simu-
lator to generate stress-strain data in a temperature range from
1073 to 1473 K and a strain rate range from 0.01 to 50 s�1.
The Arrhenius constitutive model and feed forward artificial
neural network (ANN) model were developed to predict the
high temperature deformation behaviour of the above material.
ANN was found to be superior for modelling the high tem-
perature deformation behaviours of materials. Han et al. [9]
performed a comparative study on constitutive relationship
of 904L Austenitic steel during hot deformation based on
Arrhenius and ANN models. Experimental data were gathered
from hot compression tests on Gleeble-1500D thermo-me-
chanical simulator to generate stress-strain data, in a temper-
ature range from 1000 to 1150 �C and a strain rate from 0.01
to 10 s�1. The back-propagation neural network model was
proved to be more accurate and efficient in investigating the
compressive deformation behaviour of material at higher
temperatures. Sun et al. [10] employed ANN model to develop
a constitutive model for the hot compression of Ti600 alloy.
These tests were performed on Gleeble-1500 thermo-me-
chanical simulator in a temperature range from 800 to 1100 �C
and a strain rate range from 0.001 to 10 s�1 to generate stress-
strain data. ANN model provided a simple and efficient way to
develop constitutive relationship for Ti600 alloy. Lin et al. [11]
studied the compressive behaviour of 2124-T851 aluminium
alloy under the strain rate from 0.01 to 10 s�1 and the tem-
perature from 653 to 743 K using Gleeble-1500 thermo-me-
chanical simulation machine. A modified constitutive model
accommodating the effects of material behaviour was pro-
posed. Gupta [12] developed various semi-empirical models
(JohnsoneCook model, modified Zerilli-Armstrong model
and Arrhenius model) to study the effects of strain, strain rate
and temperature. The tensiles of Austenitic stainless steel 316
were test using UTM machine at various strain rates
(0.1e0.0001 s�1) and temperatures (323e623 K). A
comparative study was undertaken among various constitutive
models and ANN model.

The available literature has so far dealt with dynamic ma-
terial characterization of various materials and their testing
methodologies under different loading conditions, and
microstructural analysis of various steels. So far no attempt
has been made to study the effect of temperatures of 7017
aluminium alloy on dynamic properties using JeC and ANN
models. The objective of the present study is to develop ANN
model for predicting the dynamic flow stress of 7017
aluminium alloy under high strain rate loading conditions.

2. Experimental methods
2.1. Materials and test setup
The present alloy under study is Al-4.5 Zn-2.5 Mg-0.3Si-
0.40 Fe (by weight %), commercially named as 7017
aluminium alloy. The quasi-static yield and ultimate tensile
strengths of the alloy are 458 MPa and 508 MPa, respectively.
Ductility measured as percentage elongation is 13% in 25 mm
gage length. High strain rate compression testing of 7017
aluminium alloy samples with 3, 4, 5 mm in length and 6, 8,
10 mm in diameter was carried out using SHPB apparatus
(Fig. 1). The specimens were prepared with L/D ratio of 0.5,
so as to minimize the errors due to inertia and friction. Fig. 2
shows the dimensions and surface finish of compressed
specimen used for 20 mm pressure bars. Length and diameter
of the samples were changed to vary the strain rate.

The experimental stressestrain data were obtained from
high strain rate compression tests using split Hopkinson
pressure bar (SHPB), over a wide range of strains (0.05e0.3),
strain rates (1500e4500 s�1) and temperatures (25�e300 �C).
The whole SHPB setup consists of pressure bars, gas gun
which propels a striker bar for producing the compressive
wave, strain gage for measuring the waves, associated
mounting and alignment hardware, and associated instru-
mentation and data acquisition system. SHPB apparatus has
two-pressure bars, one is called input or incident bar and
another is called output or transmitted bar [7]. These pressure
bars are made of materials having yield strength higher than
that of the material to be tested. The specimen to be tested is
sandwiched between the 2 bars. The yield strength of the
pressure bar determines the maximum stress attainable within
the deformed specimen, because the cross section of the
specimen approaches to that of the pressure bar during



Fig. 2. Typical dimensions of high strain rate test samples.
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deformation (Fig. 3). A rectangular compression wave with
well-defined amplitude and length is generated in the incident
bar when the striker bar strikes it.

The pressure wave was generated by having a striker bar
(projectile) to impact the input (incident) pressure bar. The
striker bar was propelled by a gas gun system attached at one
end. The strain gages in conjunction with the amplifiers and
associated instrumentation were used to record these wave
pulses. Since the specimen deforms uniformly, the strain rate
within the specimen is directly proportional to the amplitude
of the reflected wave (εr).

Strain rate in the specimen is

ε

: ¼�2cεr
l

ð1Þ
Hence strain in the specimen is

ε¼�2c

l

Z t

0

εrdt ð2Þ

Stress in the specimen can be calculated as

s¼ AEεt
As

ð3Þ

where A and As are the areas of the bar and specimen,
respectively; l is the length of specimen; c is wave speed;εt is
the strain in the transmitted bar; and E is the elastic modulus
of the pressure bar.
2.2. JohnsoneCook model
High strain rate plastic deformation of materials can be
described by various constitutive equations that basically
Fig. 3. Schematic of the deformed specimen tested at a strain rate of 4500/s.
attempt to address the dependence of stress on strain, strain
rate and temperature. In this regard, the stress can be presented
as

s¼ f ðε; ε: ;TÞ ð4Þ
There are a number of equations that have been proposed to

describe the plastic behaviour of materials as a function of
strain rate and temperature. At low strain rates, the metals are
known to work hardening along the well-known relationship,
which is known as parabolic hardening and expressed as
s ¼ so þ k ε

n, where so is the yield stress, n is the work
hardening exponent, and k is the pre-exponential factor.

The effect of strain rate on strength is generally expressed
as: sfln _ε. But the above relationship breaks down at strain
rate above 102 s�1.

The effects of temperature on the flow stress can be rep-
resented by

s¼ sr

�
1�

�
T � Tr

Tm � Tr

�m�
ð5Þ

where Tm is the melting temperature; Tr is the reference
temperature at which sr is the reference stress.

The dynamic flow stress depicting the effects of various
parameters is expressed by JohnsoneCook model as

s¼ �
AþBεn

� �
1þC ln ε*

� �
1� T*m

� ð6Þ

where A is the yield stress; B and n represent the effect of
strain hardening; C is the strain rate constant; ε is the equiv-
alent plastic strain; _ε is the strain rate; _ε*is the dimensionless
plastic strain rate represented as _ε= _εo for _εo ¼ 1 s�1; T* is the
homologous temperature referred as (TeTroom)/(TmelteTroom);
and m is the thermal softening factor. Thus, the terms pre-
sented in first, second and third brackets in Eq. (6) represent
strain, strain rate and temperature effect, respectively. The
JeC model is independent of pressure.

At reference strain rate and reference temperature, the
functions of strain rate hardening and thermal softening are
equal to unity, JeC model is simplified as follows

s¼ AþBεn ð7Þ
where A is the yield stress which can be directly obtained from
the strain-stress curve.

Plotting a line between ln ε and ln (s e A) at the reference
strain rate and reference temperature gives B and n in Eq. (7).
Strain rate sensitivity C is determined as the slope of linear fit
of log (strain rate) vs the dynamic flow stress/static stress
using high strain rate data corresponding to a strain of 10%.
The above constants are provided in the Table 1.
2.3. Artificial neural network approach
Neural networks are commonly employed in data predic-
tion, categorization and data filtering applications. Artificial
neural networks (ANN) imitate human brains to know the
interaction between inputs and outputs through training.



Table 1

JohnsoneCook Model constants for Al 7017 alloy.

A/MPa B/MPa n C m

410 528 0.88 0.01024 0.6
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Multi-layer ANN possesses input layers, hidden layers and
output layers. The hidden layers located between input and
output layers. The input layer first receives data and conveys it
to the hidden layer for processing. The processed data is
delivered as response to the output layer. Each layer can get a
number of neurons connected by links with adaptable weights.
These weights are adjusted during training. The inputs into a
neuron are multiplied by their respective connection weights,
and summed together, and a bias is added to the sum. This sum
is converted through a transfer function to produce a single
output. The nonlinear logarithmic sigmoid activation function
was adopted in the hidden and output layers. The actual output
obtained is compared to the required output to compute an
error. The error for hidden layers is calculated by propagating
back the error found out for the output layer; this technique is
called back-propagation algorithm.

The experimental data were split into three sets, 70% for
the training set, 15% for the verification set and 15% for the
test set in ANN model. The input data (strain rate, strain and
temperature) and output data (flow stress) were standardized in
the range. The network model consists of ten hidden layers. To
demonstrate the influence of network variables, the number of
hidden layer neurons were varied from 10 to 40. It has been
noticed that the predicted results are reasonable and accurate,
with 15 neurons in each hidden layer.

3. Results and discussion

The experimental data obtained from the high strain rate
compression tests (Fig. 4) on split Hopkinson pressure bar in a
wide range of temperatures (25�e300 �C) and strain rates
(1500e4500 s�1) were employed to develop JeC model and
ANN model for 7017 aluminium alloy. Fig. 5 depicts the
comparison of the experimental results with the predicted
Fig. 4. True stressestrain curves of aluminium 70
values at various strain rates and temperatures based on JeC
strength model. It is observed that the predicted flow stress
values obtained on JeC model are not consistent with the
experimental values, particularly at high temperatures; the
predicted values are smaller than the experimental results. So,
JeC model is not so adequate in predicting the flow stress
value in high temperature region. The predicting performance
of the JeC model was evaluated by comparing the experi-
mental and predicted data, as shown in Fig. 5. It was noticed
that the JeC model could predict the experimental data only in
the intermediate temperature range. This variation may be
attributed to the error introduced by the fitting of the material
constants at some conditions and the adiabatic temperature
increment due to plastic deformation. Since JeC model is a
phenomenological model, which does not consider the phys-
ical aspects of materials like theory of thermodynamics,
thermally activated dislocation movement, and kinetics of
slips while predicting the flow stress.

The JeC model and the back-propagation ANN model
were developed to predict the flow stress of 7017 aluminium
alloy under high strain rates and their predictability was
evaluated in terms of correlation coefficient R and average
absolute relative error (AARE). The predicted flow stresses of
JeC model are given in Fig. 5. Fig 6 illustrates the flow stress
predicted by ANN model versus measured value for testing
set. R and AARE for the J-C model are found to be 0.8461 and
10.624%, respectively (Fig. 7), while R and AARE for the
ANN model are 0.9995 and 2.58%, respectively (Fig. 8). It is
found that the relative error obtained from the ANN model
was observed to vary from 1.2% to 4.5%, while it was in the
range of 4.2 %e10.6% for JeC model. The performance of
the network also relies on learning parameters, such as the
number of training epochs and the momentum, etc. To un-
derstand the significance of these parameters, the number of
epochs is varied from 1000 to 10,000, the learning rate is
varied from 0.1 to 0.9, and the momentum rate is varied from
0.1 to 0.8. It shows that the momentum rate does not exhibit a
substantial influence on the performance of the network. It is
established that the optimum number of epochs is about
12,000, the number of neurons in each hidden layer is 15, the
17 alloy at temperatures 25 �C and 300 �C.



Fig. 5. Comparison between JeC Model and experimental flow stress of

aluminium 7017 alloy by JeC model at strain rates.

Fig. 6. Comparison between ANN Model and experimental flow stress of

aluminium 7017 alloy at strain rates.
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Fig. 7. Plot of predicted vs. experimental for modified JeC model.

Fig. 8. Plot of predicted vs. experimental for ANN model.
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number of hidden layers is 10, and the learning rate is 0.8,
with a momentum of 0.7 in all layers. Mean square errors
(MSEs) of desired and predicted data have been determined
when MSE attained a minimum value of 0.001.

Hence, the data obtained in the ANN model were better
compared to the JeC model. It shows that the developed ANN
model can offer an efficient prediction of flow stress in the
temperatures from 25 �C to 300 �C and strain rates from 1500
to 4500 s�1.

4. Conclusions

This paper has made an attempt to study the comparison of
the results obtained from JeC model and ANN model with
experimental values. The following conclusions are drawn:

1) The JeC model and the back-propagation ANN model
were developed to predict the flow stress of 7017 aluminium
alloy under high strain rates, and their predictability was eval-
uated in terms of correlation coefficient R and average absolute
relative error (AARE). R and AARE for the JeC model are
found to be 0.8461 and 10.624%, respectively, while R and
AARE for the ANN model are 0.9995 and 2.58%, respectively.
2) The established ANN model can effectively predict the
experimental data over a wider range of temperatures and
strain rates. This represents that ANN model has superior
capability to model the dynamic behaviour of materials. This
method circumvents the problems related to the constitutive
models that involve the determination of more number of
constants.

3) The validation tests have also been conducted to verify
the results obtained by ANN technique. The predictions of the
ANN model were in good agreement with the experimental
data obtained from SHPB tests.
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