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ABSTRACT

Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the
natural frequency is an important design calculation to avoid resonance and resonance related effects
(such as fatigue). Monopiles are currently the most used foundation type and are also being considered
in deeper waters ( > 30 m) where a stiff transition piece will join the monopile and the tapered tall
tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find
the Eigen solutions of the whole system considering soil-structure interaction; a quick hand calculation
method is often convenient during the design optimisation stage or conceptual design stage. This paper
proposes a simplified methodology to obtain the first natural frequency of the whole system using only
limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the
ground. The most uncertain component is the ground and is characterised by two parameters: type of
ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below
mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is
then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of
soil-structure interaction). The theoretical background behind the model is the Euler-Bernoulli and
Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking
and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind
farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely,
Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural
frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also

shown for practical use of the proposed methodology.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

are underway. OWTs are expected to have a fatigue life of 25-30
years, while foundations are typically designed to last even longer

Offshore wind turbines (OWTs) are currently installed in high
numbers in Northern Europe and the industry is rapidly devel-
oping worldwide. For example, countries such as China, South
Korea, Taiwan and Japan are currently developing wind farms and
the US has just installed its first pilot offshore wind farm. The
Levelised Cost of Energy (LCoE) and SCoE (Society's Cost of Energy)
from offshore wind are expected to decrease significantly in the
near future and challenging projects in further offshore and dee-
per water depths (30-50 m), with heavier/larger wind turbines
(upwards of 6 MW, with turbines of 10 MW in the testing phase)
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(50 years).

It has been well established that offshore wind turbines are
dynamically sensitive structures [10-12,3,35], and dynamics of
OWTs must be studied to avoid unplanned resonance which may
lead to increased fatigue damage through dynamic amplification
of responses. Estimation of the natural frequency of the whole
system is an important design calculation [25] so as to avoid the
excitation frequencies arising from wind turbulence loading, wave
loading, the rotational frequency of the turbine (1P) and the blade
passing frequency (2P/3P). The installed number of these relatively
new structures is likely to grow significantly in deeper waters and
will pose additional dynamic challenges, and is therefore the focus
of the paper. Specifically, the paper tackles the issue of the extra
length of the tower in water (which is generally stiffer than the
tower exposed in air) due to deeper water sites which makes the
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Fig. 1. Typical wind and wave spectra, rotational speed (1P) and blade passing (3P) frequency bands for six commercial turbines and measured natural frequencies of the

OWTs given in Table 1.

tower relatively more flexible as compared to shallow water
installations thereby lowering the natural frequency of the whole
system.

Fig. 1 shows typical wind and wave power spectral densities for
offshore sites which essentially describe the frequency content of
dynamic excitations from wind turbulence and waves. The graphs
also show the turbine's rotational frequency range (1P) and the
turbine's blade passing frequency range (3P) for a range of com-
mercial wind turbines of different capacities (2-8 MW). A simpli-
fied way of translating the wind turbulence spectrum and the
wave spectrum into mudline bending moment spectra through
linear transfer functions has been presented in [8]. The peak fre-
quencies of loading have been shown to coincide with the peak
frequencies of wind turbulence and waves. However, loads at the
1P and 3P frequencies can also be observed through effects such as
aerodynamic and mass imbalance of the rotor and rotational
sampling of turbulence by the blades, for 1P and 3P loads,
respectively [18,8]. Further details on the estimations of the loads
can be found in [13].

For the widely used soft-stiff design, the target Eigen frequency
(first natural frequency) is a frequency in the gap between 1P and
3P. Fig. 1 also shows measured natural frequencies of a wide array
of OWTs from several different wind farms across Europe (see
Table 1 for the nomenclature on the wind turbine structure for
which the measured natural frequency is shown and Table 5 for
the specification of the turbines given in Fig. 1). The figure clearly
shows the trend that the target natural frequencies of heavier
turbines are indeed closer to the excitation frequencies of the
wave and wind making these structures even more sensitive to
dynamics.

1.1. Dynamic issues in support structure design

Fig. 2 shows a schematic diagram of a wind turbine system
along with the mechanical model relevant to the study of the
overall system dynamics which is important for many design
calculations such as Eigen frequencies and fatigue. The definitions
of support structure, tower, substructure, foundation (monopile
considered here), transition piece, mudline and mean sea level are
defined in Fig. 2(a) and are consistently used throughout the
paper. For clarity, the support structure is the whole structure that
supports the heavy turbine i.e. the components below the rotor
nacelle assembly (RNA) which includes the tower, substructure
and foundation. The foundation is defined as the part of the sup-
port structure that is embedded in the ground below the mudline.
The tower is typically a tubular tapered column. As the natural
frequencies of these systems are very close to the forcing fre-
quencies, the dynamics pose multiple design challenges and the
scale of the challenges will vary depending on turbine types and

site characteristics. These issues are briefly mentioned in the next
section.

There are two main categories of modern wind turbines based
on the operational range:

(1) Variable rotational speed machines have an operational speed
range (1P range);

(2) Constant rotational speed wind turbines that operate at a single
rotational speed (fixed 1P).

Variable speed machines have 1P and 2P/3P frequency bands
which must be avoided, as opposed to a single frequency
(applicable to constant rotational speed machines). They are more
restrictive from the point of view of foundation design as the
forcing frequency is a band rather than a unique value. The tur-
bines currently used in practice (under operation) are variable
speed machines. Fig. 1 shows the 1P and 3P bands for typical
offshore wind turbines ranging from 2 MW (not in production
anymore) turbines to commercially not yet available 8 MW tur-
bines. It may be observed from Fig. 1 that for most wind turbines,
1P and 3P excitation cover wide frequency bands. To avoid these
ranges, the designer of the support structure has three options
from the point of view of the stiffness of the tower and the
foundation [32]:

(1) Soft-soft structures: whereby the natural frequency lies below
the 1P frequency range. This design is typical for floating off-
shore platforms, but are practically impossible to achieve for
fixed (grounded) structures. Also, soft-soft fixed structures
would likely be subject to high dynamic amplification of wave
load response.

(2) Soft-stiff structures: whereby the natural frequency lies above
the 1P frequency range. This is the typical design choice for
practical bottom fixed structures, such as monopile founded
OWTs. All wind turbines in Fig. 1 are designed soft-stiff.

(3) Stiff-stiff structures: whereby the natural frequency lies above
the 3P range. Such designs are typically considered to have a
massive support structure and therefore uneconomic. How-
ever, the Hornsea twisted jacket foundation supporting a met
mast has recently successfully achieved a natural frequency
above the 3P band [36].

It is quite clear from Fig. 1 that designing a soft-stiff system
which avoids both the 1P and 3P frequency bands is challenging
because of the tight tolerance of the target natural frequency.
Indeed, some OWTs with a wide rotational speed range, such as
the Areva M5000 5 MW in Fig. 1 with 4.5-14.8 rpm do not even
have a gap between 1P and 3P and they are overlapping. Modern
wind turbines often feature a sophisticated pitch control system
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Table 1

Analysed offshore wind farms with the used wind turbines and soil conditions at the sites.

Data and measured frequency sources

Soil conditions at the site

Turbine type and rated power

Wind farm name and location

No.

Zaaijer [54,55]

Soft clay in the uppermost layer to dense and very dense sand layers

below

NedWind 40/500 2-bladed 500 kW study purpose

wind turbine

Lely Offsore Wind Farm (Netherlands)

L

Lindoe Offshore Renewables Center [34]

Soft layers of silt and clay in the upper seabed to dense and very dense Zaaijer [54,55]

sand below

Nordtank NTK600/43 600 kW study purpose wind

turbine

Irene Vorrink Offshore Wind Farm
(Netherlands)

1L

Lindoe Offshore Renewables Center [34]

Camp et al. [19]

Rocky seabed (weathered bedrock)

Vestas V66 2 MW industrial offshore wind turbine

Blyth Offshore Wind Farm (UK)

1.

Lindoe Offshore Renewables Center [34]

Damgaard et al. [22]

Layers of dense sand and firm clay

Vestas V90 3 MW industrial offshore wind turbine

Kentish Flats Offshore Wind Farm (UK)

V.

Lindoe Offshore Renewables Center [34]

Damgaard et al. [22]

Layers of dense sand and stiff clay

Vestas V90 3 MW industrial offshore wind turbine

Barrow Offshore Wind Farm (UK)

V.

Lindoe Offshore Renewables Center [34]

Damgaard et al. [22]

Fine sand and stiff clay

Vestas V90 3 MW industrial offshore wind turbine

Thanet Offshore Wind Farm (UK)
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Lindoe Offshore Renewables Center [34]

Damgaard et al. [22]

Dense sand and stiff clay

Vestas V90 3 MW industrial offshore wind turbine

Belwind 1 Offshore Wind Farm (Belgium)

VIL

Lindoe Offshore Renewables Center [34]

Versteijlen et al. [52]

Saturated dense sand

Vestas V90 3 MW industrial offshore wind turbine

Burbo Bank Offshore Wind Farm (UK)

VIIL

Lindoe Offshore Renewables Center [34]

Lindoe Offshore Renewables Center [34]

4C Offshore Limited [1]

Medium and dense sand layers

Siemens SWT-3.6-107 3.6 MW industrial offshore

wind turbine

Walney 1 Offshore Wind Farm (UK

IX.

4C Offshore Limited [2]

Leblanc Thilsted and Tarp-Johansen [33]

Sand and clay layers

Siemens SWT-3.6-107 3.6 MW industrial offshore

wind turbine

Gunfleet Sands Offshore Wind Farm (UK)

X.

Lindoe Offshore Renewables Center [34]

designed to leap frog the rotational frequency range that would
cause resonance of the structure due to the corresponding 3P
frequency. For example, if the rotational speed range is 5-13 rpm,
equivalent to 0.083-0.216 Hz, then the 3P frequency band is 0.25-
0.65 Hz. If the structural natural frequency is 0.35 Hz, then the
pitch control may regulate the rotational speed such that the
corresponding 3P frequency avoids + 10% of the structural natural
frequency i.e. the frequency band 0.315-0.385 Hz to comply with
the DNV code [25]. This would result in a jump in the rotational
speed from 6.3 rpm to 7.7 rpm, avoiding operation between these
values. Obviously, this is also not without cost, both in terms of
initial costs, maintenance and power production.

The second issue is the top head mass, i.e. the mass of the rotor
nacelle assembly (RNA, see Fig. 2 for clarity). With increasing
capacity of the turbine, the mass of the rotor-nacelle assembly
increases and the natural frequency will also decrease keeping
other factors constant. Furthermore, the hub height is also higher
due to longer blades (associated with heavier turbines) which
increases the flexibility of the taller towers causing further
reduction in the natural frequency. This trend can also be seen in
Fig. 1, the target natural frequency of wind turbines (in soft-stiff
design) with higher power output is typically lower. Fortunately,
the large rotor diameter wind turbines also tend to have lower
rotational speeds. This is because of the fact that for optimum
power production the tip speed ratios (ratio of the speed of the tip
of the blades and the incoming wind speed) are maintained at a
favourable value, also to avoid blade damage. Furthermore, the top
head mass is dependent on the choice of drive (with or without
gearbox). Direct drive wind turbines do not need gearboxes, and
thus significant weight reduction can be achieved (theoretically).
However, the weight reduction is not obvious because the power
of an electric generator is proportional to its rotational speed, see
Eq. (1) [18] and thus direct drive wind turbines typically have
larger diameter (and thus heavier) generators.

P=CgD L 82 1)

where C; is a constant and Dg, L, £2, are the diameter, length and
rotational speed of the generator, respectively.

As the total mass of the rotor-nacelle assembly influences the
natural frequency, the design of the support structure for wind
turbines may be improved by an integrated design.

A further effect is the increasing importance of the flexibility of
the monopile, the grouted connection and the transition piece
(that is, the substructure) as a consequence of increasing water
depth. The longer the monopile, the more effect the substructure
has on the natural frequency of the total structure. This is in
contrast with shallow water turbines where the tower is over-
whelmingly softer than the substructure and the natural fre-
quency of the whole system is critically governed by the bending
stiffness of the tower and the soil stiffness.

For large wind turbines the frequency band of the wave exci-
tation (see JONSWAP spectrum in Fig. 1) becomes important as it is
very close to the natural frequency of the whole system. This issue
gains even more importance as the substructure diameter
increases for large wind turbines. If the structure is also installed
in deeper water, then both the expected significant wave height
and the length of the substructure increase, resulting in dynamic
wave loads comparable to or exceeding the wind load.

The natural frequency of the whole system therefore needs to
be assessed in the feasibility study phase and also in the early
phases of the foundation design. This calls for a simplified meth-
odology that is quick and uses only limited data about the wind
turbine and the site.
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Fig. 2. Basic model of an OWT: (a) Main components. (b) Dimensions. (c) Mathematical model.

1.2. Motivation behind the study

This study aims to provide a simple, quick and reliable tool for
the foundation designer to assess the fundamental natural fre-
quency of the turbine-substructure-foundation-soil system. The
simple expressions obtained in this work build on previous
research in the dynamics of offshore wind turbines. Analysis of
OWTs modelled as Euler-Bernoulli beams and founded on two
independent springs (lateral and rocking stiffness) is carried out in
[4,3] while soil-structure interaction was experimentally verified
in [10]. A major discrepancy between measured and predicted
natural frequencies of OWT structures has been reported in a
multitude of studies [21,28,32,36,54,56]. The sources of uncer-
tainty related to the discrepancy can be due to theory or physical
idealisation of the system or parameters or a combination of the
above and are summarised below:

(1) Beam model uncertainty i.e. uncertainty in the mathematical
idealisation of the physical system: The current methodology
is based on the Euler-Bernoulli beam theory, however, the
authors have found in [6] that more sophisticated beam
models including rotary inertia (Rayleigh beam) and shear
deformation (Timoshenko beam) do not provide notable
improvements in the results (less than 0.1%). Therefore, the
simple Euler-Bernoulli model is satisfactory for wind turbine
towers. Further details are given in Appendix A.

(2) Uncertainty in the modelling of the substructure: The sub-
structure is modelled by a single equivalent cross section
(which is the cross section of the monopile). This approx-
imation may lead to over or underestimation of substructure
stiffness.

(3) Uncertainty in the modelling of the foundation. The analysis
focuses on Eigen solutions of a linear system, and therefore
nonlinear soil behaviour is not modelled. The foundation
system is not expected to go into the nonlinear regime and
therefore the linear approximation is considered acceptable. In
the linear regime, the foundation is modelled with three
coupled springs (K, Kr and K;r) resulting in an exact model of
the linearised system, see Fig. 2(c). It was found in [6] that the
cross coupling spring (Kig) cannot be excluded from the
analysis.

(4) The major uncertainty is the well-known issue of measure-
ment of soil stiffness. It is challenging to estimate foundation
stiffness with complex soil layers at offshore sites. A sensitivity
analysis was carried out [7] and it was found that under-
estimation of soil stiffness by 30% would typically result in a

frequency increase of 0.2-5% while overestimation by 30%
causes a natural frequency change of 2-5.6%. The uncertainty
analysis was carried out by considering the effect of stiffness
changes for the ten wind turbines presented in Table 1, as well
as 6 other industrial wind turbines not discussed in this paper.
The transcendental equations resulting from the analytical
formulation have been solved, using the three springs approx-
imation for the foundation and Timoshenko beam theory for
the tower, as given in Appendix B, and also in [6] (a simplified
version of the problem has also been given in [4,3]). The
equations have been numerically solved for all wind turbines
in different soil conditions to analyse the sensitivity.

Another aspect is the idealisation of the tapered tower of

varying wall thickness with an equivalent diameter and wall

thickness as a constant bending stiffness column, as has been
used in many of the simplified methods [3,4,50,55,56,6].

(6) A further source of uncertainty is the damping of the real
structure. If the damping ratio is £, the natural frequency of
underdamped vibrations f 1 can be expressed with the
undamped frequency f; as

Fi=fy1-¢

The main sources of damping of an offshore wind turbine
structure are the aerodynamic damping, soil damping, structural
damping (damping of steel), hydrodynamic damping and addi-
tional damping from tower motion dampers (e.g. slosh dampers).

gtotal = gaero + Cstruct, + gsoil + ghydro. + gdamper

(5

~

1.3. Damping of structural vibrations of offshore wind turbines

As the natural frequencies of offshore wind turbines are close
to forcing frequencies, damping is critical to restrict damage
accumulation and avoid premature maintenance. Therefore dis-
cussion is warranted for issues related to damping and for prac-
tical design purposes can be idealised in fore-aft and side-to-side
vibrations of offshore wind turbines. The main difference between
the sway-bending (or rocking) vibrations about two axes (X and Y
in Fig. 2) is that in the along-wind direction higher damping is
expected due to the high aerodynamic damping caused by the
rotating blades interacting with the airflow. On the other hand, for
the side-to-side direction, the aerodynamic damping is orders of
magnitudes lower.

A non-operational (parked or idling) OWT has similar aero-
dynamic damping in the fore-aft as in the side-to-side direction.
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Since the wind load is acting in the along-wind direction, the
highest load amplitudes are expected in fore-aft motion. This is
because for most wind turbines in water depths less than 30 m,
wind loading is the dominant load, while for very large diameter
monopiles in medium to deep water, wave loading is expected to
have equal or higher magnitude. It is worth noting that due to the
yaw mechanism of the wind turbine, the along-wind and cross-
wind directions are dynamically moving and are not fixed,
therefore the foundation is subjected to both cross-wind and
along-wind loading in all directions during the lifetime of the
OWT. One can conclude that analysing vibrations in both direc-
tions is important.

Studies considering the damping of the first bending mode
either empirically or theoretically include Camp et al. [19], Tarp-
johansen et al. [48], Versteijlen et al. [51], Damgaard and Andersen
[21], Damgaard et al. [22] and Shirzadeh et al. [46]. Based on these
studies and other estimates and in the absence of other data, the
following assessment of damping ratio contributions is
recommended:

e Structural damping: 0.15-1.5%. The value of structural damping
depends on the connections in the structure (such as welded
connections, grouted connections, etc.) in addition to material
damping (usually steel) through energy dissipation in the form
of heat (hysteretic damping).

® Soil damping: 0.444-1%. The sources of damping resulting from
soil-structure interaction (SSI) include hysteretic (material)
damping of the soil, wave radiation damping (geometric dis-
sipation) and, to a much lesser extent, pore fluid induced
damping. Wave radiation damping and pore fluid induced
damping are negligible for excitations below 1 Hz, and therefore
hysteretic damping is dominant for the purposes of this study.
The soil damping depends on the type of soil and the
strain level.

e Hydrodynamic damping: 0.07-0.23%. Results from wave radia-
tion and viscous damping due to hydrodynamic drag. In the low
frequency vibration of wind turbines the relative velocity of the
substructure is low and therefore viscous damping, which is
proportional to the square of the velocity is typically very low.
The larger contribution results from wave radiation damping,
which is proportional to the relative velocity.

® Aerodynamic damping: in the fore-aft direction for an opera-
tional turbine 1-6%, for a parking turbine or in the crosswind
direction 0.06-0.23%. Aerodynamic damping is the result of the
relative velocity between the wind turbine structure and the
surrounding air. Aerodynamic damping depends on the parti-
cular wind turbine, and is inherent in the popular Blade Ele-
ment Momentum (BEM) theory for aeroelastic analysis of wind
turbine rotors. The magnitude for a particular wind turbine also
depends on the rotational speed of the turbine.

The total damping of the first mode of vibration is typically
between 1% and 4% in side-to-side vibration, or for a parked,
stopped or idling turbine. On the other hand, the total damping is
between 2% and 8% for an operational wind turbine in the fore-aft
direction.

2. Methodology and results

In this study, the OWT mechanical model used in [4,3,6] is
extended to consider the effect of the stiffness of the substructure
which becomes critical for deeper water, see Fig. 2. The rotor-
nacelle assembly (RNA) is modelled as a lumped top head mass
mgna and the tower and the substructure are modelled as beams.
The foundation is idealised as three springs (lateral K, rocking or

rotational K, and cross coupling Ky stiffness). This methodology
requires 14 input parameters which are given in Table 1 and the
definitions are shown in Fig. 2. Arany et al. [6] demonstrated that
the more sophisticated Timoshenko beam model, which takes into
account mass moment of inertia and shear deformation in the
equations of motion of the tower, provides no notable improve-
ment over the simpler Euler-Bernoulli beam model in natural
frequency estimation. It was concluded that the tower can be
considered a slender beam and the Euler-Bernoulli beam is suf-
ficiently accurate, therefore it was used to obtain the results pre-
sented in this paper.

Appendix B shows the derivation of the frequency equations of
the two beam models. The natural frequency in both cases can be
obtained numerically from the resulting transcendental equations.
Approximate closed form expressions have been fitted to the
results to fit the expression given by Eq. (2) which states that the
first natural frequency (f;) can be obtained by multiplying the
fixed base frequency (cantilever beam frequency fg) by two fac-
tors Cg and C; which account for the flexibility provided by the
foundation. In other words, the foundation flexibility coefficients
Cr and C; are applied to the fixed base (cantilever beam) natural
frequency to obtain the natural frequency taking into account the
foundation compliance and soil-structure interaction. The formula
for the first mode natural frequency is then given as:

f] :CRCLfFB' (2)

2.1. Parameters and idealisation

The methodology uses 14 basic parameters for the wind tur-
bine support structure and the site (foundation stiffness) and are
summarised in Table 2. It is considered useful to explain the
idealisation of the structure in a bit more detail. Fig. 2(b) shows
the dimensions of the tapered and equivalent towers. The tapering
is assumed to be linear with the tower diameter linearly
decreasing from Dj, at the bottom to D; at the top of the tower. The
average diameter is used as the equivalent constant diameter for
the idealised tower Dy, that is

_Dp+Dt
-2
The wall thickness tr is assumed to be constant along the

tower. The equivalent mass of the tower is calculated from the
geometry and density of the tower material p; as

D, 3

my = prDrrtrLly 4)

Table 2
Information required for frequency estimation.

# Input parameter Symbol Unit

1 Mass of the rotor-nacelle assembly MgNA ton

2 Tower height Ly m

3 Tower top diameter D; m

4 Tower bottom diameter D, m

5 Average tower wall thickness tr m

6 Tower Young's modulus Er GPa

7 Tower mass mr ton

8 Platform height above mudline Ls m

9 Monopile diameter Dp m
10 Monopile wall thickness tp m
11 Monopile Young's modulus Ep GPa
12 Lateral stiffness of foundation K GN/m
13 Cross stiffness of foundation Kig GN
14 Rocking stiffness of foundation Kr GN m/rad
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Note, in some cases this mass may not necessarily be exactly
the same as the actual mass of the tower mr. However, in cases
when the average tower thickness or a range of tower wall
thicknesses is not available, the thickness can be back-calculated
from the tower mass

mr

tT = pTLTDTﬂ:

)

The model is based on a beam with two different cross section.
It is assumed that the cross section of the monopile is the first
section of the beam from the mudline to the bottom of the tower,
and the second section of the beam is the tower from the tower
bottom to the rotor nacelle assembly. In this formulation the
flexibilities of the grouted connection and the transition piece are
neglected. The first section is of length Ls, diameter Dp, wall
thickness tp and bending stiffness Eplp, while the second cross
section is of length L7, diameter Dr, wall thickness tr and bending
stiffness Erlr. The platform height above mudline Ls is defined as
the distance from the mudline (seabed) to the bottom of the tower
(tower - transition piece connection).

2.2. Calculation procedure for simple natural frequency estimation

The natural frequency estimation process can be summarised in
three steps:

Step 1: Calculate fixed base natural frequency f; of the variable
cross section beam using the monopile flexibility coefficient Cyp.
Step 2: Calculate the non-dimensional foundation stiffness
parameters: 77;, #g, Hg-

Step 3: Calculate and apply foundation flexibility coefficients C,
and Cy and apply them to obtain the first natural frequency on
the flexible foundation, i.e. f; = C,Crf g

The steps are described in more detail along with the metho-
dology and calculation steps together with references for further
reading.

Calculation procedure for Step 1: The fixed base natural fre-
quency can be calculated by the simple natural frequency formula
of the cantilever beam. The derivation can be found in Appendix A.

1 [k
fFB:E\/% (6)

where for the tower and the RNA only, the equivalent stiffness of
the beam k based on the tower bending stiffness Erlr and length
Lr, and the equivalent mass (considering the mass of the tower mj
and the mass of the rotor-nacelle assembly mgy4) are given by:

_3Erlr
=5

k

33
and m=mgny +mmT 7

Substituting back into the formula, the following is given for
the fixed base natural frequency.

1 3EI,
fFB,T =351/73, . 22~ (8)
27\ L (mgna +£55m7)

In these expressions the second moment of area It and the
mass m; of a constant diameter tower are considered. That is, if
the average diameter of the tower is Dr and the average wall
thickness of the tower is tr then the equivalent second moment of
area Iy and the equivalent tower mass mj are

1

871'D]3~t7' m’T = pTDTﬂ'tTLT (9)

Ir=

Dependence of structural natural frequency on
monopile stiffness and water depth
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Fig. 3. The effect of water depth and monopile stiffness on the fixed base natural
frequency.

A similar expression is given specifically for wind turbine
towers by van der Tempel and Molenaar [50].

o L 3.04EI;
BT 727\ 13 (mgwa+0.227my)

(10)

In this paper the simple expression in Eq. (8) is used. The
flexibility of the monopile is taken into account by a monopile
flexibility coefficient Cpp expressed in terms of two non-
dimensional numbers,

bending stiffness ratio:  y= Erly
Eplp
. Ls
platform/tower length ratio : =i
T

where Erlr is the bending stiffness of the constant diameter
tower, Eplp is the bending stiffness of the monopile, Ls is the
platform height above the seabed (distance from the mudline to
the top of the transition piece) and Lt is the height of the tower.

The fixed base natural frequency of the wind turbine - sub-
structure system is

1
fFBZCMl"fFB,T=Hm'fFB,T (11

Fig. 3 shows the effect of the parameters y and y on the fixed
base natural frequency. To make these parameters more physically
meaningful, one can say that increasing y represents a stiffer
monopile, while increasing y represents deeper water.

Calculation procedure for Step 2: In the second step, the foun-
dation stiffness is non-dimensionalised using the tower's length Ly
and the equivalent bending stiffness of the tapered tower EI,,. The
non-dimensional lateral, cross-coupling and rotational stiffness
values, 77,77z, g Tespectively, are necessary for this calculation

KL  Kl}

 Kgly
n= ?1” Mg = El,

g = E111

(12)

These formulae use the equivalent bending stiffness for a
tapered tower as given in [7-9]. The derivation is shown in
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Appendix C. Only the final formulae are presented here for brevity:

El, =El; x f(q) (13)
where EI; is the bending stiffness at the top of the tower.

_1 2¢°@q-1 ; _D
f(Q)—§><2q2 hq—3¢+4q—1 with 9=p (14)

Calculation procedure for Step 3: The empirical foundation
flexibility factors are applied to the natural frequency

N
1+a<nR—%)
1
1+b(m—%>

where a,b are empirical constants. The values of these constants
were found to be a~ 0.6 and b~ 0.5 and were obtained by fitting
closed form curves to the solutions obtained by solving the
transcendental equations resulting from the analytical formulation
given in Appendix B. Further details can be found in [6] and a
simplified version of the problem has also been solved in [4,3]. A
total of 16 wind turbines have been used to find best-fit values of a
and b minimising the mean squared error between the numerical
and closed form results. The curve fit reproduces the natural fre-
quency for all 16 wind turbines with excellent accuracy ( < 1%) for
practical parameter combinations. The applicability of the for-
mulae in Eq. (15) is limited to

Cr (’hs’?Ra Mg) =1-

Co(mnr-mir) =1- (15)

ni ni
ng>121R and g, >121R (16)
un MR
With these the natural frequency of the OWT on a flexible
foundation can be calculated as given in Eq. (2).

2.3. Example step by step calculation: Blyth Offshore Wind Farm
Vestas V66 2 MW

The input data for the calculations are shown in Table 3
(number III). Foundation stiffness is one of the most uncertain
quantities and Appendix D discusses a method to obtain founda-
tion stiffness in the absence of detailed site data.

Step 1: The parameters in Table 2 are used to calculate the fixed
base natural frequency of the tower

In this formulation Dy is the average tower diameter

_ Dy+D; 4254275
S St

The tower wall thickness is determined from the mass of the
tower as

Dr 3.5[m], (18)

oo M 159,000 [kg]
T~ p:Drzly — 7860[kg/m3] - 3.5[m] - 7z - 55[m]

~0034[m]  (19)

and I7 is the second moment of area of the equivalent constant
diameter tower cross section

Ir= %D%tﬁz = % -3.5°[m?]- 0.034[m] - 7 = 0.572[m"].

The bending stiffness ratio and length ratio are calculated as

_ Erly  210[GPa] - 0.572[m*]

(20)

~Eplp  210[GPa] - 0.806[m?] =07100-1 @D
=L ~55m]~ 0.306[—] (22)
where the monopile's second moment of area is
Ip= 1D,%t,ﬂz 135 005.7= 0.806[m*]. (23)

8 8

The natural frequency of the monopile supported wind turbine
on a fixed base is given as

1
1+(1+0.306)° -0.710—0.710)

Sre=Cwmp 'fFB,T=\/

.0.703[Hz] = 0.514[Hz]

24

Step 2: The equivalent bending stiffness needed for the non-

dimensional stiffness parameters is calculated.

D, 425 1 2¢2(q-1°
9=p, =275~ 1  J@=3%3pmg3pag-1- 2% @
El, = Eliop % f(q) ~ 147[GNm?] (26)

See details on the derivation of these expressions in
Appendix B. Then the non-dimensional stiffness parameters can
be obtained from

3
T 27\ (mewa+ o)L n
Table 3
Input parameters for wind turbines listed in Table 1.
#  Input parameter Symbol  Unit 1 Il I 1\% \% VI VI VIII IX X
1 Mass of the rotor-nacelle assembly  mgya ton 32 35.7 80 130.8 130.8 130.8 130.8 2345 2345 2345
2 Tower height Lr m 379 44.5 54.5 60.06 58 54.1 53 66 67.3 60
3 Tower bottom diameter Dy m 32 35 4.25 4.45 4.45 43 43 5 5 5
4  Tower top diameter D; m 1.9 1.7 2.75 23 23 23 23 3 3 3
5 Average tower wall thickness tr mm 13 13 34 22 32 36 28 28 41 33
6 Tower Young's modulus Er GPa 210 210 210 210 210 210 210 210 210 210
7 Tower weight mr ton 3144 37 159 108 153 160 120 180 260 193
8 Platform height above mudline Ls m 71,121 5.2-6.0 16.5 16 33 41.1 37 22.8 373 28
9 Monopile diameter Dp m 3.2,3.7 3.515 3.5 43 4.75 4.7 5 47 6 5
10 Monopile wall thickness tp mm 35 35 5 45 45-80 65 50-75 45-75 80 35-50
10 Monopile Young's modulus Ep GPa 210 210 210 210 210 210 210 210 210 210
11  Lateral stiffness of foundation K GN/m 0.52, 0.62 0.58 42,66 0.82 1.03 1.05 1.02 1.11 153 1.02
12 Cross stiffness of foundation Kig GN -2.74, =357 -325 —-4550 -542 -768 -789 -759 -856 —13.88 -7.59
13 Rocking stiffness of foundation Kg GNm/rad 23.63, 33.59 29.67 136.04 58.77 9345 96.84 9193 108.03 205.72 9193
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_ Kgl*

ik ="pp,~ = —903[-] (28)
_Kel

e ="gj, = 50[-] 29)

Step 3: The foundation flexibility factors are calculated

1
—903)
1+0.6(50-G0%)

Cr (’7La’7Ra’7LR) =1- =0.951 (30)

1

- =1.000 31)
1+0.5(45709 - =56)

Co(Mp.1r-1Mir) =1

the natural frequency is then obtained from
f1=CrCrfrg=0.951-1.000 - 0.514[Hz] = 0.489[Hz] 32)

The measured frequency at Blyth wind farm is 0.488 Hz, and
thus there is an excellent match with an error of 0.2%. The natural
frequency on the monopile foundation is about 4.9% lower than it
would be on a completely stiff fixed base. This difference is small
because at the Blyth site the monopile is grouted into very stiff
bedrock. The influence of the foundation flexibility is higher for
most sites with values ranging from 4% to 15% for wind turbines
analysed in this paper.

3. Application of the methodology to installed wind turbines
and discussion

To demonstrate the general applicability of this method, the
natural frequency of several wind turbines will be determined. The
analysed offshore wind farms and turbines are presented in
Table 1, as well as references to the sources of data. The input data
of the turbines is summarised in Table 2. The calculations shown
in Section 2.3 are carried out for all wind turbines in Table 1. Some
intermediate parameters are shown in Table 4 and the results are
given in Table 5 and compared with the measured data. The
measured natural frequency values have been reported by various
researchers and have been obtained by different methodologies of
signal processing. Further details on the case studies can be found
in the references given in Table 1. The results show that the
empirical formula presented in this paper approximates the nat-
ural frequency within —3.2% to 3.1% of the measured frequency.
This can be considered an excellent match given such a simplified
methodology. The difference between the fixed base natural fre-
quency and that for the flexible foundation using the present
method is typically within the range 3-15%, which is considered
typical for most offshore wind turbines. The flexibility (percentage
reduction of the first natural frequency) introduced by the com-
pliance of the foundation is reported for each wind turbine in
Table 5.

Table 4
Calculated parameters for wind turbines listed in Table 1.

As the foundation stiffness parameter (K, Kg) increases, the
foundation flexibility coefficients (C;,Cg) also increase and the
natural frequency approaches the fixed base natural frequency fg.
Most of the contribution to the frequency change (4-15%) results
from the rotational foundation flexibility coefficient C;z and the
lateral foundation stiffness coefficient C; has very limited influ-
ence (of less than 1% on the natural frequency) of all analysed
turbines. Consequently, the most important foundation stiffness
parameter is the rotational stiffness K.

In Fig. 4 three turbines are used to illustrate the effect of the
non-dimensional rotational stiffness #; on the natural frequency
in terms of the rotational foundation flexibility coefficient Cg. It
should be noted that the curves flatten out for increasing rota-
tional stiffness. The foundation designer should choose the foun-
dation stiffness such that the OWT structure is in the flat part of
this curve. This ensures that even if the foundation stiffness was
estimated with significant errors or if the stiffness changes during
the lifetime of the turbine, the natural frequency change is limited
and does not affect the foundation's ability to meet the Fatigue
Limit State (FLS) and Serviceability Limit State (SLS) criteria. On
the dropping part of the curve, however, a slight increase or
decrease of the stiffness might cause substantial change in the
natural frequency, which may lead to increased fatigue damage
and reduced service life.

It is important to emphasise that the foundation stiffnesses K,
Kir, Kr and thus the non-dimensional foundation stiffnesses #;, 7z,
ng are not independent parameters. Appendix D provides a brief
discussion about the available methods for estimating the foundation
stiffness, and simple expressions are provided for the simple cases of
cohesive soils, cohesionless soils and rock. Following these formulae,
the independent parameters of foundation stiffness are the geometry
of the pile (diameter Dp, wall thickness tp and embedded length Lp as
defined in Fig. 2(b)) and soil parameters (expressed using either the
modulus of subgrade reaction kj, the coefficient of subgrade reaction
ny, or the effective shear modulus G*).

Furthermore, as discussed in Section 1, the damping in the first
sway-bending mode also influences the measured natural fre-
quency. The damping is lower for side-to-side direction and for a
parked/idling turbine than in the fore-aft direction for an opera-
tional turbine due to the significant contribution of aerodynamic
damping. The total damping of the system was estimated between
2% and 8% in Section 1, which amounts to a frequency change of
about 0.02-0.32%.

3.1. Discussion on the parameters for foundation stiffness estimation

There are two groups of parameters necessary to determine
foundation stiffness, categorised as pile data and soil data, as
tabulated in Tables 6 and 7 for all the turbines listed in Table 1. The
pile parameters are the pile diameter Dp, the pile wall thickness tp,
and the pile embedded length Lp, as defined in Fig. 2(b). The
diameter of monopiles is typically constant along the length.
However, the pile wall thickness may change. In this paper the
wall thickness was chosen as the pile thickness in the region
below the mudline, because the top layers are considered more

Parameter Symbol Unit I Il I I\% \% VI VI VIII IX X
Tower average diameter Dr m 255 26 3.5 3375 3375 33 33 4 4 4
Average second moment of area It m* 0.086 0.089 0.574 0.325 0478 0.512 0392 0.694 1.034 0.818
Tower diameter ratio Dy, /D; q Dimensionless 1.68 2.06 1.55 1935 1935 1870 1870 1.667 1667 1667
Bending stiffness coefficient for n f@ Dimensionless 3.28 523 2.02  4.528 4.528 4.181 4.181 3.204 3.204 3.465
Equivalent bending stiffness of the tapered tower for non- El, GN m? 21.86 16.73 116.71 928 668 61.7 617 1739 2675 136.5

dimensional stiffness parameters
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Table 5
Natural frequency results.
Wind farm Turbine ID Natural frequency [Hz] Error [%] Flexibility [%]
Measured Fixed base Formula
L. Lely A2 0.634 0.713 0.643 1.36 9.9
A3 0.735 0.767 0.712 -3.19 7.2
IL. Irene Vorrink 3 0.546 0.583-0.586 0.552-0.555 -1.10 53
7 0.554 -0.18 58
12 0.553 0.18 53
23 0.563 142 5.8
28 0.560 0.89 5.8
III. Blyth Southernmost 0.488 0.514 0.489 012 49
IV. Kentish Flats - 0.339 0.380 0.339 0.01 10.9
V. Barrow - 0.369 0.387 0.367 0.54 52
VI. Thanet - 0.370 0.402 0.382 3.08 5.0
VIIL Belwind - 0.372 0.401 0.380 212 5.4
VIIIL Burbo Bank - 0.292 0.322 0.295 1.05 8.4
IX. Walney - 0.350 0.380 0.349 040 8.4
X. Gunfleet Sands - 0.314 0.352 0.315 0.31 10.6

Rotational Foundation Flexibility Coefficient
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Fig. 4. Rotational foundation flexibility coefficient curves as a function of non-dimensional rotational stiffness for three different sites, all using Vestas V90 3 MW offshore
wind turbines.

Table 6
Input and calculated soil parameters for each wind turbine listed in Table 1.
# Input parameter Symbol Unit | I I v \" VI VII VIII X X
1 Soil density Ps kg/m? 2000 2000 2850 920 920 920 920 2090 2000 2000
2 Soil's Young's modulus Es MPa 5160
3 Soil's Poisson's ratio v Dimensionless 0.2
4 Soil's shear modulus Gs MPa 2150.0
Soil coefficient of subgrade reaction ny MN/m? 29.1 29.1 6.2 6.2 6.2 6.2 30.4 29.1 29.1
Soil's equivalent shear modulus G* MPa 2472.50
Table 7
Input and calculated pile parameters for each wind turbine listed in Table 1.
# Input parameter Symbol Unit | 1 m v \" VI VII VIII IX X
1 Pile diameter (range) m 3.2-3.7 3515 3.5 4.3 4.75 4.05-51 4.07-5.0 4.7 6 4.7
Chosen value Dp m 3.2;3.7 3,515 3.5 43 475 4.7 5 47 6 47
2 Pile wall thickness (range) mm 35 35 50 35-50 45-80 60 50-75 45-75 80 50-94
Chosen value tp mm 35 35 50 45 80 60 70 75 80 94
3 Pile embedded length (range) m 30 23-246 12-15 18-34 30.2-40.7 25-30 35 21-24 30 27-38
Chosen value Lp m 30 24.6 15 29.5 40 30 35 24 30 38
4  Pile material's Young's modulus  Ep GPa 210 210 210 210 210 210 210 210 210 210
Pile equivalent Young's modulus E, GPa 15.45 16.23 2299 17.04 26.89 20.64 22.55 25.55 2152 31.62
Pile bending stiffness Eplp GN m? 142.09 121.64 169.32 285.88 67192 494.29 691.70 611.89 1368.78 757.49

Pile slenderness parameter BALp Dimensionless  2.712 2.310 4459 2750 3.329 2711 3.138 1931 1529 2.338
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Natural frequency as a function of
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Fig. 5. Foundation flexibility factor as a function of soil effective unit weight and pile bending stiffness for slender piles and as a function of soil effective unit weight and

embedded length for rigid piles.

important from the point of view of pile head deflection/rotation
and pile stiffness. As can be seen based on Appendix D, the stift-
ness of the soil is described by different parameters for different
soil types. For cohesive soils where the modulus of subgrade
reaction is considered constant with depth below mudline, the
critical parameter is the modulus of subgrade reaction k. For
cohesionless soils where k;, increases linearly with depth, the key
parameter is the coefficient of subgrade reaction n,, which
describes the rate at which the modulus of subgrade reaction
increases with depth. The parameter nj,, however, is a simple lin-
ear function of the unit weight y5 and thus the density ps of the
cohesionless soil using the formula of Terzaghi [49] as given in Eq.
(D5) (in Appendix D). In case of rocks the important parameters
are the shear modulus Gs and the Poisson's ratio vs, from which
the effective shear modulus of Eq. (D7) can be calculated.

As mentioned in Section 3, the foundation stiffness parameters
K;,Kgr and K are not independent. It is apparent from Table D1
(in Appendix D) that the independent parameters required to
determine the foundation flexibility factor Fgr = CxC; are different
for each soil type and pile slenderness combination. The simplest
cases are for cohesionless soils where only two independent
parameters are necessary. For slender piles these are the density of
soil ps and the bending stiffness of the monopile Eplp, and for rigid
piles they are the soil density ps and the pile embedded length Lp.
These two cases are shown in Fig. 5. There are more independent
parameters for clays and rock, and those cases therefore do not
allow for easy visualisation.

4. Conclusions

A simple methodology has been presented to calculate the first
natural frequency of an offshore wind turbine founded on a
monopile. The methodology is based on multiplying the fixed base
cantilever beam natural frequency by two foundation flexibility
factors to include the compliance of the foundation as well as the
flexibility of the substructure. The monopile foundation is mod-
elled by three coupled springs (lateral, rotational and cross cou-
pling stiffness). The closed form formulae presented in this paper
were obtained from fitting curves to the natural frequency results
obtained from numerically solving the transcendental equations.
Several conclusions can be drawn from this study:

It is shown through the study of 10 wind turbines that the
natural frequency can be predicted with accurately (the error
range is + 3.5%).

For the wind turbines considered, foundation flexibility reduced
the fixed base natural frequency typically by 4-15%.

The foundation flexibility factor is very sensitive to the rota-
tional stiffness Kr of the monopile. On the other hand, the
natural frequency change from the fixed base frequency due to
lateral stiffness of the monopile ( K; ) is limited to about 1%.

® The simple framework for the calculation of the foundation

stiffness following the work of Poulos and Davis [42] Randolph
[43] and Carter and Kulhawy [20] used in this study was found
to give reasonable results for the 10 wind turbines studied
where three different soil types (cohesive/clay, cohesionless/
sand and rock) and two limit case approximations of slender/
infinitely long and rigid/infinitely stiff piles were analysed. It
was found that most real monopiles fall between the limiting
cases of infinitely long and rigid piles.

The effect of water depth and monopile stiffness were also
analysed and it is found that the methodology can correctly
represent the flexibility of the monopile and therefore the
approximation is applicable both in shallow and deep water.
While the final design verification can be carried out using
detailed finite element investigations, the method presented in
the paper can be used to estimate the natural frequency using
limited information about the wind turbine and the site and
may be a useful tool for initial analyses and conceptual design.
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Appendix A. - Natural frequency of a cantilever beam with
variable cross section

d

The motion of the cantilever beam can be described as a single
egree of freedom mass-spring system. The free vibration of this

system is given by

mx(t)+kx(t) =0 (A1)
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Fig. A1. Cantilever beam with variable cross section.

Table A1
Non-dimensional variables.

Dimensionless group Formula Dimensionless group Formula
Non-dimensional lateral stiffness = KLL3 Non-dimensional axial force L=
=TI
Non-dimensional rotational stiffness R = KER’LI Mass ratio a= rrmA
0
Non-dimensional cross stiffness — KL} Non-dimensional rotary inertia /,'_iz
LR = ~EI, WL

K1, KR, Kg are the lateral, rotational and cross stiffness of the foundation, respectively; EI, is the equivalent bending stiffness of the tapered tower; Ly is the hub height above
the bottom of the tower; P* is the modified axial force, mgyy4 is the mass of the rotor-nacelle assembly; my is the mass of the tower; ] is the rotary inertia of the top mass; u is

the equivalent mass per unit length of the tower.

*The rotary inertia is taken to be zero for all wind turbines considered as information is not available in the referenced literature.

Assuming harmonic vibration, the following equation can be
obtained:
3EI

k="=%

and
17

. 33
—mw?+k=0 with M = MeNA + 20 Mtower

(A2)

and from the circular frequency the Hertz frequency is easily
obtained

k 1\/?
“’—\/% - hiegVm

The flexibility of the substructure expresses the dependence of
the natural frequency on the water depth, that is, the flexibility of
the monopile above the mudline and that of the transition piece.
For the sake of simplicity, the model used in this paper assumes
that the monopile's bending stiffness continues throughout the
water depth and up to the root of the tower. For clarity, see Fig. A1.

(A3)

Bending stiffness ratio : y = @ (A4)
plp
. Ls
Platform/tower length ratio : y == (A5)

Castigliano's second theorem for a linearly elastic 1 DoF
structure can be written as

ou

=50

where U is the strain energy, q is the generalised displacement,
and Q is the generalised force. For the particular problem, the
theorem can be used to calculate the top head deflection (the total
deflection at the hub w(0)) due to a horizontal force F acting at the
hub as

U o [brtlsM(z)P
oF ~ oF . 2El(z)
LT+L5 F222

*oF / 2EpIp {
_ FL;  Fdr+Ls)® FL}
~ 3Erlr 3Eplp 3Eplp
where the moment distribution along the structure caused by the
horizontal force F is given as

o [ P2
=— 4
oF Jo 2Erlr

Fz3 b Fz3
+
?:ETIT}0 |:3Ep1p L

w(0) =

}h+k

(A6)

M) =Fz (A7)
The stiffness of the 1DoF system is then given as
_F 1
w0 L il L
3ErIr 3EDp 3EIp
B 3Erly B 3Erly
G+ (G+303Ls+30 2+ 12y -y B(1+(1+w)r—x)
(A8)
From this the natural frequency is calculated as
1 /k
= ﬂ\/% (A9)
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where m is the generalised mass of the 1DoF system. The stiffness

can be written as
1
=k (A10)
1+(1+y) y—x

where k7 is the stiffness of the tower without the substructure,
given as

ke 3E§IT
LT

The fixed-base natural frequency of the tower-substructure
system (excluding foundation stiffness) is given using the bend-
ing stiffness ratio y and the platform/tower length ratio y as

1
f FB = —3f FB.T

(A11)
1+(+y)x—x

Appendix B. The Euler-Bernoulli beam model equation
The equation of motion using the Euler-Bernoulli beam model
for a beam with an axial force is

62
022

P wW(z, t)
0z2

’Pw(zt) o ( P*aw(z, t)

Tz oz

El(z)
(E1 50,2

) +4(2) ) =p(.t) (B1)
where El(z) is the bending stiffness distribution along the axial
coordinate z, y(z) is the distribution of mass per unit length, P* is

the axial force acting on the beam due to the top head mass and

m A+ (v+nw)h
M= ﬁ"lLR —nrA

22 cosh(i))—pQ%4; sinh(;)

the self-weight of the tower, p(z, t) is the excitation of the beam,
w(z,t) is the deflection profile.

Using constant equivalent values for the axial force, bending
stiffness and mass per length, and considering free harmonic
vibration of the beam with separation of wvariables
w(z,t) = W(z)«e'®, the equation can be reduced to the following
using the non-dimensional parameters of Table Al and the
dimensionless axial coordinate £ =2z/L:

W” W’ —Q*W =0 (B2)

where z/=P*L%/EIZ, is the non-dimensional axial force and 2 =

®/co = wy/Erly/mrL3? is the non-dimensional circular frequency.
Using the non-dimensional numbers as defined above, the
boundary conditions can be written for the bottom of the tower

(&=0):
W(0)+ (1 +1,2) W' (0)+17,W(0) = 0 (B3)

W”(0) —1gW'(0)+1,,W(0) =0 (B4)
and the top of the tower (£=1):

W”(1)+1W' (1) + a2’ W(1)=0 (B5)

W' (1)—BR*W'(1)=0 (B6)

The parameters used in the boundary conditions are defined in
Table Al. The characteristic equation for the equation of motion
can be written as

vt =0o0rz2? +vz - =0 with z = 2° (B7)

and

e e RO

The four solutions are then
n=iVZi n=-iVZi n=vZ n=-vz (B8)
with which the solution is in the form
W (&) = C1ené +Coe 4 C3e™¢ + Cae™ (B9)
which can be transformed using Euler's identity to

W (&) = Py cos (41€) + P, sin (41€) + P3cosh(4,€) + P4sinh (4,€)
(B10)
with
l] =14/ ‘2]! and },2 =4/ }22‘ (Bll)
Substituting this form of the solution into the boundary con-
ditions, one obtains four equations, written in matrix form as

M-p=0 (B12)
with
pT = [P1 P, P; P4] (B13)

and

n =13+ (v+mg) A2

—2% —MR —IRA2

(43 + va1)sinh(l)) + 0Q? cosh(d1) (43 + vdq)cosh(ly) + aQ? sinh(d) ($3-v4z) sin (1) + a@? cos(d2) (=23 + vdz) €os (1) + a2?sin(lz)
22 sinh(1,)—pQ%1; cosh(4;)

—13 €os () + pR%2, sin(Ap) —23 sin (Ap)—p2%2; €os(1z)

(B14)

Looking for nontrivial solutions of this equation one obtains
det(M)=0 (B15)
from which one can obtain the non-dimensional circular fre-
quency €, and from that the natural frequency using

o _ mTL%
fi=5_-=Qc =20 El,

5= (B16)
The equation that has to be solved is transcendental and
therefore solutions can only be obtained numerically.

Appendix C. - Tower idealisation

The towers of offshore wind turbines are tapered towers with
diameters decreasing from the bottom to the top. Typically, the
wall thickness of the tower also decreases with height. However,
some small and medium sized turbines have constant wall thick-
ness. The formulation presented in this paper replaces this tower
shape with an equivalent constant diameter, constant wall thick-
ness tower. The average tower diameter

_Db-l—Dt
-2

is used in combination with an equivalent tower wall thickness t7.
Note that if the average wall thickness is determined from a range

Dy

(€1
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of wall thicknesses of the tower or from the mean of the top and
bottom wall thicknesses, then the tower mass, as calculated from
the idealised tower geometry,

m’T = DTﬂtTpTLT (C2)

may not be the same as the actual tower mass mr. In the case that
information about tower wall thickness is not available, the
equivalent thickness can be chosen such that the actual tower
mass is maintained, that is,

mr

fr= LrDrzpr ©

The non-dimensional stiffness parameters are normalised with
the length Ly and the bending stiffness Erlr of the tower. When
calculating these non-dimensional stiffness parameters, the
equivalent bending stiffness is calculated such that the deflection
at the tower top due to a force acting perpendicular to the tower at
the tower top is the same for the equivalent constant diameter
tower as that of the tapered tower. The derivation is given here.

Dy, = qD; (C4)
The diameter varies along the structure as
Dy
D(z)= E[LT +(q@—-1)] (€5)

with z=0 at the top of the tower and positive downwards. The
second moment of area is then given as

3

1 1D
In(2) = grD@tr = g strllr+(@ - 1)z =I(1+a2)’ (C6)
T

where

_gq-1
a= I ()]

Moment curvature relation is written as
d*w

Erlt——=E

gy =F (€8)
where F is the horizontal force at the hub. One can write

d*w
3

Erli(1+az) a2 Fz (C9)
and from that w is obtained via integration

2
d—‘;" -7 5 (€10)
dz?2  El(1+az)
dw F 1 1
@ " E@ |20 vay 1va| O (D
Table D1

Approximation formulae based on soil conditions and pile slenderness.

F 1 In(1+az)
w= 7|~ 7
Erlia*|  2a(1+az) a

+C1z+Cy (C12)

The boundary conditions are used to calculate the constants.

dw F 1 1
2=lr =0 G=p1@ [1 +alr 2(1 +aL)2] €13
z=Lr, w=0
F |In(1+aLy) 1 Lt Ly
= - C14
2= Frla? a 2a(1+aly) 1 +aLT+2(1 +alp)? 19

The deflection at the end of the column is obtained by sub-
stituting z = 0 into the equation of deflection

Wer — H In(1+aLy) 1 _ Lt i Lt _i
free = Erl,a2 a 2a(1+aly) 1+alr  2(1+al;)? 2a
(C15)
FI? [q2(2Ing—3)+4q—1
Whee = —— C16
free ETIr [ zqz(q_ ])3 ( )
The stiffness is then given as
_Erly|  2¢%q-1)
T {qZ(ZInq—3)+4q—1 €17
Verification: for a cantilever beam of constant diameter
. 2¢%(q-1) _
lim [qz(Zlnq “3)t4q-1| (€18)

In the paper the following notification is used
Erl; =El;

Appendix D. - Guidance on the calculation of foundation
stiffness

The stiffness of the foundation is used as input in the calcula-
tions shown in this paper. However, determining the stiffness is
the most challenging task. In the absence of careful (very expen-
sive) and detailed site measured data, existing formulations
available in the literature may be used to estimate the stiffness of
the foundation theoretically. For the sake of brevity only a brief
summary of some common methods are presented here.

For static analysis, two methods are given in [42], one methodol-
ogy based on a subgrade analysis approach partially based on Broms
[16] and Broms [17] and another based on an elastic continuum
approach. Results are provided for both cohesive and cohesionless
soils, with simple analytical results available for slender (infinitely

Slender pile

Constant kj [42] [ kiDe

kiDp  _ KyDp
I' F 'l 1 27
M = knDp  kyDp

T2 25

Linear ky, [42]

Bedrock - shear modulus Gs based [20,43] F [ 315G°D (Ey)%
[ o
M_] =

[p] [ 1.077-n} Eplp)  —0.994nd (Eplp)? H
M1 | 099} (Eplp)?

| ~0.536'D} (&)

Rigid pile
[ F-l [ kpDpl  —B2eL7
} M T | Dl D || g
2 3
|'F‘| BB m
4 - 3 4
1.485.n} (Eplp) | LO MUT P, Lo

5
7

2 (E\7 r 031 b1
—0.53G"Dj ny} [ﬂ} ERELl I o) 1

4
0.25G*D3(E)7 | L9 [F'l _ 1-025(3)
M 260818

1-028 (DZ,_L,)
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long) and rigid (infinitely stiff) piles. Another static stiffness approach
is recommended in Eurocode 8 Part 5 [26] based on Gazetas [27],
developed for seismic analysis of slender piles.

Dynamic analysis using a subgrade reaction approach of a beam
on an elastic foundation was developed in terms of p-y curves
[37,39,41,44,5], which is the currently accepted design procedure
suggested by e.g. the DNV code for offshore wind turbines [25]. This
methodology is based on Winkler's approach [53] and utilises non-
linear springs to model the elastic foundation. Analytical solutions for
dynamic analysis have been published by e.g. Nogami and Novak
[38,40]. Green's function based models have also been developed for
dynamic stiffness of piles, e.g. [29,31]. Recent work regarding
dynamic stiffness and damping of monopiles of offshore wind tur-
bines include Shadlou and Bhattacharya [45], Zania [56] and Dam-
gaard et al. [23]. For seismic analysis, a three-step solution was
suggested by Kausel et al. [30], including simplified approximate
expressions that make the method more attractive than finite ele-
ment analysis. Finite element based methods for analysis of piles
were developed by e.g. Blaney et al. [15].

In this appendix, however, the simple formulae in [42,43,20] are
used. These formulations neglect the frequency dependence of foun-
dation stiffness, which can be justified for dynamic loading of offshore
wind turbines because the frequencies of excitation are so low. For
seismic analysis, however, this frequency dependence should be taken
into account. These approximations provide quick and easy solutions
for foundation stiffness, achieving sufficiently accurate results for the
natural frequency as shown in the paper.

The two main parameters to decide the calculation methodol-
ogy for foundation stiffness are:

(1) Soil condition and ground profile at the site and
(2) Pile slenderness/rigidity.

The ground type/ soil determines the main soil parameter for
estimating soil stiffness, while determining whether the pile can
be considered slender or rigid. This allows for simplification of the
foundation stiffness estimation and for the use of closed form
solutions instead of graphs or numerical methods.

Ground profile and soil conditions at the site

There are three main categories to consider from the point of
view of the current analysis.

(1) Cohesive soils: the horizontal modulus of subgrade reaction kj,
is considered constant with depth below the mudline. This is
typically used for over-consolidated clayey soils which is often
encountered in offshore conditions, see Bhattacharya et al.,
[14]) for typical North Sea soils. For normally consolidated
cohesive soils, the subgrade reaction increases linearly with
depth.

(2) Cohesionless soils: the horizontal modulus of subgrade reac-
tion ky, is assumed to increase with the square root of the
depth below the mudline. This can be typically used for loose
to medium dense sand and gravels.

(3) Bedrock: The foundation stiffness is determined by the shear
modulus of the soil. This is typically used for weathered
bedrock and very dense sand.

(4) Complex layered soils: For real sites the soil is obviously not
always as simple as the above categories and different layers
are often observed. One of the above categories may be chosen
for such complex sites, bearing in mind that from the point of
view of pile head deflection/rotation and pile stiffness the
upper layers of the soil are of higher importance, and the
upper layers should be weighted accordingly. The soil types at
the sites of all the wind turbines considered in this paper are
listed in Table 1 in Section 1. Alternatively, the stiffness can be
more accurately obtained from p-y curves.

The constant horizontal modulus of subgrade reaction kj, for
cohesive soils can be determined using the expression of Vesic
[52], using the parameters from Tables 6 and 7:

_ 0.65[EsDp [ Es
n = Dp \ Eplp \1—12 (DD

where Ip is the second moment of area of the pile cross section Eg
is the elastic modulus of the soil, and v is the soil's Poisson's ratio.
Broms [17] provides another expression for clays based on the
secant Young's modulus Esg

_ 1.67Es
kh = Dy (D2)
which can be used in combination with the formula of Skempton
[47] or the more conservative formula of Davisson [24] as quoted

in [42], in terms of the undrained shear strength c,

Skempton : Esp = (50 — 200) - ¢, and kj, = (80 — 320) - [CT‘;
. c (D3)
Davisson : k, =67 - D»
The linearly varying modulus of subgrade reaction of cohe-
sionless soils can be written following [42] as:

z
ky =ny, - Dp (D4)

where n;, is the coefficient of subgrade reaction, calculated for
sand after [49] as

A Vsand

"h="735 (D5)
where ¥4 is the specific weight of sand and A= 100-300 for
loose sand, A=300- 1000 for medium sand, and A = 1000 — 2000
for dense sand. The modulus of subgrade reaction k;, for cohesive
soils and the coefficient of subgrade reaction n, for cohesionless
soils are used to calculate the foundation stiffness, as given in
Table D1. In Table D1 p and 6 are mudline pile head deflection and
rotation, respectively, F and M are horizontal force and over-
turning moment at the mudline.

Slenderness/rigidity of the pile

Simple closed form solutions are readily available for the sim-
plified cases obtained by assuming either a slender pile or a rigid
pile.

(1) Slender pile: The monopile is idealised as ‘slender’ or ‘infi-
nitely long’ assuming that the pile flexibly deflects and that
the pile fails first by yielding through a plastic hinge (as
opposed to failure of the soil).

(2) Rigid pile: The monopile is idealised as ‘rigid’ or ‘infinitely stiff’
assuming that the pile undergoes rigid body rotation (the soil
fails first). However significant bending moment may be
generated in the pile

Two main methods are presented here to determine whether a
pile can be slender or rigid. The first one is given in [42] and is
based on the modulus of subgrade reaction k, and the bending
stiffness of the pile Eplp. The slenderness parameter is calculated
as

4 thp
p= \/ 4Eplp (D6)

The pile is considered slender or infinitely long if fLp > 2.5, and
considered rigid if fLp < 1.5.

The second method is that of Randolph [43] and Carter and
Kulhawy [20], which is based on the equivalent Young's modulus
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E. of the pile, and the effective shear strength of the soil G*.

Eplp " ( 3 )
=——" G'=Gs(1+5v D7
*= Dix/64 3 s (D7)
where Gs is the shear modulus of the soil. The pile is considered
o Lp (E\

slender, if D—Pz (?) (D8)

L E\}
rigid, if Dy <0.05 (5) . (D9)

This methodology is used for rocks by Carter and Kulhawy [20].
The formulae summarised in Table D1 were used to approximate the
foundation stiffness in the present study and were found to provide
good approximations in terms of natural frequency. The difference
between the rigid and slender pile approximations is typically 1-6%.
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