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Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the
natural frequency is an important design calculation to avoid resonance and resonance related effects
(such as fatigue). Monopiles are currently the most used foundation type and are also being considered
in deeper waters (430 m) where a stiff transition piece will join the monopile and the tapered tall
tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find
the Eigen solutions of the whole system considering soil–structure interaction; a quick hand calculation
method is often convenient during the design optimisation stage or conceptual design stage. This paper
proposes a simplified methodology to obtain the first natural frequency of the whole system using only
limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the
ground. The most uncertain component is the ground and is characterised by two parameters: type of
ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below
mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is
then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of
soil–structure interaction). The theoretical background behind the model is the Euler–Bernoulli and
Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking
and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind
farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely,
Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural
frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also
shown for practical use of the proposed methodology.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Offshore wind turbines (OWTs) are currently installed in high
numbers in Northern Europe and the industry is rapidly devel-
oping worldwide. For example, countries such as China, South
Korea, Taiwan and Japan are currently developing wind farms and
the US has just installed its first pilot offshore wind farm. The
Levelised Cost of Energy (LCoE) and SCoE (Society's Cost of Energy)
from offshore wind are expected to decrease significantly in the
near future and challenging projects in further offshore and dee-
per water depths (30–50 m), with heavier/larger wind turbines
(upwards of 6 MW, with turbines of 10 MW in the testing phase)
r Ltd. This is an open access article

.

are underway. OWTs are expected to have a fatigue life of 25–30
years, while foundations are typically designed to last even longer
(50 years).

It has been well established that offshore wind turbines are
dynamically sensitive structures [10–12,3,35], and dynamics of
OWTs must be studied to avoid unplanned resonance which may
lead to increased fatigue damage through dynamic amplification
of responses. Estimation of the natural frequency of the whole
system is an important design calculation [25] so as to avoid the
excitation frequencies arising from wind turbulence loading, wave
loading, the rotational frequency of the turbine (1P) and the blade
passing frequency (2P/3P). The installed number of these relatively
new structures is likely to grow significantly in deeper waters and
will pose additional dynamic challenges, and is therefore the focus
of the paper. Specifically, the paper tackles the issue of the extra
length of the tower in water (which is generally stiffer than the
tower exposed in air) due to deeper water sites which makes the
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Typical wind and wave spectra, rotational speed (1P) and blade passing (3P) frequency bands for six commercial turbines and measured natural frequencies of the
OWTs given in Table 1.
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tower relatively more flexible as compared to shallow water
installations thereby lowering the natural frequency of the whole
system.

Fig. 1 shows typical wind and wave power spectral densities for
offshore sites which essentially describe the frequency content of
dynamic excitations from wind turbulence and waves. The graphs
also show the turbine's rotational frequency range (1P) and the
turbine's blade passing frequency range (3P) for a range of com-
mercial wind turbines of different capacities (2–8 MW). A simpli-
fied way of translating the wind turbulence spectrum and the
wave spectrum into mudline bending moment spectra through
linear transfer functions has been presented in [8]. The peak fre-
quencies of loading have been shown to coincide with the peak
frequencies of wind turbulence and waves. However, loads at the
1P and 3P frequencies can also be observed through effects such as
aerodynamic and mass imbalance of the rotor and rotational
sampling of turbulence by the blades, for 1P and 3P loads,
respectively [18,8]. Further details on the estimations of the loads
can be found in [13].

For the widely used soft–stiff design, the target Eigen frequency
(first natural frequency) is a frequency in the gap between 1P and
3P. Fig. 1 also shows measured natural frequencies of a wide array
of OWTs from several different wind farms across Europe (see
Table 1 for the nomenclature on the wind turbine structure for
which the measured natural frequency is shown and Table 5 for
the specification of the turbines given in Fig. 1). The figure clearly
shows the trend that the target natural frequencies of heavier
turbines are indeed closer to the excitation frequencies of the
wave and wind making these structures even more sensitive to
dynamics.

1.1. Dynamic issues in support structure design

Fig. 2 shows a schematic diagram of a wind turbine system
along with the mechanical model relevant to the study of the
overall system dynamics which is important for many design
calculations such as Eigen frequencies and fatigue. The definitions
of support structure, tower, substructure, foundation (monopile
considered here), transition piece, mudline and mean sea level are
defined in Fig. 2(a) and are consistently used throughout the
paper. For clarity, the support structure is the whole structure that
supports the heavy turbine i.e. the components below the rotor
nacelle assembly (RNA) which includes the tower, substructure
and foundation. The foundation is defined as the part of the sup-
port structure that is embedded in the ground below the mudline.
The tower is typically a tubular tapered column. As the natural
frequencies of these systems are very close to the forcing fre-
quencies, the dynamics pose multiple design challenges and the
scale of the challenges will vary depending on turbine types and
site characteristics. These issues are briefly mentioned in the next
section.

There are two main categories of modern wind turbines based
on the operational range:

(1) Variable rotational speed machines have an operational speed
range (1P range);

(2) Constant rotational speed wind turbines that operate at a single
rotational speed (fixed 1P).

Variable speed machines have 1P and 2P/3P frequency bands
which must be avoided, as opposed to a single frequency
(applicable to constant rotational speed machines). They are more
restrictive from the point of view of foundation design as the
forcing frequency is a band rather than a unique value. The tur-
bines currently used in practice (under operation) are variable
speed machines. Fig. 1 shows the 1P and 3P bands for typical
offshore wind turbines ranging from 2 MW (not in production
anymore) turbines to commercially not yet available 8 MW tur-
bines. It may be observed from Fig. 1 that for most wind turbines,
1P and 3P excitation cover wide frequency bands. To avoid these
ranges, the designer of the support structure has three options
from the point of view of the stiffness of the tower and the
foundation [32]:

(1) Soft–soft structures: whereby the natural frequency lies below
the 1P frequency range. This design is typical for floating off-
shore platforms, but are practically impossible to achieve for
fixed (grounded) structures. Also, soft–soft fixed structures
would likely be subject to high dynamic amplification of wave
load response.

(2) Soft–stiff structures: whereby the natural frequency lies above
the 1P frequency range. This is the typical design choice for
practical bottom fixed structures, such as monopile founded
OWTs. All wind turbines in Fig. 1 are designed soft–stiff.

(3) Stiff–stiff structures: whereby the natural frequency lies above
the 3P range. Such designs are typically considered to have a
massive support structure and therefore uneconomic. How-
ever, the Hornsea twisted jacket foundation supporting a met
mast has recently successfully achieved a natural frequency
above the 3P band [36].

It is quite clear from Fig. 1 that designing a soft–stiff system
which avoids both the 1P and 3P frequency bands is challenging
because of the tight tolerance of the target natural frequency.
Indeed, some OWTs with a wide rotational speed range, such as
the Areva M5000 5 MW in Fig. 1 with 4.5–14.8 rpm do not even
have a gap between 1P and 3P and they are overlapping. Modern
wind turbines often feature a sophisticated pitch control system
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designed to leap frog the rotational frequency range that would
cause resonance of the structure due to the corresponding 3P
frequency. For example, if the rotational speed range is 5–13 rpm,
equivalent to 0.083–0.216 Hz, then the 3P frequency band is 0.25–
0.65 Hz. If the structural natural frequency is 0.35 Hz, then the
pitch control may regulate the rotational speed such that the
corresponding 3P frequency avoids 710% of the structural natural
frequency i.e. the frequency band 0.315–0.385 Hz to comply with
the DNV code [25]. This would result in a jump in the rotational
speed from 6.3 rpm to 7.7 rpm, avoiding operation between these
values. Obviously, this is also not without cost, both in terms of
initial costs, maintenance and power production.

The second issue is the top head mass, i.e. the mass of the rotor
nacelle assembly (RNA, see Fig. 2 for clarity). With increasing
capacity of the turbine, the mass of the rotor–nacelle assembly
increases and the natural frequency will also decrease keeping
other factors constant. Furthermore, the hub height is also higher
due to longer blades (associated with heavier turbines) which
increases the flexibility of the taller towers causing further
reduction in the natural frequency. This trend can also be seen in
Fig. 1, the target natural frequency of wind turbines (in soft–stiff
design) with higher power output is typically lower. Fortunately,
the large rotor diameter wind turbines also tend to have lower
rotational speeds. This is because of the fact that for optimum
power production the tip speed ratios (ratio of the speed of the tip
of the blades and the incoming wind speed) are maintained at a
favourable value, also to avoid blade damage. Furthermore, the top
head mass is dependent on the choice of drive (with or without
gearbox). Direct drive wind turbines do not need gearboxes, and
thus significant weight reduction can be achieved (theoretically).
However, the weight reduction is not obvious because the power
of an electric generator is proportional to its rotational speed, see
Eq. (1) [18] and thus direct drive wind turbines typically have
larger diameter (and thus heavier) generators.

P ¼ CgD
2
gLgΩg ð1Þ

where Cg is a constant and Dg ; Lg ;Ωg are the diameter, length and
rotational speed of the generator, respectively.

As the total mass of the rotor–nacelle assembly influences the
natural frequency, the design of the support structure for wind
turbines may be improved by an integrated design.

A further effect is the increasing importance of the flexibility of
the monopile, the grouted connection and the transition piece
(that is, the substructure) as a consequence of increasing water
depth. The longer the monopile, the more effect the substructure
has on the natural frequency of the total structure. This is in
contrast with shallow water turbines where the tower is over-
whelmingly softer than the substructure and the natural fre-
quency of the whole system is critically governed by the bending
stiffness of the tower and the soil stiffness.

For large wind turbines the frequency band of the wave exci-
tation (see JONSWAP spectrum in Fig. 1) becomes important as it is
very close to the natural frequency of the whole system. This issue
gains even more importance as the substructure diameter
increases for large wind turbines. If the structure is also installed
in deeper water, then both the expected significant wave height
and the length of the substructure increase, resulting in dynamic
wave loads comparable to or exceeding the wind load.

The natural frequency of the whole system therefore needs to
be assessed in the feasibility study phase and also in the early
phases of the foundation design. This calls for a simplified meth-
odology that is quick and uses only limited data about the wind
turbine and the site.



Fig. 2. Basic model of an OWT: (a) Main components. (b) Dimensions. (c) Mathematical model.
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1.2. Motivation behind the study

This study aims to provide a simple, quick and reliable tool for
the foundation designer to assess the fundamental natural fre-
quency of the turbine-substructure-foundation-soil system. The
simple expressions obtained in this work build on previous
research in the dynamics of offshore wind turbines. Analysis of
OWTs modelled as Euler–Bernoulli beams and founded on two
independent springs (lateral and rocking stiffness) is carried out in
[4,3] while soil–structure interaction was experimentally verified
in [10]. A major discrepancy between measured and predicted
natural frequencies of OWT structures has been reported in a
multitude of studies [21,28,32,36,54,56]. The sources of uncer-
tainty related to the discrepancy can be due to theory or physical
idealisation of the system or parameters or a combination of the
above and are summarised below:

(1) Beam model uncertainty i.e. uncertainty in the mathematical
idealisation of the physical system: The current methodology
is based on the Euler–Bernoulli beam theory, however, the
authors have found in [6] that more sophisticated beam
models including rotary inertia (Rayleigh beam) and shear
deformation (Timoshenko beam) do not provide notable
improvements in the results (less than 0.1%). Therefore, the
simple Euler–Bernoulli model is satisfactory for wind turbine
towers. Further details are given in Appendix A.

(2) Uncertainty in the modelling of the substructure: The sub-
structure is modelled by a single equivalent cross section
(which is the cross section of the monopile). This approx-
imation may lead to over or underestimation of substructure
stiffness.

(3) Uncertainty in the modelling of the foundation. The analysis
focuses on Eigen solutions of a linear system, and therefore
nonlinear soil behaviour is not modelled. The foundation
system is not expected to go into the nonlinear regime and
therefore the linear approximation is considered acceptable. In
the linear regime, the foundation is modelled with three
coupled springs (KL, KR and KLR) resulting in an exact model of
the linearised system, see Fig. 2(c). It was found in [6] that the
cross coupling spring (KLR) cannot be excluded from the
analysis.

(4) The major uncertainty is the well-known issue of measure-
ment of soil stiffness. It is challenging to estimate foundation
stiffness with complex soil layers at offshore sites. A sensitivity
analysis was carried out [7] and it was found that under-
estimation of soil stiffness by 30% would typically result in a
frequency increase of 0.2–5% while overestimation by 30%
causes a natural frequency change of 2–5.6%. The uncertainty
analysis was carried out by considering the effect of stiffness
changes for the ten wind turbines presented in Table 1, as well
as 6 other industrial wind turbines not discussed in this paper.
The transcendental equations resulting from the analytical
formulation have been solved, using the three springs approx-
imation for the foundation and Timoshenko beam theory for
the tower, as given in Appendix B, and also in [6] (a simplified
version of the problem has also been given in [4,3]). The
equations have been numerically solved for all wind turbines
in different soil conditions to analyse the sensitivity.

(5) Another aspect is the idealisation of the tapered tower of
varying wall thickness with an equivalent diameter and wall
thickness as a constant bending stiffness column, as has been
used in many of the simplified methods [3,4,50,55,56,6].

(6) A further source of uncertainty is the damping of the real
structure. If the damping ratio is ζ, the natural frequency of
underdamped vibrations ~f 1 can be expressed with the
undamped frequency f 1 as

~f 1 ¼ f 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

q
The main sources of damping of an offshore wind turbine

structure are the aerodynamic damping, soil damping, structural
damping (damping of steel), hydrodynamic damping and addi-
tional damping from tower motion dampers (e.g. slosh dampers).

ζtotal ¼ ζaeroþζstruct:þζsoilþζhydro:þζdamper

1.3. Damping of structural vibrations of offshore wind turbines

As the natural frequencies of offshore wind turbines are close
to forcing frequencies, damping is critical to restrict damage
accumulation and avoid premature maintenance. Therefore dis-
cussion is warranted for issues related to damping and for prac-
tical design purposes can be idealised in fore–aft and side-to-side
vibrations of offshore wind turbines. The main difference between
the sway-bending (or rocking) vibrations about two axes (X and Y
in Fig. 2) is that in the along-wind direction higher damping is
expected due to the high aerodynamic damping caused by the
rotating blades interacting with the airflow. On the other hand, for
the side-to-side direction, the aerodynamic damping is orders of
magnitudes lower.

A non-operational (parked or idling) OWT has similar aero-
dynamic damping in the fore–aft as in the side-to-side direction.



Table 2
Information required for frequency estimation.

# Input parameter Symbol Unit

1 Mass of the rotor–nacelle assembly mRNA ton
2 Tower height LT m

L. Arany et al. / Soil Dynamics and Earthquake Engineering 83 (2016) 18–3222
Since the wind load is acting in the along-wind direction, the
highest load amplitudes are expected in fore–aft motion. This is
because for most wind turbines in water depths less than 30 m,
wind loading is the dominant load, while for very large diameter
monopiles in medium to deep water, wave loading is expected to
have equal or higher magnitude. It is worth noting that due to the
yaw mechanism of the wind turbine, the along-wind and cross-
wind directions are dynamically moving and are not fixed,
therefore the foundation is subjected to both cross-wind and
along-wind loading in all directions during the lifetime of the
OWT. One can conclude that analysing vibrations in both direc-
tions is important.

Studies considering the damping of the first bending mode
either empirically or theoretically include Camp et al. [19], Tarp-
johansen et al. [48], Versteijlen et al. [51], Damgaard and Andersen
[21], Damgaard et al. [22] and Shirzadeh et al. [46]. Based on these
studies and other estimates and in the absence of other data, the
following assessment of damping ratio contributions is
recommended:

� Structural damping: 0.15–1.5%. The value of structural damping
depends on the connections in the structure (such as welded
connections, grouted connections, etc.) in addition to material
damping (usually steel) through energy dissipation in the form
of heat (hysteretic damping).

� Soil damping: 0.444–1%. The sources of damping resulting from
soil–structure interaction (SSI) include hysteretic (material)
damping of the soil, wave radiation damping (geometric dis-
sipation) and, to a much lesser extent, pore fluid induced
damping. Wave radiation damping and pore fluid induced
damping are negligible for excitations below 1 Hz, and therefore
hysteretic damping is dominant for the purposes of this study.
The soil damping depends on the type of soil and the
strain level.

� Hydrodynamic damping: 0.07–0.23%. Results from wave radia-
tion and viscous damping due to hydrodynamic drag. In the low
frequency vibration of wind turbines the relative velocity of the
substructure is low and therefore viscous damping, which is
proportional to the square of the velocity is typically very low.
The larger contribution results from wave radiation damping,
which is proportional to the relative velocity.

� Aerodynamic damping: in the fore–aft direction for an opera-
tional turbine 1–6%, for a parking turbine or in the crosswind
direction 0.06–0.23%. Aerodynamic damping is the result of the
relative velocity between the wind turbine structure and the
surrounding air. Aerodynamic damping depends on the parti-
cular wind turbine, and is inherent in the popular Blade Ele-
ment Momentum (BEM) theory for aeroelastic analysis of wind
turbine rotors. The magnitude for a particular wind turbine also
depends on the rotational speed of the turbine.

The total damping of the first mode of vibration is typically
between 1% and 4% in side-to-side vibration, or for a parked,
stopped or idling turbine. On the other hand, the total damping is
between 2% and 8% for an operational wind turbine in the fore–aft
direction.
 3 Tower top diameter Dt m

4 Tower bottom diameter Db m
5 Average tower wall thickness tT m
6 Tower Young's modulus ET GPa
7 Tower mass mT ton
8 Platform height above mudline LS m
9 Monopile diameter DP m

10 Monopile wall thickness tP m
11 Monopile Young's modulus EP GPa
12 Lateral stiffness of foundation KL GN/m
13 Cross stiffness of foundation KLR GN
14 Rocking stiffness of foundation KR GN m/rad
2. Methodology and results

In this study, the OWT mechanical model used in [4,3,6] is
extended to consider the effect of the stiffness of the substructure
which becomes critical for deeper water, see Fig. 2. The rotor–
nacelle assembly (RNA) is modelled as a lumped top head mass
mRNA and the tower and the substructure are modelled as beams.
The foundation is idealised as three springs (lateral KL, rocking or
rotational KR, and cross coupling KLR stiffness). This methodology
requires 14 input parameters which are given in Table 1 and the
definitions are shown in Fig. 2. Arany et al. [6] demonstrated that
the more sophisticated Timoshenko beam model, which takes into
account mass moment of inertia and shear deformation in the
equations of motion of the tower, provides no notable improve-
ment over the simpler Euler–Bernoulli beam model in natural
frequency estimation. It was concluded that the tower can be
considered a slender beam and the Euler–Bernoulli beam is suf-
ficiently accurate, therefore it was used to obtain the results pre-
sented in this paper.

Appendix B shows the derivation of the frequency equations of
the two beam models. The natural frequency in both cases can be
obtained numerically from the resulting transcendental equations.
Approximate closed form expressions have been fitted to the
results to fit the expression given by Eq. (2) which states that the
first natural frequency (f 1) can be obtained by multiplying the
fixed base frequency (cantilever beam frequency f FB) by two fac-
tors CR and CL which account for the flexibility provided by the
foundation. In other words, the foundation flexibility coefficients
CR and CL are applied to the fixed base (cantilever beam) natural
frequency to obtain the natural frequency taking into account the
foundation compliance and soil–structure interaction. The formula
for the first mode natural frequency is then given as:

f 1 ¼ CRCLf FB: ð2Þ

2.1. Parameters and idealisation

The methodology uses 14 basic parameters for the wind tur-
bine support structure and the site (foundation stiffness) and are
summarised in Table 2. It is considered useful to explain the
idealisation of the structure in a bit more detail. Fig. 2(b) shows
the dimensions of the tapered and equivalent towers. The tapering
is assumed to be linear with the tower diameter linearly
decreasing from Db at the bottom to Dt at the top of the tower. The
average diameter is used as the equivalent constant diameter for
the idealised tower DT , that is

DT ¼
DbþDt

2
ð3Þ

The wall thickness tT is assumed to be constant along the
tower. The equivalent mass of the tower is calculated from the
geometry and density of the tower material ρT as

m0
T ¼ ρTDTπtTLT ð4Þ



Fig. 3. The effect of water depth and monopile stiffness on the fixed base natural
frequency.
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Note, in some cases this mass may not necessarily be exactly
the same as the actual mass of the tower mT . However, in cases
when the average tower thickness or a range of tower wall
thicknesses is not available, the thickness can be back-calculated
from the tower mass

t0T ¼
mT

ρTLTDTπ
ð5Þ

The model is based on a beam with two different cross section.
It is assumed that the cross section of the monopile is the first
section of the beam from the mudline to the bottom of the tower,
and the second section of the beam is the tower from the tower
bottom to the rotor nacelle assembly. In this formulation the
flexibilities of the grouted connection and the transition piece are
neglected. The first section is of length LS, diameter DP , wall
thickness tP and bending stiffness EPIP , while the second cross
section is of length LT , diameter DT , wall thickness tT and bending
stiffness ET IT . The platform height above mudline LS is defined as
the distance from the mudline (seabed) to the bottom of the tower
(tower – transition piece connection).

2.2. Calculation procedure for simple natural frequency estimation

The natural frequency estimation process can be summarised in
three steps:

Step 1: Calculate fixed base natural frequency f FB of the variable
cross section beam using the monopile flexibility coefficient CMP .
Step 2: Calculate the non-dimensional foundation stiffness
parameters: ηL;ηR;ηLR.
Step 3: Calculate and apply foundation flexibility coefficients CL

and CR and apply them to obtain the first natural frequency on
the flexible foundation, i.e. f 1 ¼ CLCRf FB

The steps are described in more detail along with the metho-
dology and calculation steps together with references for further
reading.

Calculation procedure for Step 1: The fixed base natural fre-
quency can be calculated by the simple natural frequency formula
of the cantilever beam. The derivation can be found in Appendix A.

f FB ¼
1
2π

ffiffiffiffiffi
k
m

r
ð6Þ

where for the tower and the RNA only, the equivalent stiffness of
the beam k based on the tower bending stiffness ET IT and length
LT , and the equivalent mass (considering the mass of the tower m0

T
and the mass of the rotor–nacelle assembly mRNA) are given by:

k¼ 3ET IT
L3T

and m¼mRNAþ
33
140

m0
T ð7Þ

Substituting back into the formula, the following is given for
the fixed base natural frequency.

f FB;T ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ET IT

L3 mRNAþ 33
140m

0
T

� �
s

ð8Þ

In these expressions the second moment of area IT and the
mass m0

T of a constant diameter tower are considered. That is, if
the average diameter of the tower is DT and the average wall
thickness of the tower is tT then the equivalent second moment of
area IT and the equivalent tower mass m0

T are

IT ¼
1
8
πD3

T tT m0
T ¼ ρTDTπtTLT ð9Þ
A similar expression is given specifically for wind turbine
towers by van der Tempel and Molenaar [50].

f FB;T ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:04ET IT

L3 mRNAþ0:227m0
T

� �
s

ð10Þ

In this paper the simple expression in Eq. (8) is used. The
flexibility of the monopile is taken into account by a monopile
flexibility coefficient CMP expressed in terms of two non-
dimensional numbers,

bending stiffness ratio : χ ¼ ET IT
EPIP

platform=tower length ratio : ψ ¼ LS
LT
:

where ET IT is the bending stiffness of the constant diameter
tower, EPIP is the bending stiffness of the monopile, LS is the
platform height above the seabed (distance from the mudline to
the top of the transition piece) and LT is the height of the tower.

The fixed base natural frequency of the wind turbine – sub-
structure system is

f FB ¼ CMP � f FB;T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1þð1þψ Þ3χ�χ

�
s

f FB;T ð11Þ

Fig. 3 shows the effect of the parameters χ and ψ on the fixed
base natural frequency. To make these parameters more physically
meaningful, one can say that increasing χ represents a stiffer
monopile, while increasing ψ represents deeper water.

Calculation procedure for Step 2: In the second step, the foun-
dation stiffness is non-dimensionalised using the tower's length LT
and the equivalent bending stiffness of the tapered tower EIη. The
non-dimensional lateral, cross-coupling and rotational stiffness
values, ηL;ηLR;ηR respectively, are necessary for this calculation

ηL ¼
KLL

3
T

EIη
ηLR ¼

KLRL
2
T

EIη
ηR ¼

KRLT
EIη

ð12Þ

These formulae use the equivalent bending stiffness for a
tapered tower as given in [7–9]. The derivation is shown in
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Appendix C. Only the final formulae are presented here for brevity:

EIη ¼ EIt � f ðqÞ ð13Þ

where EIt is the bending stiffness at the top of the tower.

f ðqÞ ¼ 1
3
� 2q2ðq�1Þ3
2q2 ln q�3q2þ4q�1

with q¼Db

Dt
ð14Þ

Calculation procedure for Step 3: The empirical foundation
flexibility factors are applied to the natural frequency

CR ηL;ηR;ηLR
� �¼ 1� 1

1þa ηR�
η2LR
ηL

� �
CL ηL;ηR;ηLR
� �¼ 1� 1

1þb ηL�
η2LR
ηR

� � ð15Þ

where a; b are empirical constants. The values of these constants
were found to be a� 0:6 and b� 0:5 and were obtained by fitting
closed form curves to the solutions obtained by solving the
transcendental equations resulting from the analytical formulation
given in Appendix B. Further details can be found in [6] and a
simplified version of the problem has also been solved in [4,3]. A
total of 16 wind turbines have been used to find best-fit values of a
and b minimising the mean squared error between the numerical
and closed form results. The curve fit reproduces the natural fre-
quency for all 16 wind turbines with excellent accuracy (o1%) for
practical parameter combinations. The applicability of the for-
mulae in Eq. (15) is limited to

ηR41:2
η2LR
ηL

and ηL41:2
η2LR
ηR

ð16Þ

With these the natural frequency of the OWT on a flexible
foundation can be calculated as given in Eq. (2).

2.3. Example step by step calculation: Blyth Offshore Wind Farm
Vestas V66 2 MW

The input data for the calculations are shown in Table 3
(number III). Foundation stiffness is one of the most uncertain
quantities and Appendix D discusses a method to obtain founda-
tion stiffness in the absence of detailed site data.

Step 1: The parameters in Table 2 are used to calculate the fixed
base natural frequency of the tower

f FB;T ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ET IT

mRNAþ 33
140m

0
T

� �
L3

s
¼ 0:703 Hz�½ ð17Þ
Table 3
Input parameters for wind turbines listed in Table 1.

# Input parameter Symbol Unit I II

1 Mass of the rotor–nacelle assembly mRNA ton 32 35
2 Tower height LT m 37.9 44
3 Tower bottom diameter Db m 3.2 3.5
4 Tower top diameter Dt m 1.9 1.7
5 Average tower wall thickness tT mm 13 13
6 Tower Young's modulus ET GPa 210 21
7 Tower weight mT ton 31.44 37
8 Platform height above mudline LS m 7.1, 12.1 5.2
9 Monopile diameter DP m 3.2, 3.7 3.5

10 Monopile wall thickness tP mm 35 35
10 Monopile Young's modulus EP GPa 210 21
11 Lateral stiffness of foundation KL GN/m 0.52, 0.62 0.5
12 Cross stiffness of foundation KLR GN �2.74, �3.57 �3
13 Rocking stiffness of foundation KR GN m/rad 23.63, 33.59 29
In this formulation DT is the average tower diameter

DT ¼
DbþDt

2
¼ 4:25þ2:75

2
¼ 3:5 m½ �; ð18Þ

The tower wall thickness is determined from the mass of the
tower as

tT ¼
mT

ρTDTπLT
¼ 159;000 kg

� �
7860½kg=m3� � 3:5½m� � π � 55 m½ � � 0:034 m�½ ð19Þ

and IT is the second moment of area of the equivalent constant
diameter tower cross section

IT ¼
1
8
D3
T tTπ ¼ 1

8
� 3:53½m3� � 0:034½m� � π ¼ 0:572 m4�:� ð20Þ

The bending stiffness ratio and length ratio are calculated as

χ ¼ ET IT
EPIP

¼ 210 GPa½ � � 0:572½m4�
210½GPa� � 0:806 m4

� �¼ 0:710½�� ð21Þ

ψ ¼ LS
LT

¼ 16 m½ �
55 m½ � ¼ 0:306 �½ � ð22Þ

where the monopile's second moment of area is

IP ¼
1
8
D3
PtPπ ¼ 1

8
� 3:53 � 0:05 � π ¼ 0:806½m4�: ð23Þ

The natural frequency of the monopile supported wind turbine
on a fixed base is given as

f FB ¼ CMP � f FB;T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1þð1þ0:306Þ3 � 0:710�0:710Þ

s

� 0:703 Hz½ � ¼ 0:514 Hz�½ ð24Þ

Step 2: The equivalent bending stiffness needed for the non-
dimensional stiffness parameters is calculated.

q¼Db

Dt
¼ 4:25
2:75

¼ 1:55 f ðqÞ ¼ 1
3
� 2q2ðq�1Þ3

2q2lnq�3q2þ4q�1
¼ 2:69 ð25Þ

EIη ¼ EItop � f ðqÞ � 147½GNm2� ð26Þ

See details on the derivation of these expressions in
Appendix B. Then the non-dimensional stiffness parameters can
be obtained from

ηL ¼
KLL

3

EIη
¼ 45709½�� ð27Þ
III IV V VI VII VIII IX X

.7 80 130.8 130.8 130.8 130.8 234.5 234.5 234.5

.5 54.5 60.06 58 54.1 53 66 67.3 60
4.25 4.45 4.45 4.3 4.3 5 5 5
2.75 2.3 2.3 2.3 2.3 3 3 3
34 22 32 36 28 28 41 33

0 210 210 210 210 210 210 210 210
159 108 153 160 120 180 260 193

–6.0 16.5 16 33 41.1 37 22.8 37.3 28
15 3.5 4.3 4.75 4.7 5 4.7 6 5

5 45 45–80 65 50–75 45–75 80 35–50
0 210 210 210 210 210 210 210 210
8 42.66 0.82 1.03 1.05 1.02 1.11 1.53 1.02
.25 �45.50 �5.42 �7.68 �7.89 �7.59 �8.56 �13.88 �7.59
.67 136.04 58.77 93.45 96.84 91.93 108.03 205.72 91.93
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ηLR ¼
KLRL

2

EIη
¼ �903½�� ð28Þ

ηR ¼
KRL
EIη

¼ 50½�� ð29Þ

Step 3: The foundation flexibility factors are calculated

CR ηL;ηR;ηLR
� �¼ 1� 1

1þ0:6 50� �903ð Þ2
45709

� �¼ 0:951 ð30Þ

CL ηL;ηR;ηLR
� �¼ 1� 1

1þ0:5 45709� �903ð Þ2
50

� �¼ 1:000 ð31Þ

the natural frequency is then obtained from

f 1 ¼ CRCLf FB ¼ 0:951 � 1:000 � 0:514½Hz� ¼ 0:489 Hz½ � ð32Þ
The measured frequency at Blyth wind farm is 0.488 Hz, and

thus there is an excellent match with an error of 0.2%. The natural
frequency on the monopile foundation is about 4.9% lower than it
would be on a completely stiff fixed base. This difference is small
because at the Blyth site the monopile is grouted into very stiff
bedrock. The influence of the foundation flexibility is higher for
most sites with values ranging from 4% to 15% for wind turbines
analysed in this paper.
3. Application of the methodology to installed wind turbines
and discussion

To demonstrate the general applicability of this method, the
natural frequency of several wind turbines will be determined. The
analysed offshore wind farms and turbines are presented in
Table 1, as well as references to the sources of data. The input data
of the turbines is summarised in Table 2. The calculations shown
in Section 2.3 are carried out for all wind turbines in Table 1. Some
intermediate parameters are shown in Table 4 and the results are
given in Table 5 and compared with the measured data. The
measured natural frequency values have been reported by various
researchers and have been obtained by different methodologies of
signal processing. Further details on the case studies can be found
in the references given in Table 1. The results show that the
empirical formula presented in this paper approximates the nat-
ural frequency within �3.2% to 3.1% of the measured frequency.
This can be considered an excellent match given such a simplified
methodology. The difference between the fixed base natural fre-
quency and that for the flexible foundation using the present
method is typically within the range 3–15%, which is considered
typical for most offshore wind turbines. The flexibility (percentage
reduction of the first natural frequency) introduced by the com-
pliance of the foundation is reported for each wind turbine in
Table 5.
Table 4
Calculated parameters for wind turbines listed in Table 1.

Parameter Symbol Unit

Tower average diameter DT m
Average second moment of area IT m4

Tower diameter ratio Db=Dt q Dimensio
Bending stiffness coefficient for η f ðqÞ Dimensio
Equivalent bending stiffness of the tapered tower for non-
dimensional stiffness parameters

EIη GN m2
As the foundation stiffness parameter ðKL;KRÞ increases, the
foundation flexibility coefficients ðCL;CRÞ also increase and the
natural frequency approaches the fixed base natural frequency f FB.
Most of the contribution to the frequency change (4–15%) results
from the rotational foundation flexibility coefficient CR and the
lateral foundation stiffness coefficient CL has very limited influ-
ence (of less than 1% on the natural frequency) of all analysed
turbines. Consequently, the most important foundation stiffness
parameter is the rotational stiffness KR.

In Fig. 4 three turbines are used to illustrate the effect of the
non-dimensional rotational stiffness ηR on the natural frequency
in terms of the rotational foundation flexibility coefficient CR. It
should be noted that the curves flatten out for increasing rota-
tional stiffness. The foundation designer should choose the foun-
dation stiffness such that the OWT structure is in the flat part of
this curve. This ensures that even if the foundation stiffness was
estimated with significant errors or if the stiffness changes during
the lifetime of the turbine, the natural frequency change is limited
and does not affect the foundation's ability to meet the Fatigue
Limit State (FLS) and Serviceability Limit State (SLS) criteria. On
the dropping part of the curve, however, a slight increase or
decrease of the stiffness might cause substantial change in the
natural frequency, which may lead to increased fatigue damage
and reduced service life.

It is important to emphasise that the foundation stiffnesses KL;

KLR;KR and thus the non-dimensional foundation stiffnesses ηL;ηLR;
ηR are not independent parameters. Appendix D provides a brief
discussion about the available methods for estimating the foundation
stiffness, and simple expressions are provided for the simple cases of
cohesive soils, cohesionless soils and rock. Following these formulae,
the independent parameters of foundation stiffness are the geometry
of the pile (diameter DP , wall thickness tP and embedded length LP as
defined in Fig. 2(b)) and soil parameters (expressed using either the
modulus of subgrade reaction kh, the coefficient of subgrade reaction
nh or the effective shear modulus G�).

Furthermore, as discussed in Section 1, the damping in the first
sway-bending mode also influences the measured natural fre-
quency. The damping is lower for side-to-side direction and for a
parked/idling turbine than in the fore–aft direction for an opera-
tional turbine due to the significant contribution of aerodynamic
damping. The total damping of the systemwas estimated between
2% and 8% in Section 1, which amounts to a frequency change of
about 0.02–0.32%.

3.1. Discussion on the parameters for foundation stiffness estimation

There are two groups of parameters necessary to determine
foundation stiffness, categorised as pile data and soil data, as
tabulated in Tables 6 and 7 for all the turbines listed in Table 1. The
pile parameters are the pile diameter DP , the pile wall thickness tP ,
and the pile embedded length LP , as defined in Fig. 2(b). The
diameter of monopiles is typically constant along the length.
However, the pile wall thickness may change. In this paper the
wall thickness was chosen as the pile thickness in the region
below the mudline, because the top layers are considered more
I II III IV V VI VII VIII IX X

2.55 2.6 3.5 3.375 3.375 3.3 3.3 4 4 4
0.086 0.089 0.574 0.325 0.478 0.512 0.392 0.694 1.034 0.818

nless 1.68 2.06 1.55 1.935 1.935 1.870 1.870 1.667 1.667 1.667
nless 3.28 5.23 2.02 4.528 4.528 4.181 4.181 3.204 3.204 3.465

21.86 16.73 116.71 92.8 66.8 61.7 61.7 173.9 267.5 136.5



Table 5
Natural frequency results.

Wind farm Turbine ID Natural frequency [Hz] Error [%] Flexibility [%]

Measured Fixed base Formula

I. Lely A2 0.634 0.713 0.643 1.36 9.9
A3 0.735 0.767 0.712 �3.19 7.2

II. Irene Vorrink 3 0.546 0.583–0.586 0.552–0.555 �1.10 5.3
7 0.554 �0.18 5.8
12 0.553 0.18 5.3
23 0.563 1.42 5.8
28 0.560 0.89 5.8

III. Blyth Southernmost 0.488 0.514 0.489 0.12 4.9
IV. Kentish Flats – 0.339 0.380 0.339 0.01 10.9
V. Barrow – 0.369 0.387 0.367 0.54 5.2
VI. Thanet – 0.370 0.402 0.382 3.08 5.0
VII. Belwind – 0.372 0.401 0.380 2.12 5.4
VIII. Burbo Bank – 0.292 0.322 0.295 1.05 8.4
IX. Walney – 0.350 0.380 0.349 0.40 8.4
X. Gunfleet Sands – 0.314 0.352 0.315 0.31 10.6

Fig. 4. Rotational foundation flexibility coefficient curves as a function of non-dimensional rotational stiffness for three different sites, all using Vestas V90 3 MW offshore
wind turbines.

Table 7
Input and calculated pile parameters for each wind turbine listed in Table 1.

# Input parameter Symbol Unit I II III IV V VI VII VIII IX X

1 Pile diameter (range) m 3.2–3.7 3.515 3.5 4.3 4.75 4.05–5.1 4.07–5.0 4.7 6 4.7
Chosen value DP m 3.2; 3.7 3.515 3.5 4.3 4.75 4.7 5 4.7 6 4.7

2 Pile wall thickness (range) mm 35 35 50 35–50 45–80 60 50–75 45–75 80 50–94
Chosen value tP mm 35 35 50 45 80 60 70 75 80 94

3 Pile embedded length (range) m 30 23–24.6 12–15 18–34 30.2–40.7 25–30 35 21–24 30 27–38
Chosen value LP m 30 24.6 15 29.5 40 30 35 24 30 38

4 Pile material's Young's modulus EP GPa 210 210 210 210 210 210 210 210 210 210
Pile equivalent Young's modulus Ee GPa 15.45 16.23 22.99 17.04 26.89 20.64 22.55 25.55 21.52 31.62
Pile bending stiffness EPIP GN m2 142.09 121.64 169.32 285.88 671.92 494.29 691.70 611.89 1368.78 757.49
Pile slenderness parameter βLP Dimensionless 2.712 2.310 4.459 2.750 3.329 2.711 3.138 1.931 1.529 2.338

Table 6
Input and calculated soil parameters for each wind turbine listed in Table 1.

# Input parameter Symbol Unit I II III IV V VI VII VIII IX X

1 Soil density ρS kg/m2 2000 2000 2850 920 920 920 920 2090 2000 2000
2 Soil's Young's modulus ES MPa 5160
3 Soil's Poisson's ratio ν Dimensionless 0.2
4 Soil's shear modulus GS MPa 2150.0

Soil coefficient of subgrade reaction nh MN/m3 29.1 29.1 6.2 6.2 6.2 6.2 30.4 29.1 29.1
Soil's equivalent shear modulus G� MPa 2472.50
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Fig. 5. Foundation flexibility factor as a function of soil effective unit weight and pile bending stiffness for slender piles and as a function of soil effective unit weight and
embedded length for rigid piles.
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important from the point of view of pile head deflection/rotation
and pile stiffness. As can be seen based on Appendix D, the stiff-
ness of the soil is described by different parameters for different
soil types. For cohesive soils where the modulus of subgrade
reaction is considered constant with depth below mudline, the
critical parameter is the modulus of subgrade reaction kh. For
cohesionless soils where kh increases linearly with depth, the key
parameter is the coefficient of subgrade reaction nh, which
describes the rate at which the modulus of subgrade reaction
increases with depth. The parameter nh, however, is a simple lin-
ear function of the unit weight γS and thus the density ρS of the
cohesionless soil using the formula of Terzaghi [49] as given in Eq.
(D5) (in Appendix D). In case of rocks the important parameters
are the shear modulus GS and the Poisson's ratio νS, from which
the effective shear modulus of Eq. (D7) can be calculated.

As mentioned in Section 3, the foundation stiffness parameters
KL;KR and KLR are not independent. It is apparent from Table D1
(in Appendix D) that the independent parameters required to
determine the foundation flexibility factor FFF ¼ CRCL are different
for each soil type and pile slenderness combination. The simplest
cases are for cohesionless soils where only two independent
parameters are necessary. For slender piles these are the density of
soil ρS and the bending stiffness of the monopile EPIP , and for rigid
piles they are the soil density ρS and the pile embedded length LP .
These two cases are shown in Fig. 5. There are more independent
parameters for clays and rock, and those cases therefore do not
allow for easy visualisation.
4. Conclusions

A simple methodology has been presented to calculate the first
natural frequency of an offshore wind turbine founded on a
monopile. The methodology is based on multiplying the fixed base
cantilever beam natural frequency by two foundation flexibility
factors to include the compliance of the foundation as well as the
flexibility of the substructure. The monopile foundation is mod-
elled by three coupled springs (lateral, rotational and cross cou-
pling stiffness). The closed form formulae presented in this paper
were obtained from fitting curves to the natural frequency results
obtained from numerically solving the transcendental equations.
Several conclusions can be drawn from this study:
� It is shown through the study of 10 wind turbines that the
natural frequency can be predicted with accurately (the error
range is 73.5%).

� For the wind turbines considered, foundation flexibility reduced
the fixed base natural frequency typically by 4–15%.

� The foundation flexibility factor is very sensitive to the rota-
tional stiffness KR of the monopile. On the other hand, the
natural frequency change from the fixed base frequency due to
lateral stiffness of the monopile ( KL ) is limited to about 1%.

� The simple framework for the calculation of the foundation
stiffness following the work of Poulos and Davis [42] Randolph
[43] and Carter and Kulhawy [20] used in this study was found
to give reasonable results for the 10 wind turbines studied
where three different soil types (cohesive/clay, cohesionless/
sand and rock) and two limit case approximations of slender/
infinitely long and rigid/infinitely stiff piles were analysed. It
was found that most real monopiles fall between the limiting
cases of infinitely long and rigid piles.

� The effect of water depth and monopile stiffness were also
analysed and it is found that the methodology can correctly
represent the flexibility of the monopile and therefore the
approximation is applicable both in shallow and deep water.

� While the final design verification can be carried out using
detailed finite element investigations, the method presented in
the paper can be used to estimate the natural frequency using
limited information about the wind turbine and the site and
may be a useful tool for initial analyses and conceptual design.
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Appendix A. – Natural frequency of a cantilever beam with
variable cross section

The motion of the cantilever beam can be described as a single
degree of freedom mass-spring system. The free vibration of this
system is given by

m €x tð Þþkx tð Þ ¼ 0 ðA1Þ



Fig. A1. Cantilever beam with variable cross section.

Table A1
Non-dimensional variables.

Dimensionless group Formula Dimensionless group Formula

Non-dimensional lateral stiffness ηL ¼ KLL
3
T

EIη
Non-dimensional axial force ν¼ P�L2T

EIν

Non-dimensional rotational stiffness ηR ¼ KRLT
EIη

Mass ratio α¼ mRNA
mT

Non-dimensional cross stiffness ηLR ¼ KLRL
2
T

EIη
Non-dimensional rotary inertia β¼ J

μL2

KL ;KR;KLR are the lateral, rotational and cross stiffness of the foundation, respectively; EIη is the equivalent bending stiffness of the tapered tower; LT is the hub height above
the bottom of the tower; P� is the modified axial force,mRNA is the mass of the rotor–nacelle assembly; mT is the mass of the tower; J is the rotary inertia of the top mass; μ is
the equivalent mass per unit length of the tower.
nThe rotary inertia is taken to be zero for all wind turbines considered as information is not available in the referenced literature.
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Assuming harmonic vibration, the following equation can be
obtained:

�mω2þk¼ 0 with k¼ 3EI

L3T
and m¼mRNAþ

33
140

m
0
tower

ðA2Þ
and from the circular frequency the Hertz frequency is easily
obtained

ω¼
ffiffiffiffiffi
k
m

r
- f 1 ¼

1
2π

ffiffiffiffiffi
k
m

r
ðA3Þ

The flexibility of the substructure expresses the dependence of
the natural frequency on the water depth, that is, the flexibility of
the monopile above the mudline and that of the transition piece.
For the sake of simplicity, the model used in this paper assumes
that the monopile's bending stiffness continues throughout the
water depth and up to the root of the tower. For clarity, see Fig. A1.

Bending stiffness ratio : χ ¼ ET IT
EPIP

ðA4Þ

Platform=tower length ratio : ψ ¼ LS
LT

ðA5Þ

Castigliano's second theorem for a linearly elastic 1 DoF
structure can be written as

q¼ ∂U
∂Q
where U is the strain energy, q is the generalised displacement,
and Q is the generalised force. For the particular problem, the
theorem can be used to calculate the top head deflection (the total
deflection at the hub wð0Þ) due to a horizontal force F acting at the
hub as

w 0ð Þ ¼ ∂U
∂F

¼ ∂
∂F

Z LT þ LS

0

M zð Þ½ �2
2EI zð Þ dz¼

∂
∂F

Z LT

0

F2z2

2ET IT
dz

þ ∂
∂F

Z LT þLS

LT

F2z2

2EPIP
dz¼ Fz3

3ET IT

	 
LT
0
þ Fz3

3EPIP

	 
LT þ LS

LT

¼ FL3T
3ET IT

þF LT þLSð Þ3
3EPIP

� FL3T
3EPIP

ðA6Þ

where the moment distribution along the structure caused by the
horizontal force F is given as

M zð Þ ¼ Fz ðA7Þ
The stiffness of the 1DoF system is then given as

k¼ F
wð0Þ ¼

1
L3T

3ET IT
þ LT þ LSð Þ3

3EP IP
� L3T

3EP IP

¼ 3ET IT

L3T þ L3T þ3L2TLSþ3LTL
2
S þL3S

� �
χ�L3Tχ

¼ 3ET IT

L3T 1þ 1þψ
� �3χ�χ

� �
ðA8Þ

From this the natural frequency is calculated as

f FB ¼
1
2π

ffiffiffiffiffi
k
m

r
ðA9Þ
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where m is the generalised mass of the 1DoF system. The stiffness
can be written as

k¼ 1

1þ 1þψ
� �3χ�χ

kT ðA10Þ

where kT is the stiffness of the tower without the substructure,
given as

k¼ 3ET IT
L3T

The fixed-base natural frequency of the tower-substructure
system (excluding foundation stiffness) is given using the bend-
ing stiffness ratio χ and the platform/tower length ratio ψ as

f FB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ 1þψ
� �3χ�χ

s
f FB;T ðA11Þ
Appendix B. The Euler-Bernoulli beam model equation

The equation of motion using the Euler–Bernoulli beam model
for a beam with an axial force is

∂2

∂z2
EI zð Þ∂

2w z; tð Þ
∂z2

� �
þμ zð Þ∂

2w z; tð Þ
∂t2

þ ∂
∂z

P�∂w z; tð Þ
∂z

� �
¼ p z; tð Þ ðB1Þ

where EIðzÞ is the bending stiffness distribution along the axial
coordinate z, μðzÞ is the distribution of mass per unit length, P� is
the axial force acting on the beam due to the top head mass and
M ¼

ηL λ31 þ νþ ηLR
� �

λ1

λ21−ηLR −ηRλ1
λ31 þ νλ1
� �

sinh λ1ð Þ þ αΩ2 cosh λ1ð Þ λ31 þ νλ1
� �

cosh λ1ð Þ þ αΩ2 sinh λ1ð Þ
λ21 cosh λ1ð Þ−βΩ2λ1 sinh λ1ð Þ λ21 sinh λ1ð Þ−βΩ2λ1 cosh λ1ð Þ

ηL −λ32 þ νþ ηLR
� �

λ2

−λ22−ηLR −ηRλ2
λ32−νλ2
� �

sin λ2ð Þ þ αΩ2 cos λ2ð Þ −λ32 þ νλ2
� �

cos λ2ð Þ þ αΩ2sin λ2ð Þ
−λ22 cos λ2ð Þ þ βΩ2λ2 sin λ2ð Þ −λ22 sin λ2ð Þ−βΩ2λ2 cos λ2ð Þ

2
666664

3
777775

ðB14Þ
the self-weight of the tower, p z; tð Þ is the excitation of the beam,
wðz; tÞ is the deflection profile.

Using constant equivalent values for the axial force, bending
stiffness and mass per length, and considering free harmonic
vibration of the beam with separation of variables
w z; tð Þ ¼W zð Þ∙eiωt , the equation can be reduced to the following
using the non-dimensional parameters of Table A1 and the
dimensionless axial coordinate ξ¼ z=L:

W 0000 þνW 00 �Ω2W ¼ 0 ðB2Þ

where ν¼ P�L2T=EIν is the non-dimensional axial force and Ω¼
ω=c0 ¼ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET IT=mTL

3
q

is the non-dimensional circular frequency.
Using the non-dimensional numbers as defined above, the

boundary conditions can be written for the bottom of the tower
ðξ¼ 0Þ:

W 000 0ð Þþ νþηLR
� �

W 0 0ð ÞþηLW 0ð Þ ¼ 0 ðB3Þ

W 00 0ð Þ�ηRW
0 0ð ÞþηLRW 0ð Þ ¼ 0 ðB4Þ

and the top of the tower (ξ¼1):

W 000 1ð ÞþνW 0 1ð ÞþαΩ2W 1ð Þ ¼ 0 ðB5Þ

W 00 1ð Þ�βΩ2W 0 1ð Þ ¼ 0 ðB6Þ
The parameters used in the boundary conditions are defined in
Table A1. The characteristic equation for the equation of motion
can be written as

λ4þνλ2�Ω2 ¼ 0 or ~z2þν~z�Ω2 ¼ 0 with ~z ¼ λ2 ðB7Þ
and

~z1;2 ¼
�ν7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2þ4Ω2

p
2

¼ �ν
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν
2

� �2
þΩ2

r
; �ν

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν
2

� �2
þΩ2

r

The four solutions are then

r1 ¼ i
ffiffiffiffiffi
~z1

p
r2 ¼ � i

ffiffiffiffiffi
~z1

p
r3 ¼

ffiffiffiffiffi
~z2

p
r4 ¼ �

ffiffiffiffiffi
~z2

p
ðB8Þ

with which the solution is in the form

W ξ
� �¼ C1er1ξþC2er2ξþC3er3ξþC4er4ξ ðB9Þ

which can be transformed using Euler's identity to

W ξ
� �¼ P1 cos λ1ξ

� �þP2 sin λ1ξ
� �þP3cosh λ2ξ

� �þP4sinh λ2ξ
� �

ðB10Þ
with

λ1 ¼
ffiffiffiffiffiffiffiffi
~z1


 

q

and λ2 ¼
ffiffiffiffiffiffiffiffi
~z2


 

q

: (B11)
Substituting this form of the solution into the boundary con-

ditions, one obtains four equations, written in matrix form as

M Up¼ 0 ðB12Þ
with

pT ¼ P1 P2 P3 P4
� � ðB13Þ

and
Looking for nontrivial solutions of this equation one obtains

det Mð Þ ¼ 0 ðB15Þ
from which one can obtain the non-dimensional circular fre-
quency Ω, and from that the natural frequency using

f 1 ¼
ω
2π

¼Ωc0 ¼Ω

ffiffiffiffiffiffiffiffiffiffiffi
mTL

3
T

EIη

s
ðB16Þ

The equation that has to be solved is transcendental and
therefore solutions can only be obtained numerically.
Appendix C. – Tower idealisation

The towers of offshore wind turbines are tapered towers with
diameters decreasing from the bottom to the top. Typically, the
wall thickness of the tower also decreases with height. However,
some small and medium sized turbines have constant wall thick-
ness. The formulation presented in this paper replaces this tower
shape with an equivalent constant diameter, constant wall thick-
ness tower. The average tower diameter

DT ¼
DbþDt

2
ðC1Þ

is used in combination with an equivalent tower wall thickness tT .
Note that if the average wall thickness is determined from a range
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of wall thicknesses of the tower or from the mean of the top and
bottom wall thicknesses, then the tower mass, as calculated from
the idealised tower geometry,

m0
T ¼DTπtTρTLT ðC2Þ

may not be the same as the actual tower mass mT . In the case that
information about tower wall thickness is not available, the
equivalent thickness can be chosen such that the actual tower
mass is maintained, that is,

tT ¼
mT

LTDTπρT
ðC3Þ

The non-dimensional stiffness parameters are normalised with
the length LT and the bending stiffness ET IT of the tower. When
calculating these non-dimensional stiffness parameters, the
equivalent bending stiffness is calculated such that the deflection
at the tower top due to a force acting perpendicular to the tower at
the tower top is the same for the equivalent constant diameter
tower as that of the tapered tower. The derivation is given here.

Db ¼ qDt ðC4Þ
The diameter varies along the structure as

D zð Þ ¼Dt

LT
LT þ q�1ð Þz½ � ðC5Þ

with z¼ 0 at the top of the tower and positive downwards. The
second moment of area is then given as

IT zð Þ ¼ 1
8
πD3

T zð ÞtT ¼
1
8
π
D3
t

L3T
tT LT þ q�1ð Þz½ �3 ¼ It 1þazð Þ3 ðC6Þ

where

a¼ q�1
LT

: ðC7Þ

Moment curvature relation is written as

ET IT
d2w
dz2

¼ Fz ðC8Þ

where F is the horizontal force at the hub. One can write

ET It 1þazð Þ3d
2w
dz2

¼ Fz ðC9Þ

and from that w is obtained via integration

d2w
dz2

¼ Fz

ET It 1þazð Þ3
ðC10Þ

dw
dz

¼ F
ET Ita2

1

2 1þazð Þ2
� 1
1þaz

" #
þC1 ðC11Þ
Table D1
Approximation formulae based on soil conditions and pile slenderness.

Slender pile

Constant kh [42]
⌈ F

M
⌉¼

khDP
β �khDP

2β2

�khDP

2β2
khDP

2β3

2
64

3
75 ρ

θ

	

Linear kh [42]
⌈ F

M
⌉¼

1:077∙n
3
5
h EP IPð Þ45

�0:99∙n
2
5
h EP IPð Þ35

2
4

Bedrock – shear modulus GS based [20,43]

⌈ F
M
⌉¼

3:15G�DP
Ee
G�
� �1

7

�0:53G�D2
P

Ee
G�
� �3

7

2
64
w¼ F
ET Ita2

� 1

2a 1þazð Þ2
� ln 1þazð Þ

a

" #
þC1zþC2 ðC12Þ

The boundary conditions are used to calculate the constants.

z¼ LT ;
dw
dz

¼ 0 C1 ¼
F

ET Ita2
1

1þaLT
� 1

2 1þaLð Þ2

" #
ðC13Þ

z¼ LT ; w¼ 0

C2 ¼
F

ET Ita2
ln 1þaLTð Þ

a
þ 1
2a 1þaLTð Þ�

LT
1þaLT

þ LT
2 1þaLTð Þ2

" #
ðC14Þ

The deflection at the end of the column is obtained by sub-
stituting z¼ 0 into the equation of deflection

wfree ¼
H

ET Iba2
ln 1þaLTð Þ

a
þ 1
2a 1þaLTð Þ�

LT
1þaLT

þ LT
2 1þaLTð Þ2

� 1
2a

" #

ðC15Þ

wfree ¼
FL3

ET It

q2 2lnq�3ð Þþ4q�1

2q2 q�1ð Þ3

" #
ðC16Þ

The stiffness is then given as

k¼ ET Ib
L3T

2q2 q�1ð Þ3
q2 2lnq�3ð Þþ4q�1

" #
ðC17Þ

Verification: for a cantilever beam of constant diameter

lim
q-1

2q2 q�1ð Þ3
q2 2lnq�3ð Þþ4q�1

" #
¼ 3 ðC18Þ

In the paper the following notification is used

ET It ¼ EIt
Appendix D. – Guidance on the calculation of foundation
stiffness

The stiffness of the foundation is used as input in the calcula-
tions shown in this paper. However, determining the stiffness is
the most challenging task. In the absence of careful (very expen-
sive) and detailed site measured data, existing formulations
available in the literature may be used to estimate the stiffness of
the foundation theoretically. For the sake of brevity only a brief
summary of some common methods are presented here.

For static analysis, two methods are given in [42], one methodol-
ogy based on a subgrade analysis approach partially based on Broms
[16] and Broms [17] and another based on an elastic continuum
approach. Results are provided for both cohesive and cohesionless
soils, with simple analytical results available for slender (infinitely
Rigid pile


 ⌈ F

M
⌉¼

khDPL �khDPL
2

2

�khDP L
2

2
khDPL

3

3

2
4

3
5 ρ

θ

	 


�0:99∙n
2
5
h EPIPð Þ35

1:485∙n
1
5
h EPIPð Þ45

3
5 ρ

θ

	 

⌈ F

M
⌉¼

1
2L

2nh �1
3L

3nh

�1
3L

3nh
1
4L

4nh

2
4

3
5 ρ

θ

	 


�0:53G�D2
P

Ee
G�
� �3

7

0:25G�D3
P

Ee
G�
� �5

7

3
75 ρ

θ

	 

⌈ F

M
⌉¼

3:15G�D
2
3
P L

1
3

1�0:28 2L
DP

� �1
4

� 2G�D
7
8
P L

9
8

1�0:28 2L
DP

� �1
4

� 2G�D
7
8
P L

9
8

1�0:28 2L
DP

� �1
4

4G�D
4
3
P L

5
3

1�0:28 2L
DP

� �1
4

2
66666664

3
77777775
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long) and rigid (infinitely stiff) piles. Another static stiffness approach
is recommended in Eurocode 8 Part 5 [26] based on Gazetas [27],
developed for seismic analysis of slender piles.

Dynamic analysis using a subgrade reaction approach of a beam
on an elastic foundation was developed in terms of p-y curves
[37,39,41,44,5], which is the currently accepted design procedure
suggested by e.g. the DNV code for offshore wind turbines [25]. This
methodology is based on Winkler's approach [53] and utilises non-
linear springs to model the elastic foundation. Analytical solutions for
dynamic analysis have been published by e.g. Nogami and Novak
[38,40]. Green's function based models have also been developed for
dynamic stiffness of piles, e.g. [29,31]. Recent work regarding
dynamic stiffness and damping of monopiles of offshore wind tur-
bines include Shadlou and Bhattacharya [45], Zania [56] and Dam-
gaard et al. [23]. For seismic analysis, a three-step solution was
suggested by Kausel et al. [30], including simplified approximate
expressions that make the method more attractive than finite ele-
ment analysis. Finite element based methods for analysis of piles
were developed by e.g. Blaney et al. [15].

In this appendix, however, the simple formulae in [42,43,20] are
used. These formulations neglect the frequency dependence of foun-
dation stiffness, which can be justified for dynamic loading of offshore
wind turbines because the frequencies of excitation are so low. For
seismic analysis, however, this frequency dependence should be taken
into account. These approximations provide quick and easy solutions
for foundation stiffness, achieving sufficiently accurate results for the
natural frequency as shown in the paper.

The two main parameters to decide the calculation methodol-
ogy for foundation stiffness are:
(1) Soil condition and ground profile at the site and
(2) Pile slenderness/rigidity.

The ground type/ soil determines the main soil parameter for
estimating soil stiffness, while determining whether the pile can
be considered slender or rigid. This allows for simplification of the
foundation stiffness estimation and for the use of closed form
solutions instead of graphs or numerical methods.

Ground profile and soil conditions at the site

There are three main categories to consider from the point of
view of the current analysis.
(1) Cohesive soils: the horizontal modulus of subgrade reaction kh

is considered constant with depth below the mudline. This is
typically used for over-consolidated clayey soils which is often
encountered in offshore conditions, see Bhattacharya et al.,
[14]) for typical North Sea soils. For normally consolidated
cohesive soils, the subgrade reaction increases linearly with
depth.

(2) Cohesionless soils: the horizontal modulus of subgrade reac-
tion kh is assumed to increase with the square root of the
depth below the mudline. This can be typically used for loose
to medium dense sand and gravels.

(3) Bedrock: The foundation stiffness is determined by the shear
modulus of the soil. This is typically used for weathered
bedrock and very dense sand.

(4) Complex layered soils: For real sites the soil is obviously not
always as simple as the above categories and different layers
are often observed. One of the above categories may be chosen
for such complex sites, bearing in mind that from the point of
view of pile head deflection/rotation and pile stiffness the
upper layers of the soil are of higher importance, and the
upper layers should be weighted accordingly. The soil types at
the sites of all the wind turbines considered in this paper are
listed in Table 1 in Section 1. Alternatively, the stiffness can be
more accurately obtained from p-y curves.
The constant horizontal modulus of subgrade reaction kh for
cohesive soils can be determined using the expression of Vesic
[52], using the parameters from Tables 6 and 7:

kh ¼
0:65
DP

ffiffiffiffiffiffiffiffiffiffiffi
ESD

4
P

EPIP

12

s
ES

1�ν2S

 !
ðD1Þ

where IP is the second moment of area of the pile cross section ES
is the elastic modulus of the soil, and νS is the soil's Poisson's ratio.
Broms [17] provides another expression for clays based on the
secant Young's modulus E50

kh ¼
1:67E50

DP
ðD2Þ

which can be used in combination with the formula of Skempton
[47] or the more conservative formula of Davisson [24] as quoted
in [42], in terms of the undrained shear strength cu

Skempton : E50 ¼ ð50� 200Þ � cu and kh ¼ ð80� 320Þ � cu
DP

Davisson : kh ¼ 67 � cu
DP

ðD3Þ

The linearly varying modulus of subgrade reaction of cohe-
sionless soils can be written following [42] as:

kh ¼ nh �
z
DP

ðD4Þ

where nh is the coefficient of subgrade reaction, calculated for
sand after [49] as

nh ¼
A � γsand
1:35

ðD5Þ

where γsand is the specific weight of sand and A¼ 100�300 for
loose sand, A¼ 300�1000 for medium sand, and A¼ 1000�2000
for dense sand. The modulus of subgrade reaction kh for cohesive
soils and the coefficient of subgrade reaction nh for cohesionless
soils are used to calculate the foundation stiffness, as given in
Table D1. In Table D1 ρ and θ are mudline pile head deflection and
rotation, respectively, F and M are horizontal force and over-
turning moment at the mudline.

Slenderness/rigidity of the pile

Simple closed form solutions are readily available for the sim-
plified cases obtained by assuming either a slender pile or a rigid
pile.
(1) Slender pile: The monopile is idealised as ‘slender’ or ‘infi-

nitely long’ assuming that the pile flexibly deflects and that
the pile fails first by yielding through a plastic hinge (as
opposed to failure of the soil).

(2) Rigid pile: The monopile is idealised as ‘rigid’ or ‘infinitely stiff’
assuming that the pile undergoes rigid body rotation (the soil
fails first). However significant bending moment may be
generated in the pile

Two main methods are presented here to determine whether a
pile can be slender or rigid. The first one is given in [42] and is
based on the modulus of subgrade reaction kh and the bending
stiffness of the pile EPIP . The slenderness parameter is calculated
as

β¼
ffiffiffiffiffiffiffiffiffiffiffiffi
khDP

4EPIP
4

s
ðD6Þ

The pile is considered slender or infinitely long if βLP42:5, and
considered rigid if βLPo1:5:

The second method is that of Randolph [43] and Carter and
Kulhawy [20], which is based on the equivalent Young's modulus
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Ee of the pile, and the effective shear strength of the soil G�:

Ee ¼ EPIP
D4
Pπ=64

; Gn ¼ GS 1þ3
4
νS

� �
ðD7Þ

where GS is the shear modulus of the soil. The pile is considered

slender; if
LP
DP

Z
Ee
G�

� �2
7

ðD8Þ

rigid; if
LP
DP

r0:05
Ee
G�

� �1
2

: ðD9Þ

This methodology is used for rocks by Carter and Kulhawy [20].
The formulae summarised in Table D1 were used to approximate the
foundation stiffness in the present study and were found to provide
good approximations in terms of natural frequency. The difference
between the rigid and slender pile approximations is typically 1–6%.
References

[1] 4C Offshore Limited. Global offshore wind farms database. In: 4COffshore.com
web page. 〈http://www.4coffshore.com/windfarms/〉; 2015 [accessed
19.03.15].

[2] 4C Offshore Limited. Offshore wind turbine database. In: 4COffshore.com web
page. 〈http://www.4coffshore.com/windfarms/turbines.aspx〉; 2015 [accessed
19.03.15].

[3] Adhikari S, Bhattacharya S. Dynamic analysis of wind turbine towers on
flexible foundations. Shock Vib 2012;19:37–56.

[4] Adhikari S, Bhattacharya S. Vibrations of wind-turbines considering soil–
structure interaction. Wind Struct 2011;14:85–112.

[5] API. Recommended practice for planning, designing and constructing fixed
offshore platforms—working stress design; 2005.

[6] Arany L, Bhattacharya S, Adhikari S, Macdonald John HG, Hogan S John. An
analytical model to predict the natural frequency of offshore wind turbines on
three-spring flexible foundations using two different beam models. Soil Dyn
Earthq Eng 2015;74:40–5. http://dx.doi.org/10.1016/j.soildyn.2015.03.007.

[7] Arany L, Bhattacharya S, Hogan SJ, Macdonald J. Dynamic soil–structure
interaction issues of offshore wind turbines. In: Proceedings of the 9th inter-
national conference on structural dynamics EURODYN; 2014. p. 3611–8.

[8] Arany L, Bhattacharya S, Macdonald J, Hogan SJ. Simplified critical mudline
bending moment spectra of offshore wind turbine support structures. Wind
Energy 2015;18(12):2171–97. http://dx.doi.org/10.1002/we.1812.

[9] Bhattacharya S. SDOWT: user manual (simplified dynamics of wind turbines);
2011. 1–51.

[10] Bhattacharya S, Adhikari S. Experimental validation of soil–structure interac-
tion of offshore wind turbines. Soil Dyn Earthq Eng 2011;31:805–16. http://dx.
doi.org/10.1016/j.soildyn.2011.01.004.

[11] Bhattacharya S, Cox JA, Lombardi D, Wood DM. Dynamics of offshore wind
turbines supported on two foundations. Proc ICE – Geotech Eng
2013;166:159–69. http://dx.doi.org/10.1680/geng.11.00015.

[12] Bhattacharya S, Nikitas N, Garnsey J, Alexander N, Cox J, Lombardi D, Wood
DM, Nash David FT. Observed dynamic soil–structure interaction in scale
testing of offshore wind turbine foundations. Soil Dyn Earthq Eng 2013;54:47–
60.

[13] S. Bhattacharya, Challenges in design of foundation for offshore wind turbines,
Engineering & Technology Reference, 01 January 2012, 9 pp. http://dx.doi.org/
10.1049/etr.2014.0041, Online ISSN 2056-4007.

[14] Bhattacharya S, Carrington T, Aldridge T. Observed increases in offshore
pile driving resistance. Proceedings of the Institution of Civil Engineers -
Geotechnical Engineering 2009;162(1):71–80. http://dx.doi.org/10.1680/
geng.2009.162.1.71.

[15] Blaney GW, Kausel E, Roesset JM. Dynamic stiffness of piles. In: Proceedings of
the 2nd international conference on numerical methods in geomechanics.
Blacksburg, Virginia; 1976. p. 1001–12.

[16] Broms BB. Lateral resistance of pile in cohesionless soils. J Soil Mech Found Div
ASCE 1964;90:123–56.

[17] Broms BB. Lateral resistance of pile in cohesive soils. J Soil Mech Found Div
ASCE 1964;90:27–64.

[18] Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind energy handbook, 2nd
edition; 2011. http://dx.doi.org/10.1002/0470846062.

[19] Camp TR, Morris MJ, van Rooij R, van der Tempel J, Zaaijer M, Henderson A,
Argyriadis M, Swartz S, Just H, Grainger W, Pearce D. Design methods for
offshore wind turbines at exposed sites (final report of the OWTES project EU
Joule III project JOR3-CT98-0284). Bristol; 2004.

[20] Carter J, Kulhawy F. Analysis of laterally loaded shafts in rock. J Geotech Eng
1992;118:839–55.

[21] Damgaard M, Andersen J. Natural frequency and damping estimation of an
offshore wind turbine structure. In: Proceedings of the 22nd international
offshore and polar engineering conference. Rhodes, Greece; 2012. p. 300–7.
[22] Damgaard M, Ibsen LB, Andersen LV, Andersen JKF. Cross-wind modal prop-
erties of offshore wind turbines identified by full scale testing. J Wind Eng Ind
Aerodyn 2013;116:94–108. http://dx.doi.org/10.1016/j.jweia.2013.03.003.

[23] Damgaard M, Zania V, Andersen L, Ibsen LB. Effects of soil–structure interaction
on real time dynamic response of offshore wind turbines on monopiles. Eng
Struct 2014;75:388–401. http://dx.doi.org/10.1016/j.engstruct.2014.06.006.

[24] Davisson MT. Lateral load capacity of piles. Highw Res Rec 333, 1970:104–12.
[25] DNV. Offshore standard DNV-OS-J101 design of offshore wind turbine struc-

tures. Høvik, Norway; 2014.
[26] European Committee for Standardization. Eurocode 8: design of Structures for

earthquake resistance—part 5: foundations, retaining structures and geo-
technical aspects; 2003.

[27] Gazetas G. Seismic response of end-bearing single piles. Int J Soil Dyn Earthq
Eng 1984;3:82–93. http://dx.doi.org/10.1016/0261-7277(84)90003-2.

[28] Kallehave D, Thilsted CL. Modification of the API p-y formulation of initial
stiffness of sand. Offshore site investigation and geotechnics: integrated
geotechnologies – present and future; 2012.

[29] Kausel E. An explicit solution for the Green functions for dynamic loads in
layered media. Cambridge, MA 02139; 1981.

[30] Kausel E, Whitman RV, Morray JP, Elsabee F. The spring method for embedded
foundations. Nucl Eng Des 1978;48:377–92. http://dx.doi.org/10.1016/
0029-5493(78)90085-7.

[31] Kaynia AM. Dynamic stiffness and seismic response of pile groups. Cambridge,
Massachusetts: Massachusetts Institute of Technology; 1982.

[32] Kühn M. Soft or stiff: a fundamental question for designers of offshore wind
energy converters. In: Proceedings of the European wind energy conference
EWEC'97; 1997.

[33] Leblanc Thilsted C, Tarp-Johansen NJ. Monopiles in sand—stiffness and
damping. In: Proceedings of the European wind energy conference; 2011.

[34] Lindoe Offshore Renewables Center. Offshore wind farm knowledge base. In:
lorc.dk web page. 〈〈http://www.lorc.dk/knowledge〉〉; 2011 [accessed 19.03.15].

[35] Lombardi D, Bhattacharya S, Wood D Muir. Dynamic soil–structure interaction
of monopile supported wind turbines in cohesive soil. Soil Dyn Earthq Eng
2013;49:165–80. http://dx.doi.org/10.1016/j.soildyn.2013.01.015.

[36] Lowe J. Hornsea met mast—a demonstration of the “twisted jacket” design. In:
Proceedings of the global offshore wind conference; 2012.

[37] Matlock H. Correlations for design of laterally loaded piles in soft clay. In:
Proceedings of the second annual offshore technology conference; 1970.

[38] Nogami T, Novak M. Resistance of soil to a horizontally vibrating pile. Earthq
Eng Struct 1977;5:249–61.

[39] Novak M. Dynamic stiffness and damping of piles. Can Geotech J 1974;11:574–98.
[40] Novak M, Nogami T. Soil–pile interaction in horizontal vibration. Earthq Eng

Struct Dyn 1977;5:263–81. http://dx.doi.org/10.1002/eqe.4290050305.
[41] O’Neill MW, Murchinson JM. An evaluation of p-y relationships in sands; 1983.
[42] Poulos H, Davis E. Pile foundation analysis and design. New York: Rainbow-

Bridge Book Co., Wiley; 1980.
[43] Randolph MF. The response of flexible piles to lateral loading. Géotechnique

1981;31:247–59.
[44] Reese LC, Cox WR, Koop FD. Field testing and analysis of laterally loaded piles

in stiff clay. In: Proceedings of the seventh annual offshore technology con-
ference; 1975.

[45] Shadlou M, Bhattacharya S. Dynamic stiffness of pile in a layered elastic
continuum. Géotechnique 2014;64:303–19.

[46] Shirzadeh R, Devriendt C, Bidakhvidi MA, Guillaume P. Experimental and
computational damping estimation of an offshore wind turbine on a monopile
foundation. J Wind Eng Ind Aerodyn 2013;120:96–106. http://dx.doi.org/
10.1016/j.jweia.2013.07.004.

[47] Skempton AW. The bearing capacity of clays; 1951.
[48] Tarp-johansen NJ, Andersen L, Christensen ED, Mørch C, Kallesøe B,

Frandsen S. Comparing sources of damping of cross-wind motion. In: Pro-
ceedings of the European wind energy conference; 2009.

[49] Terzaghi K. Evaluation of coefficient of subgrade reaction. Geotechnique
1955;5:41–50.

[50] van der Tempel J, Molenaar DP. Wind turbine structural dynamics—a review of
the principles for modern power generation, onshore and offshore. Wind Eng
2002;26:211–20.

[51] Versteijlen WG, Metrikine AV, Hoving JS, de Vries WE. Estimation of the
vibration decrement of an offshore wind turbine support structure caused by
its interaction with soil. In: Proceedings of the EWEA offshore conference;
2011.

[52] Vesic AB. Bending of beams resting on isotropic elastic solid. J Eng Mech Div
1961;87:35–54.

[53] Winkler E. Die Lehre Von der Elasticitaet und Festigkeit. H. Dominicus, Prag;
1867.

[54] Zaaijer M. Design methods for offshore wind turbines at exposed sites
(OWTES)—sensitivity analysis for foundations of offshore wind turbines. Delft,
The Netherlands; 2002.

[55] Zaaijer MB. Foundation models for the dynamic response of offshore wind
turbines; 2002.

[56] Zania V. Natural vibration frequency and damping of slender structures
founded on monopiles. Soil Dyn Earthq Eng 2014;59:8–20. http://dx.doi.org/
10.1016/j.soildyn.2014.01.007.

http://www.4coffshore.com/windfarms/
http://www.4coffshore.com/windfarms/turbines.aspx
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0005
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0005
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0005
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0010
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0010
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0010
http://dx.doi.org/10.1016/j.soildyn.2015.03.007
http://dx.doi.org/10.1016/j.soildyn.2015.03.007
http://dx.doi.org/10.1016/j.soildyn.2015.03.007
http://dx.doi.org/10.1002/we.1812
http://dx.doi.org/10.1002/we.1812
http://dx.doi.org/10.1002/we.1812
http://dx.doi.org/10.1016/j.soildyn.2011.01.004
http://dx.doi.org/10.1016/j.soildyn.2011.01.004
http://dx.doi.org/10.1016/j.soildyn.2011.01.004
http://dx.doi.org/10.1016/j.soildyn.2011.01.004
http://dx.doi.org/10.1680/geng.11.00015
http://dx.doi.org/10.1680/geng.11.00015
http://dx.doi.org/10.1680/geng.11.00015
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0035
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0035
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0035
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0035
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0035
http://dx.doi.org/10.1049/etr.2014.0041
http://dx.doi.org/10.1049/etr.2014.0041
http://dx.doi.org/10.1680/geng.2009.162.1.71
http://dx.doi.org/10.1680/geng.2009.162.1.71
http://dx.doi.org/10.1680/geng.2009.162.1.71
http://dx.doi.org/10.1680/geng.2009.162.1.71
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0045
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0045
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0045
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0050
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0050
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0050
http://dx.doi.org/10.1002/0470846062
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0055
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0055
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0055
http://dx.doi.org/10.1016/j.jweia.2013.03.003
http://dx.doi.org/10.1016/j.jweia.2013.03.003
http://dx.doi.org/10.1016/j.jweia.2013.03.003
http://dx.doi.org/10.1016/j.engstruct.2014.06.006
http://dx.doi.org/10.1016/j.engstruct.2014.06.006
http://dx.doi.org/10.1016/j.engstruct.2014.06.006
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0070
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0070
http://dx.doi.org/10.1016/0261-7277(84)90003-2
http://dx.doi.org/10.1016/0261-7277(84)90003-2
http://dx.doi.org/10.1016/0261-7277(84)90003-2
http://dx.doi.org/10.1016/0029-5493(78)90085-7
http://dx.doi.org/10.1016/0029-5493(78)90085-7
http://dx.doi.org/10.1016/0029-5493(78)90085-7
http://dx.doi.org/10.1016/0029-5493(78)90085-7
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0085
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0085
http://www.lorc.dk/knowledge
http://dx.doi.org/10.1016/j.soildyn.2013.01.015
http://dx.doi.org/10.1016/j.soildyn.2013.01.015
http://dx.doi.org/10.1016/j.soildyn.2013.01.015
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0095
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0095
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0095
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0100
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0100
http://dx.doi.org/10.1002/eqe.4290050305
http://dx.doi.org/10.1002/eqe.4290050305
http://dx.doi.org/10.1002/eqe.4290050305
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0110
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0110
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0115
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0115
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0115
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0120
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0120
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0120
http://dx.doi.org/10.1016/j.jweia.2013.07.004
http://dx.doi.org/10.1016/j.jweia.2013.07.004
http://dx.doi.org/10.1016/j.jweia.2013.07.004
http://dx.doi.org/10.1016/j.jweia.2013.07.004
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0130
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0130
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0130
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0135
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0135
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0135
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0135
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0140
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0140
http://refhub.elsevier.com/S0267-7261(15)00320-6/sbref0140
http://dx.doi.org/10.1016/j.soildyn.2014.01.007
http://dx.doi.org/10.1016/j.soildyn.2014.01.007
http://dx.doi.org/10.1016/j.soildyn.2014.01.007
http://dx.doi.org/10.1016/j.soildyn.2014.01.007

	Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating...
	Introduction
	Dynamic issues in support structure design
	Motivation behind the study
	Damping of structural vibrations of offshore wind turbines

	Methodology and results
	Parameters and idealisation
	Calculation procedure for simple natural frequency estimation
	Example step by step calculation: Blyth Offshore Wind Farm Vestas V66 2MW

	Application of the methodology to installed wind turbines and discussion
	Discussion on the parameters for foundation stiffness estimation

	Conclusions
	Acknowledgement
	– Natural frequency of a cantilever beam with variable cross section
	The Euler-Bernoulli beam model equation
	– Tower idealisation
	– Guidance on the calculation of foundation stiffness
	Ground profile and soil conditions at the site
	Slenderness/rigidity of the pile

	References




